Meteorological and Air Pollution Assessment from Road Use and Construction in the Eastern and Greater Accra Regions (Ghana)

Evans Botchway Ghanney^{1*} Yahaya Mijinyawa² Godson Ana³

1.Pan African University, Life and Earth Sciences Institute (Including Earth and Agriculture), PAULESI,

University of Ibadan, Ibadan, Nigeria

2.Department of Agricultural and Environmental Engineering, Faculty of Technology, University of Ibadan,

Nigeria

3.Department of Environmental Health Sciences, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria * E-mail of the corresponding author: esuoghanney2@yahoo.com

Abstract

The study identified the impacts of air pollutants and their relationships with meteorological parameters. Pollutants generated from road construction and use compared with WHO and Ghana Standards Authority (GSA) guidelines revealed the median of PM_{10} (76µg/m³), $PM_{2.5}$ (26.1µg/m³), NO_2 (36µg/m³), SO_2 (236 µg/m³), noise (75dBA) at Somanya sampling location were above the WHO guidelines for air quality. Whiles PM_{10} , SO_2 , and noise were above the (GSA) permissible limits. The Mataheko location had median values of PM_{10} (100.4 µg/m³), $PM_{2.5}$ (24.9µg/m³), NO_2 (41.0 µg/m³), SO_2 (26 µg/m³), noise (75.5 dBA) above the WHO limits, whereas only noise and PM_{10} , were above the GSA limits for ambient air quality. Construction activities released PM_{10} , $PM_{2.5}$, NO_2 , SO_2 , and noise above WHO and GSA limits. Though the quantities detected are not directly comparable to air quality recommendations, which are based on 24-hour or annual averages, they raise concerns about public health and policy.

Keywords: road, road construction, air pollutants, atmospheric parameters, Ghana **DOI:** 10.7176/JEES/12-3-04 **Publication date:**March 31st 2022

1. Introduction

The importance of roads in the twenty-first century cannot be overemphasized, typically nurturing socioeconomic development. Ghana has been keen to utilize adequate transportation infrastructure, especially the road network, to shift towards industrial production independence. However, Environmentalists' have a widely held view that constructing roads is a considerable interference with ecological habitats, ecosystem functions, and natural resources such as forests. However, in contrast to this view, urban planners and economists view roads as the best avenue for exploring interior regions for new business prospects. Notably, Ghana's environmental management department and conservation biologists have cited claims that the rapid increase and use of road works have had adverse effects on the ecological balance. Typically, the road works are most often constructed with complete disregard for wildlife habitats, animals' migration routes, seasonal dispersal patterns, and changeable impact on animals from noise. Therefore, road infrastructure construction and use have led to physical disturbance and environmental depletion, such as noise and chemical pollution.

Sadly, according to the most recent data available, Ghana's air quality is considered unsafe. $PM_{2.5}$ related deaths in Ghana increased from 3500 in 1990 to 12,200 in 2018 and 12,500 in 2019. (Health Effects Institute, 2020). Additionally, Ghana and its capital city Accra rank second in annual average $PM_{2.5}$ concentrations of 26.9 (µg/m³), trailing only Mali's 37.9 (µg/m³) (IQAir, 2021). Accra and major cities and villages consistently experience high levels of air pollution caused by vehicular exhaust fumes generated from road traffic. The roads are clogged with ancient, rickety vehicles, some of which run on sulfur or nitrogen-rich fuels, trapped in heavy traffic on sunny days with unusually high temperatures. Additionally, resuspended dust from unpaved and dusty roads, which are a common phenomenon in Ghana; also, the dry and dusty northeasterly trade wind, 'harmattan,' that blows from the Sahara across West Africa and into the Gulf of Guinea is a significant contributor of particulates to the atmosphere.

Previous air quality studies conducted in Ghana have focused on the nature and amount of pollutants emitted from bush fires, emission from motor exhausts, as well as emission from both domestic and industrial activities, which constitutes ambient air pollution (Aboh *et al.*, 2009; Aboh & Ofosu, 2010; Dionisio *et al.*, 2010; Dotse *et al.*, 2012; Ofosu *et al.*, 2015). Other studies narrowed on the use of the road itself (Atiemo *et al.*, 2012; Boahene *et al.*, 2019; Kylander *et al.*, 2003; Safo-Adu *et al.*, 2014). There also seem to be a much focus on particulates (PM₁₀ and PM_{2.5}). In contrast, effects from nitrogen oxides, sulfur oxides, volatile organic compounds (VOC), ozone (O₃), carbon-monoxide (CO), carbon dioxide (CO₂), and noise are evident; their effects are harmful to humans and the environment and need timely, enormous research and remedy.

However, the current inadequate studies on road environmental issues are also a cause for concern. More recent attention has focused on-road use pollution with a paucity of literature on road construction. This study

assessed and compared the nature and amount of pollutants generated from road construction and use activities and meteorological data with the World Health Organization (WHO) (WHO, 2021) and Ghana Standard Authority (GSA) guidelines. A statistical evaluation of the relationships of eight (8) air pollutants (Noise, PM₁₀, PM_{2.5}, CO, NO₂, SO₂, O₃, CO₂) and three (3) meteorological parameters (temperature, relative humidity, wind speed) at two different sampling locations in the Eastern and Greater Accra regions of Ghana, and road construction sampling locations in the Eastern region of Ghana. The difference in concentration of pollutants between the different sampling locations and sampling days and the relationship between pollutants and traffic density was also evaluated.

The goal is to unravel the impact of air pollutants on the environment and the relationships between air pollutants and meteorological parameters since they have a significant impact on ambient air pollution because they affect the emissions, transport, production, and deposition of air pollutants both directly and indirectly (Zhang, Wang, Hu, Ying, & MingHu, 2015). The study's findings will also inform the relevant stakeholders in environmental management about the amount of pollutants generated from road construction and use activities and how it can affect policy decisions and air quality management in general.

2. Methods and data

2.1. Description of the study locations

Road construction data used in the study were collected from the Fanteakwa North district (Obooho, Duapolice). Road use data were collected from Somanya and Mataheko of the Yilo Krobo and Ningo Prampram Municipality. As shown in (Figures. 1 and 2).

Figure 1. A Map of Ghana Showing the Yilo and Ningo-Prampram Municipality and Road Use Sampling Sites.

Figure 2. A map of Ghana showing Fanteakwa North district and road construction sampling sites

2.2. Sites for measurement

Somanya's location was less busy compared to Mataheko. Somanya's sampling location was set up on the main road, which goes through the Somanya township. The site can be classified as mixed-use, characterized by residential and commercial areas, health facility, offices, and a law court. Similarly, the Mataheko sampling location was set up on the (Tema–Akosombo) highway, opposite the Emefs Hillview Estates police station. The site depicts a mixed-use environment, having a residential, office, and commercial setting. These sites selected were based on the extensive commercial activities around the road and the busy nature of the place.

The road construction sampling was done during the partial reconstruction of the Begoro-Mpaem roads (KM 0.00 - 38.00). Samples were taken from two (2) different towns (Oboohu and Duapolice) because the construction companies' activities were centered in these two towns at the time of sampling. The construction site was chosen because it was a new road under construction. Therefore, all the different stages of road construction will be assessed and data collected as depicted in (Table 1). Also, (Table 2) provides the sampling locations and their coordinates.

www.iiste.org

Activity A Construction of curb and gutter Activity B Construction of curb and gutter Activity C Petrol concrete mixer started at 11:20 am Activity D 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity E 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity F 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity G 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity G 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity G 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity G 1. The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H 2. Grad		Table 1. Different Activities Depicting Sampling During Road Construction								
 Activity B Construction of curb and gutter Construction of curb and gutter Petrol concrete mixer started at 11:20 am Activity D The use of excavating equipment to cut into the earth, break and remove rocks in the earth Spread earth and soil along the roads future path The use of excavating equipment to cut into the earth, break and remove rocks in the earth Spread earth and soil along the roads future path Activity F The use of excavating equipment to cut into the earth, break and remove rocks in the earth Spread earth and soil along the roads future path Activity F The use of excavating equipment to cut into the earth, break and remove rocks in the earth Spread earth and soil along the roads future path The use of excavating equipment to cut into the earth, break and remove rocks in the earth Spread earth and soil along the roads future path The use of excavating equipment to cut into the earth, break and remove rocks in the earth Spread earth and soil along the roads future path The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity I Grader levels and smooth the surface Roller levels the surface Roller levels the surface Roller levels and smooth the surface Roller levels the surface Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M Excavator destruction of the planned road's path Excavator destruction of the planned road's path Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and	Activity A	Construction of curb and gutter								
Activity C Construction of curb and gutter Petrol concrete mixer started at 11:20 am Activity D 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity G 2. Grader levels and smooth the surface 2. Roller levels the surface 2. Roller levels the surface 2. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity K 1. Exca	Activity B	Construction of curb and gutter								
Activity C Petrol concrete mixer started at 11:20 am Activity D 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity E 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity F 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity G 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity G 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H 2. Grader levels and smooth the surface 3. Roller levels the surface 2. Roller levels the surface 4. Activity J Roller levels and smooth the surface 2. Roller levels the surface 2. Roller levels the surface 2. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M 1. Exc	Activity C	Construction of curb and gutter								
Activity D 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H 2. Grader levels and smooth the surface 2. Roller	Activity C	trol concrete mixer started at 11:20 am								
 Activity D 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H 2. Grader levels and smooth the surface 2. Roller levels the surface 2. Roller levels the surface 2. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavating equipme	Activity D	1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth								
Activity E 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth Activity F 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth Activity F 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth Activity G 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H 2. Grader levels and smooth the surface 2. Roller levels the surface Activity I 1. Grader levels and smooth the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity L 1. Excavator destruction of the planned road's path 2. The area	Activity D	2. Spread earth and soil along the roads future path								
 Activity E 2. Spread earth and soil along the roads future path Activity F 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path Activity G 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H 2. Grader levels and smooth the road surface 3. Roller levels the surface Activity J Roller levels the surface Activity K 1. Grader levels and smooth the surface 2. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes 3. Concrete mixer used in the construction of Culverts and drains 3. Concrete mixer used in the construction of culverts and drains 	Activity E	1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth								
Activity F 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth Activity G 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth Activity G 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H 2. Grader levels and smooth the road surface 3. Roller levels the surface Activity J Roller levels and smooth the surface 3. Roller levels the surface Activity L 1. Grader levels and smooth the surface 2. Roller levels the surface Activity L 1. Roller levels the surface 2. Roller levels the surface Activity L 1. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes <td>Activity E</td> <td>2. Spread earth and soil along the roads future path</td>	Activity E	2. Spread earth and soil along the roads future path								
 Activity F 2. Spread earth and soil along the roads future path Activity G 1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth 2. Spread earth and soil along the roads future path 1. The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H 2. Grader levels and smooth the road surface 3. Roller levels the surface Activity J Roller levels the surface Activity K 1. Grader levels and smooth the surface 2. Roller levels the surface Activity I Roller levels and smooth the surface 2. Roller levels and smooth the surface 2. Roller levels the surface 2. Roller levels the surface 2. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 3. Concrete mixer used in the construction of Culverts and drains 4. Concrete mixer used in the construction of Culverts and drains 	Activity E	1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth								
 Activity G The use of excavating equipment to cut into the earth, break and remove rocks in the earth Spread earth and soil along the roads future path The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H Grader levels and smooth the road surface Roller levels the surface Activity I Grader levels and smooth the surface Activity I Grader levels and smooth the surface Activity I Grader levels and smooth the surface Roller levels the surface The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity M Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O Excavating equipment spread earth and soil along the roads future path Concrete mixer used in the construction of Culverts and drains Activity D 	Activity r	2. Spread earth and soil along the roads future path								
 Activity G 2. Spread earth and soil along the roads future path The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H 2. Grader levels and smooth the road surface Roller levels the surface Activity J Grader levels and smooth the surface Activity J Roller levels the surface Activity I Grader levels and smooth the surface Activity J Roller levels the surface Activity I Grader levels and smooth the surface Activity L I. Grader levels and smooth the surface 2. Roller levels the surface 2. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O Excavating equipment spread earth and soil along the roads future path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O Excavating equipment spread earth and soil along the roads future path Concrete mixer used in the construction of Culverts and drains Activity D Excavating equipment spread earth and soil along the roads future path Concrete mixer used in the construction of Culverts and drains 	Activity G	1. The use of excavating equipment to cut into the earth, break and remove rocks in the earth								
 The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity H Grader levels and smooth the road surface Roller levels the surface Activity J Roller levels and smooth the surface Activity K Grader levels and smooth the surface Activity K Grader levels and smooth the surface Activity L Grader levels and smooth the surface Roller levels the surface Roller levels the surface Roller levels the surface Roller levels the surface Scoller levels the surface Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O Excavating equipment spread earth and soil along the roads future path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O Excavating equipment spread earth and soil along the roads future path Concrete mixer used in the construction of Cluverts and drains Concrete mixer used in the construction of all vegetation, including trees, shrubs, and bushes Concrete mixer used in the construction of cluverts and drains 	Activity O	2. Spread earth and soil along the roads future path								
Activity H 2. Grader levels and smooth the road surface 3. Roller levels the surface Activity I Grader levels and smooth the surface Activity J Roller levels the surface Activity K 1. Grader levels and smooth the surface 2. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes 3. Concrete mixer used in the construction of culverts and drai		1. The area adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes								
 3. Roller levels the surface Activity I Grader levels and smooth the surface Activity J Roller levels the surface Activity K 1. Grader levels and smooth the surface 2. Roller levels the surface 2. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 3. Concrete mixer used in the construction of Culverts and drains 	Activity H	2. Grader levels and smooth the road surface								
 Activity I Grader levels and smooth the surface Activity J Roller levels the surface Activity K 1. Grader levels and smooth the surface 2. Roller levels the surface Activity L 1. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes 		3. Roller levels the surface								
 Activity J Roller levels the surface Activity K 1. Grader levels and smooth the surface 2. Roller levels the surface 2. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes 3. Concrete mixer used in the construction of Culverts and drains 	Activity I	Grader levels and smooth the surface								
 Activity K 1. Grader levels and smooth the surface 2. Roller levels the surface 2. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes 3. Concrete mixer used in the construction of Culverts and drains 	Activity J	Roller levels the surface								
 Roller levels the surface Activity L Roller levels the surface Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O Excavating equipment spread earth and soil along the roads future path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Concrete mixer used in the construction of Culverts and drains 	Activity K	1. Grader levels and smooth the surface								
 Activity L 1. Roller levels the surface 2. Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes 3. Concrete mixer used in the construction of Culverts and drains 		2. Roller levels the surface								
 Water sprayed to reduce dust at 2:00 – 2:40 pm Activity M Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O Excavating equipment spread earth and soil along the roads future path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Concrete mixer used in the construction of Culverts and drains 	Activity L	1. Roller levels the surface								
 Activity M 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N 1. Excavator destruction of the planned road's path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes 3. Concrete mixer used in the construction of Culverts and drains 		2. Water sprayed to reduce dust at $2:00 - 2:40$ pm								
 The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity N Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O Excavating equipment spread earth and soil along the roads future path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Concrete mixer used in the construction of Culverts and drains 	Activity M	1. Excavator destruction of the planned road's path								
 Activity N Excavator destruction of the planned road's path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Activity O Excavating equipment spread earth and soil along the roads future path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Concrete mixer used in the construction of Culverts and drains 		2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes								
 The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Excavating equipment spread earth and soil along the roads future path The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Concrete mixer used in the construction of Culverts and drains 	Activity N	1. Excavator destruction of the planned road's path								
 Activity O 1. Excavating equipment spread earth and soil along the roads future path 2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes 3. Concrete mixer used in the construction of Culverts and drains 		2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes								
 The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes Concrete mixer used in the construction of Culverts and drains 	Activity O	1. Excavating equipment spread earth and soil along the roads future path								
3. Concrete mixer used in the construction of Culverts and drains		2. The areas adjacent to the road is cleansed of all vegetation, including trees, shrubs, and bushes								
		3. Concrete mixer used in the construction of Culverts and drains								
ACTIVITY P Excavator digs into the earth, spread earth and soil to level the surface and breaks rocks.	Activity P	Excavator digs into the earth, spread earth and soil to level the surface and breaks rocks.								
Activity Q Tipper trucks hip sand and gravel adjacent the road.	Activity Q	Tipper trucks hip sand and gravel adjacent the road.								

Table 2.	Sampling	Location a	nd their	Coordinates	
					2

Sampling logation	Definition	Geographic	Geographical location				
Sampling location	Definition	Latitude	Longitude				
Somanya	Road use	6° 5' 53.23" N	0° 1' 6.86" W				
Mataheko	Road use	5° 45' 32.26" N	0° 0' 15.64" W				
Oboohu	Road construction	6° 28' 48.74" N	0° 20' 23.53" W				
Oboohu	Road construction	6° 25' 32.96" N	0° 20' 23.6" W				
Oboohu	Road construction	6° 25' 33" N	0° 20' 19.16" W				
Oboohu	Road construction	6° 25' 32.91" N	0° 20' 23.66" W				
Oboohu	Road construction	6° 28' 48.74" N	0° 18' 23.67" W				
Duapolice	Road construction	6° 28' 48.74" N	0° 18' 23.67" W				
Duapolice	Road construction	6° 29' 12.07" N	0° 18' 12.88" W				
Duapolice	Road construction	6° 25' 55.71" N	0° 20' 0.07" W				
Duapolice	Road construction	6° 5' 52.4" N	0° 1' 6.69" W				
Duapolice	Road construction	6° 29' 11.96" N	0° 18' 13" W				
Duapolice	Road construction	6° 29' 5.23" N	0° 18' 16.49" W				
Duapolice	Road construction	6° 29' 42.22" N	0° 17' 48.37" W				
Duapolice	Road construction	6° 29' 42.2" N	0° 17' 48.37" W				
Duapolice	Road construction	6° 29' 20.81" N	0° 18' 7.77" W				

2.3 Instrumentation

The air pollutants were measured using Aeroqual Series 500 Handheld Monitor with corresponding class one (1) gas sensor heads for (PM10 and PM2.5), Ozone (O3), Sulphur dioxide (SO2), Nitrogen dioxide (NO2), Carbon monoxide (CO) and Carbon dioxide (CO2). Likewise, the meteorological parameters (air temperature, relative humidity, wind speed) and noise were measured using a PCE-EM 883 environmental meter.

2.4 Measurements

The Aeroqual series, 500 handheld monitors, were set up at the height of 1.5m above the ground level and a distance of 1.5m from the edge of the road. Whereas the PCE-EM 883 environmental meter was mounted 0.9m apart, on a tripod stand about one point five (1.5m) meters from the road and set at one point five meters (1.5m) above the ground with the microphone pointing at the perceived sound source.

The ambient air quality measurements were carried out for a period of twelve (12) hours at the two (2) receptor areas (Somanya and Mataheko) for road use. Data were logged automatically every minute for twelve (12) hours (6:00 am to 6:00 pm). Monitoring was done from Friday, 26th February 2021, to Sunday, 14th March 2021, at Somanya, totaling eighteen (18) days, and from Monday, 17th May 2021, to Sunday, 6th June 2021, at Mataheko, making a total of eighteen (18) days. All data were collected for six (6) days in a week (Monday, Tuesday, Wednesday, Friday, Saturday, and Sunday). Road construction sampling commenced from Monday 22nd March 2021 to Saturday 17th April 2021, making seventeen (17) days.

Two (2) different pollutants were measured for each day, except for particulates, where the particulate matter sensor could measure PM10 and PM2.5 at the same time added to another pollutant. (Table 3) shows the weekly schedule for air quality measurements.

3.0 Results and Discussions

3.1. Data overview

(Table 4) shows the twelve-hour median, minimum, maximum, conversion of units to appropriate standards, WHO and GSA permissible limits for the air pollutants and noise at the two road use sampling locations for the entire sampling period.

Table 4. Statistical summary of the 12-hours median, minimum, maximum concentrations of windspeed (m/s), surface temperature (°C), relative humidity (%), PM₁₀, PM_{2.5}, CO, NO₂, SO₂, O₃, CO₂, Noise and traffic volume (q, h⁻¹) during the entire sampling period. Units mg/m³ for (PM₁₀, PM_{2.5}); ppm for all gaseous pollutants; dBA for noise.

MP	Median	Minimum	Maximum	Conversion	WHO) GSA
		Somanya sa	mpling location			
Temperature	34.0	24.1	49.4			
Relative Humidity	50.90	25.6	92.3			
Windspeed	00.2	00.0	04.0			
Air Pollutants and						
Traffic Volume						
Noise	75.2	30.2	104.9		70	60
PM_{10}	0.0677	0.0040	0.3530	76	45	70
PM _{2.5}	0.0261	0.0079	0.2444	26.1	15	35
CO	0.462	0.00	9.230	0.5	4	-
NO_2	0.0193	0.0037	0.0685	36	25	150
SO_2	0.0900	0.00	0.61	236	40	50
O_3	0.0039	0.00	0.0493	8	100 (8h	rs) -
CO_2	395	374	520		_	-
Traffic Volume	816	636	985			
		Mataheko sa	mpling location			
Temperature [°C]	31.60	23.9	41.8			
Relative Humidity [%]	61.45	33.2	96.4			
Windspeed [m/s]	01.30	00.0	07.1			
Air Pollutants and						
Traffic Volume						
Noise	75.55	50.9	101.5		70	60
PM_{10}	0.1004	0.0130	0.4320	100.4	45	70
PM _{2.5}	0.0249	0.0023	0.1850	24.9	15	35
СО	1.098	0.00	7.528	1.1	4	-
NO_2	0.0219	0.000	0.0679	41.0	25	150
SO_2	0.0100	0.00	0.26	26	40	50
O ₃	0.00615	0.00	0.0384	12	100 (8hrs)	
CO_2	429	403	516			
Traffic Volume	1350	917	1457			

Note: (MP: meteorological parameters). Conversion, 24 hour WHO and GSA standards are in $\mu g/m^3$, CO is in mg/m^3 .

Table 5. Statistical summary of the minimum, maximum, mean concentrations of surface temperature (Temp, °C), relative humidity (RH, %), wind speed (WS, m/s). PM_{10} , $PM_{2.5}$, CO, NO₂, SO₂, O₃, CO₂, and Noise during the entire sampling period. Units mg/m³ for (PM₁₀, PM_{2.5}); ppm for all gaseous pollutants; dBA for noise.

	MP	Minimum	Maximum	Median	Conversion	WHO	GRA	
_			A	ctivity A				
	Temp	27.0	34.2	31.0				
	RH	50.2	72.9	58.60				
	WS	00.7	05.5	02.0				
	Air Pollutants							
	Noise	44.6	87.9	58.60		66	60	
	PM_{10}	0.0123	0.0448	0.0927	92.7	45	70	
	PM _{2.5}	0.0116	0.0448	0.0240	24.0	15	35	
	СО	0.00	10.113	0.078	0.089	4		
			A	ctivity B				
	Temp	24.6	32.4	30.1				
	RH	51.1	76.9	57.90				
	WS	00.0	05.0	01.30				
	Air Pollutants							
	Noise	50.90	89.70	62.00		66	60	
	NO ₂	0.008	0.035	0.0212	40.0	25	150	
	SO_2	0.00	0.17	0.080	210	40	50	
1	_		A	ctivity C				
	Temp	26.3	31.7	29.30				
	RH	49.5	60.8	55.30				
	WS	00.3	05.2	01.50				
	Air Pollutants							
	Noise	49.6	102.7	68.4		66	60	
	O_3	0.00	0.0122	0.0039	8	100(8hrs)		
	CO_2	396	545	407				
			A	ctivity D				
	Temp	27.3	31.5	29.80				
	RH	53.0	72.1	59.55				
	WS	00.2	04.2	02.15				
	Air Pollutants	00.2	01.2	02.10				
	Noise	51.0	85.1	72.35		66	60	
	PM_{10}	0.0168	0.1107	0.0444	44.4	45	70	
	PM _{2.5}	0.0052	0.0269	0.0107	10.7	15	35	
	CO	0.00	1.3333		0.1	4		
1			Α	ctivitv E				
	Temp	29.3	34.4	32.65				
	RH	39.6	56.7	44.25				
	WS	00.0	02.4	00.45				
	Air Pollutants							
	Noise	43.6	88.0	67.60		66	60	
	NO_2	0.00	0.0265	0.0190	36	25	150	
	SO_2	0.00	0.13	0.0250	66	40	50	
			Α	ctivity F				
	Temp	26.3	30.5	28.40				
	RH	61.4	82.5	67.50				
	WS	00.0	02.8	01.20				
	Air Pollutants							
	Noise	64.0	86.0	77.90		66	60	
	O3	0.00	0.0029	0.0007	1.0	100(8hrs)		
	CO	380	430	306				
	CO_2	307	+50	370				

Activity G Temp 29.8 33.90 31.50 RH 37.3 66.1 51.50 WS 00.0 03.1 00.80 Air Pollutants 66 60 Noise 40.3 87.1 65.80 66 60 NO2 0.0013 0.0236 0.0133 25 25 150 SO2 0.00 0.28 0.030 79 40 50 Activity H Temp 30.1 36.6 32.60 RH 39.2 65.4 49.60 WS 00.0 0.0057 0.0025 5.0 100(8hrs) CO2 388 423 395 Activity I Temp 31.3 32.5 33.05 RH 35.0 60.1 49.95 VS 00.0 03.1 00.20 Attrivity I Temp 31.3 32.5 33.05 RH
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Air PollutantsNoise 40.3 87.1 65.80 66 60 NO2 0.0013 0.0236 0.0133 25 25 150 SO2 0.00 0.28 0.030 79 40 50 Activity HTemp 30.1 36.6 32.60 RH 39.2 65.4 49.60 WS 00.0 0.30 01.10 Ati PollutantsNoise 39.1 85.8 64.6 66 60 O3 0.000 0.0057 0.0025 5.0 $100(8hrs)$ 60 CO2 388 423 395 50 $100(8hrs)$ CO2 388 423 395 50 $100(8hrs)$ 66 Activity ITemp 31.3 32.5 33.05 80.0 50 RH 35.0 60.1 49.95 50 50 WS 00.0 03.1 00.20 41 70 Air Pollutants 85.8 64.2 49.05 66 60 Noise 36.6 84.2 49.05 50 50 70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Activity HTemp 30.1 36.6 32.60 RH 39.2 65.4 49.60 WS 00.0 03.0 01.10 Air PollutantsNoise 39.1 85.8 64.6 66 60 O_3 0.000 0.0057 0.0025 5.0 $100(8hrs)$ CO2 388 423 395 666 60 Co2Activity ITemp 31.3 32.5 33.05 Activity IMise 00.00 03.1 00.20 Activity IMise 36.6 84.2 49.05 66 60 Mu 0.1860 0.6108 0.2548 254.8 45 70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
RH 39.2 65.4 49.60 WS 00.0 03.0 01.10 Air Pollutants $Noise$ 39.1 85.8 64.6 66 60 O_3 0.000 0.0057 0.0025 5.0 $100(8hrs)$ 60 CO_2 388 423 395 423 395 $100(8hrs)$ 60 Activity ITemp 31.3 32.5 33.05 33.05 $8H$ 35.0 60.1 49.95 80.00 84.2 49.05 66 60 Air PollutantsNoise 36.6 84.2 49.05 66 60 PM 0.1860 0.6108 0.2548 254.8 45 70
WS 00.0 03.0 01.10 Air Pollutants Noise 39.1 85.8 64.6 66 60 O_3 0.000 0.0057 0.0025 5.0 $100(8hrs)$ CO2 388 423 395 $Activity I$ Temp 31.3 32.5 33.05 RH 35.0 60.1 49.95 WS 00.0 03.1 00.20 $Air Pollutants$ 666 60 Noise 36.6 84.2 49.05 666 60 Mu 0.1860 0.6108 0.2548 254.8 445 70
Air Pollutants Noise 39.1 85.8 64.6 66 60 O ₃ 0.000 0.0057 0.0025 5.0 $100(8hrs)$ CO ₂ 388 423 395 $I00(8hrs)$ Activity I Temp 31.3 32.5 33.05 RH 35.0 60.1 49.95 VS 00.0 03.1 00.20 Air Pollutants Noise 36.6 84.2 49.05 66 60 PM 0.1860 0.6108 0.2548 254.8 445 70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
O3 0.000 0.0057 0.0025 5.0 100(8hrs) CO2 388 423 395
CO2 388 423 395 Activity I Temp 31.3 32.5 33.05 RH 35.0 60.1 49.95 WS 00.0 03.1 00.20 Air Pollutants 666 60 Noise 36.6 84.2 49.05 666 60 PM 0.1860 0.6108 0.2548 254.8 45 70
Activity I Temp 31.3 32.5 33.05 RH 35.0 60.1 49.95 WS 00.0 03.1 00.20 Air Pollutants Noise 36.6 84.2 49.05 66 60 PM 0.1860 0.6108 0.2548 254.8 45 70
Temp 31.3 32.5 33.05 RH 35.0 60.1 49.95 WS 00.0 03.1 00.20 Air PollutantsNoise 36.6 84.2 49.05 66 60 PM 0.1860 0.6108 0.2548 254.8 45 70
RH 35.0 60.1 49.95 WS 00.0 03.1 00.20 Air Pollutants 36.6 84.2 49.05 66 60 PM 0.1860 0.6108 0.2548 254.8 45 70
WS 00.0 03.1 00.20 Air Pollutants Noise 36.6 84.2 49.05 66 60 PM 0.1860 0.6108 0.2548 254.8 45 70
Air Pollutants Noise 36.6 84.2 49.05 66 60 PM 0.1860 0.6108 0.2548 254.8 45 70
Noise 36.6 84.2 49.05 66 60 PM 0.1860 0.6108 0.2548 254.8 45 70
DM = 0.1960 = 0.6109 = 0.2549 = 254.9 = 45 = 70
Γ_{110} 0.1800 0.0108 0.2348 234.8 45 70
PM _{2.5} 0.0168 0.1144 0.04345 43.45 15 35
CO 0.043 0.1217 0.0570 0.065 4
Activity J
Temp 27.4 36.8 32.65
KH 41.2 /0.2 56.15
WS 00.0 03.70 01.25
Air Pollutants
Noise 44.5 64.7 70.55 00 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Activity K
Temp 31.7 35.7 33.35
RH 48.1 60.7 54.10
WS 00.0 02.6 01.55
Air Pollutants
Noise 40.2 89.8 52.55 66 60
NO ₂ 0.0020 0.0268 0.0175 33 25 150
SO ₂ 0.00 0.04 0.0063 3 40 50
Activity L
Temp 30.1 33.7 31.60
RH 45.0 66.6 55.70
WS 00.0 04.3 02.6
Air Pollutants
Noise 44.4 90.2 $/4.2$ 66 60 NO 0.00 0.0141 0.0057 11 25 150
100_2 0.00 0.0141 0.0050 11 25 150 SO ₂ 0.00 0.32 0.160 410 40 50

MP	Minimum	Maximum	Median	Conversion	WHO	GRA
		Α	ctivity M			
Temp	31.4	35.7	32.7			
RH	40.6	48.2	45.10			
WS	00.1	05.1	00.25			
Air Pollutants						
Noise	34.9	90.0	64.2		66	60
O ₃	0.00	0.0022	0.0002	0.0001	100(8hrs)	
CO_2	390	425	408			
		Α	ctivity N			
Temp	30.90	36.60	32.20			
RH	43.2	65.9	58.90			
WS	00.1	04.2	01.1			
Air Pollutants						
Noise	50.9	84.0	71.6		66	60
NO ₂	0.0052	0.0269	0.01150	22	25	150
SO_2	0.00	1.166	0.0440	115	40	50
		A	Activity O			
Temp	27.60	33.60	30.60			
RH	43.3	69.8	59.30			
WS	00.1	08.3	02.40			
Air Pollutants						
Noise	59.2	80.3	69.50		66	60
PM_{10}	0.0051	0.1528	0.03170	31.7	45	70
PM _{2.5}	0.0027	0.0214	0.00770	7.7	15	35
CO	0.00	2.005	0.0620	0.1	4	
		Α	ctivity P			
Temp	29.5	31.6	30.10			
RH	58.1	66.4	63.90			
WS	00.0	01.2	00.95			
Air Pollutants						
Noise	86.6	93.1	89.40		66	60
O3	0.00	0.0006	0.00012	0.0001	100(8hrs)	
CO_2	453	491	484			
T	c o (A	ctivity Q			
I emp	29.4	37.8	33.0			
KH	42.4	66.9	51.3			
WS	0.0	04.7	00.60			
Air Pollutants	12.0	01.0	71.40		(((0
Noise	43.0	91.9	/1.40		66 25	60 150
NO_2	0.00	0.0161	0.006/		25	150
SO_2	0.00	0.16	0.040		40	50

Note: (MP: meteorological parameters). Conversion, 24 hour WHO and GSA standards are in $\mu g/m^3$, CO is in mg/m^3 .

(Table 5) also shows the minimum, maximum, median, conversion of units to appropriate standard, WHO, and GRA permissible limits for the entire period of road construction activities sampling.

At the Somanya sampling location, the median of noise (75dBA), PM_{10} (76µg/m³), $PM_{2.5}$ (26.1 µg/m³), NO_2 (36 µg/m³), and SO_2 (236 µg/m³) were slightly above the WHO acceptable guideline limit except for SO_2 , which was almost six (6) times that quantity. Further, concerning the GSA limits, noise (75dBA), PM_{10} (76µg/m³), and SO_2 (236 µg/m³) were above the limits. Quite similar to the Somanya location, in contrast, the Mataheko location recorded median values for noise (75.5 dBA), PM_{10} (100.4 µg/m³), $PM_{2.5}$ (26.1 µg/m³), NO_2 (36 µg/m³), which were slightly above the WHO permissible limit except for PM_{10} , which was twice as high. Also, only noise and PM_{10} were above the GSA acceptable limits.

These results may be explained by the fact that particulate matter sources include particles produced after the combustion of fossil fuels and biomass, for example, in diesel and petrol engines. These are typically constituted primarily of carbon, both in its elemental form and as low-volatile organic compounds which could be suspended in the atmosphere. Also, fly ash is a significant source of non-carbonaceous particles, which are released into the atmosphere by the combustion of a fuel like coal. Mechanical procedures such as quarrying can also produce small rock fragments that can be carried into the sky by the wind. Construction and demolition can produce coarse particles as well. The high levels of particles recorded in the study resulted from wind-driven sand and tiny rock particles carried about in the air. As observed in the location, there were several untarred areas adjacent to the road under investigation. This was typically serious at the Mataheko location, where public transport drivers moved off the main tarred road into the untarred part of the road to pick up passengers. The movement of vehicles on unpaved roads has contributed to significantly high levels of particulates.

NO₂ levels in urban air are mainly from petrol and diesel engines when the nitrogen in fuels is converted to NO₂. Another source of NO₂ production is the combination of nitrogen and oxygen in the air at very high temperatures to form NO₂. Somanya's location recorded a maximum temperature of 49.4°C (Table 4). These two sources could have contributed to the high quantity of NO₂ at these two sampling locations. Furthermore, SO₂ levels from urban traffic monitoring could be from the amount of sulfur in the fuel used. SO₂ is produced when the sulfur in fuels is burned to SO₂. This could mean the fuel being used could have a sufficient concentration of sulfur in them. Lastly, the noise characterized by road use is mainly from the honk of cars. Many car drivers honk unnecessarily even when they are not supposed to. Some motorbikes make extremely high noise from their engines when on top speed. Heavy-duty tanker drivers are also fond of making noise when not necessary. Other sources include ambulance services and official motorcades as well.

The construction sampling A recorded median of PM_{10} (92.7µg/m³), $PM_{2.5}$ (24.0 µg/m³), which were slightly above the WHO acceptable limit, further, concerning the GSA limits, PM_{10} (792.7µg/m³ was above the limits. The construction sampling B recorded a median of NO₂ (40 µg/m³) and SO₂ (210 µg/m³). They were above the WHO acceptable limit. Further, with the GSA limits, SO₂ (210 µg/m³) was above the limits. Plus, construction sampling C recorded a median of noise (68.4 dBA) above the GSA limit. The construction sampling D recorded a noise median (72.4 dBA) above the WHO and GSA limits. The construction sampling E recorded a median of noise (67.6dBA), NO₂ (36 µg/m³), and SO₂ (66 µg/m³), which were slightly above the WHO acceptable limit. Further, concerning the GSA limits, noise (67.6 dBA) and SO₂ (66 µg/m³) were above the limits. The construction sampling F recorded a noise median (77.9 dBA) above both the WHO and GSA acceptable limits.

The construction sampling, I recorded a very high median of PM_{10} (254.8 µg/m3) and $PM_{2.5}$ (43.45 µg/m3) above the acceptable limits of WHO and GSA. Also, construction sampling G recorded a median of SO₂ (79 µg/m3) above the WHO and GSA limits for NO₂. Additionally, construction sampling J recorded a median of noise (70.6 dBA), PM_{10} (241.25µg/m³), $PM_{2.5}$ (54.05 µg/m³), the exceptionally high values of PM_{10} , and all pollutants were above the WHO and GSA standards. The construction sampling K recorded a median of NO₂ (33 µg/m³) above the WHO limits. The construction sampling L recorded a median of noise (74.2 dBA) and SO₂ (419 µg/m3) above the WHO and GSA limits. Further, the construction sampling N recorded a median of noise (71.6 dBA) and SO₂ (115 µg/m3) above the WHO and GSA limit. The construction sampling P recorded a median of noise (89.4 dBA) above the WHO and GSA limit. The construction sampling P recorded a median of noise (71.4 dBA) SO₂ (105 µg/m³) above the WHO and GSA limits.

These results corroborate the findings of previous work by Font *et al.* (2014); the study found NO₂ concentration exceeded the EU limit value after the road development indicating a remarkable deterioration in air quality. Fuller & Green (2004) also confirmed that roadworks could increase daily mean PM₁₀ measurements above the EU Limit Value of 50 μ g/m³. Azami *et al.* (2016) also assessed the long-term impacts of PM₁₀ and PM_{2.5} particles from construction works on surrounding areas; the results show that daily mean concentrations of PM₁₀ exceeded the European Union target limit value of 50 μ g/m³.

All activities of the construction process released pollutants that exceeded WHO and GSA limits, as long as they have to do with machinery where fuel has to be used. Also, the sound is produced from machinery when these activities are being executed. PM_{10} and $PM_{2.5}$ were produced mainly due to heavy trucks and machinery on unpaved roads and public transportation. There were also cases of breaking rocks and aggregating sand particles into the atmosphere. The SO₂ and NO₂ are from the fuel being used, which is diesel. Noise readings were basically from machinery and heavy trucks during the construction activities.

3.2. Mann-Whitney U test for Meteorological and Air Pollutants (Comparing Mataheko and Somanya Locations) The distribution of pollutants and meteorological parameters were different as assessed by visual inspection of boxplots (Figure 3). Relative humidity (RH) and wind speed (WS) were statistically significantly higher at Mataheko except for temperature compared to Somanya. Pollutants were substantially higher at Mataheko for all pollutants except for SO₂, whereas O₃ and CO₂ were not different.

Figure 3. Boxplots of 12hour meteorological and air pollutants across the two sampling sites.

3.3. The Difference in the median Between the Different Days of Sampling (Somanya and Mataheko)

The distribution of meteorological parameters and air pollutants was not similar for all sampling days at the Somanya location. The Mataheko location also had meteorological parameters not similar for all sampling days. However, noise, carbon monoxide (CO), and sulphur dioxide (SO₂) values didn't show any statistically significant difference.

3.4 Correlation between air pollutants and meteorological parameters (road use and construction)

Spearman's rank-order correlations were run to examine the relationships between meteorological factors and air pollutants. At the Somanya location, temperature was positively correlated with PM₁₀, PM_{2.5}, SO₂ (p < .001), and NO₂, O₃ (p < .005). It was negavitely correlated with CO₂ (p < .001) and noise (p < .005). RH was positively correlated with noise and CO₂ (p < .001) and negatively correlated with PM₁₀, PM_{2.5}, CO₂, SO₂, O₃ (p < .001). Wind speed was positively correlated with noise (p < .001) and SO₂ (p < .005) (Table 6). Mataheko location also showed similar trends, temperature was positively correlated with PM₁₀, PM_{2.5}, SO₂, NO₂ (p < .001) and CO (p < .005). And negavitely correlated with CO₂ and noise (p < .001). RH was positively correlated with noise and CO₂ (p < .001) and section also (p < .005). And negavitely correlated with PM₁₀, PM_{2.5}, CO₂, SO₂, (p < .001) and CO (p < .005). And negavitely correlated with PM₁₀, PM_{2.5}, CO₂, SO₂ (p < .005). Moreover, WS

was positively correlated with PM₁₀, PM_{2.5}, SO₂ ($p \le .001$) and CO ($p \le .005$) and negatively correlated with CO₂ ($p \le .001$) (Table 7).

Table 6. Statistical summary of spearman correlation coefficient values for road use activities at Somanya
sampling location. Temperature (Temp, °C), relative humidity (RH, %), wind speed (WS, m/s). PM ₁₀ , PM _{2.5} , CO,
NO_2 , SO_2 , O_3 , CO_2 and Noise during the entire sampling period.

	Temp	RH	WS	Noise	PM10	Pm _{2.5}	СО	NO ₂	SO_2	O3	CO ₂
Temp	1.000	919**	0.38	062*	.281*	.187**	.010	096*	.791**	.108**	367**
RH	919**	1.000	038	.093**	390**	291**	128**	.033	791**	180**	.430**
WS	.038	038	1.000	.075**	.043	.053	.026	088	.049	.040	054
Noise	062*	.093**	.075**	1.000	.005	.041	002	032	015	.073	.028
PM_{10}	.281**	390**	.043	.005	1.000	.927**	.279**				
PM _{2.5}	.187**	291**	.053	.041	.927**	1.000	.237**				
CO	.010	128**	.026	002	.279**	.237**	1.000				
NO ₂	.096*	.033	088	032				1.000	.017		
SO_2	.791**	791**	.049*	015				.017	1.000		
O ₃	.108*	180**	.040	.073						1.000	766**
CO ₂	367**	.430**	054	.028						766**	1.000

Note: *Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed).

Table 7. Statistical summary of spearman correlation coefficient values for road use activities at Mataheko sampling location. Temperature (Temp, °C), relative humidity (RH, %), wind speed (WS, m/s). PM₁₀, PM_{2.5}, CO, NO₂, SO₂, O₃, CO₂, and Noise during the entire sampling period.

-, -,	<i></i> ,		0		1 01						
	Temp	RH	WS	Noise	PM_{10}	Pm _{2.5}	CO	NO ₂	SO_2	O ₃	CO_2
Temp	1.000	939**	.129**	107**	.284**	.175**	.123*	.452**	.565**	.086	499**
RH	939**	1.000	110**	.130**	330**	187**	140**	465**	592**	118*	.489**
WS	.129**	110**	1.000	010	.262**	.183**	.101*	.066	.109*	.065	253**
Noise	107**	.130**	010	1.000	025	095*	018	032	026	120*	.056**
PM_{10}	.284**	330**	.262**	025	1.000	.663**	.352**				
PM _{2.5}	.175**	187**	.183**	095*	.663**	1.000	.256**				
CO	.123*	140**	.101*	018	.352**	.256**	1.000				
NO ₂	.452**	465**	.066	032				1.000	.387**		
SO_2	.565**	592**	.109*	026				.387**	1.000		
O ₃	.086	118*	.065	120*						1.000	.022**
CO ₂	499**	.489**	253**	.056						.022	1.000
									~		

Note: *Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed).

The construction activities also exhibited slightly similar trends, temperature highly correlated with pollutants except for CO₂, NO₂, and SO₂ even though they also should positive correlations in other activities. RH also negatively correlated with pollutants except for CO₂ (p < .001) and noise (p < .005). WS also showed a positive correlation between O₃, noise, NO₂, and SO₂ (p < .005) (Table 8).

Table 8. Statistical summary of spearman correlation coefficient values for road construction activities A-Q between temperature (Temp, °C), relative humidity (RH, %), wind speed (WS, m/s). PM₁₀, PM_{2.5}, CO, NO₂, SO₂, O₃, CO₂, and Noise during the entire sampling period.

	Activit	ty A					
	Temp	RH	WS	Noise	PM_{10}	PM _{2.5}	CO
Temp	1.000	908**	680**	225	.025	.468**	.167
RH	908**	1.000	.604**	.113	079	433**	103
WS	680**	.604**	1.000	.036	021	415**	299
Noise	225	.113	.036	1.000	011	209	184
PM_{10}	.025	079	021	011	1.000	.581**	.006
PM _{2.5}	468**	- 433**	- 415**	- 209	581**	1 000	423**
CO	167	- 103	- 299	- 184	006	423**	1 000
			Activity B				1.000
	Temp	RH	WS	Noise	NO_2	SO ₂	
Temn	1 000	- 906**	- 462**	- 168	423**	417**	
RH	- 906**	1 000	410**	247	- 411**	- 398**	
WS	- 462**	410**	1 000	057	- 305*	- 196	
Noise	- 168	247	057	1 000	- 097	- 190	
NO ₂	423**	- 411**	- 305*	- 097	1,000	411**	
SO ₂	417**	- 398**	- 196	- 190	411**	1 000	
	,	.570	Activity C	.170		1.000	
	Temn	RH	WS	Noise	O_2	CO_2	
Temn	1 000	- 870**	375	- 100	795**	- 603**	
RH	- 870**	1,000	- 286	- 176	- 800**	605**	
WS	070	- 286	1,000	- 204	000	- 070	
Noise	- 100	200	- 204	1,000	005	070	
	705**	170	204	005	1 000	.047	
CO_{2}	- 603**	605**	- 070	.005	- 493*	1 000	
	Activit	.005 tv D	.070	.047	.+75	1.000	
	Temn	RH RH	WS	Noise	PM	PM _e c	CO
Temn	1 000	- 760**	- 184	- 035	573**	/05*	227
вн	- 760**	1,000	104	055	- 640**	.495	.227
WS	700	277	.277	001	040	373**	554
Noise	104	.277	210	1,000	080	010	111
DM	033	001 640**	319	1.000	000	034	.115
F 1VI 10 DM	.525**	040**	080	000	024**	.924	.309**
$\Gamma W_{2.5}$.495*	575**	010	034	.924	1.000	1 000
	.221	334**	111	.115	.389**	.439	1.000
	Tomm	DII	ACTIVITY E	Noico	NO	50	
	1 000	<u>ΛΠ</u>	211	222	507**	<u> </u>	
Temp	1.000 915**	813**	211	233	.30/**	.020**	
КП	813**	1.000	.142	.093	555**	337**	
W S	211	.142	1.000	.150	310	234	
Noise	233	.095	.156	1.000	019	223	
NO_2	.58/**	333**	310	019	1.000	.444**	
<u> </u>	.620**	53/**	234	223	.444**	1.000	
	Τ	DU	Activity F	N.	0	CO	
T	1 emp	KH	<u>ws</u>	INOISE	<u>U</u> ₃	224	
I emp	1.000	886**	004	148	.066	.234	
KH	886**	1.000	223	.202	027	355	
WS	004	223	1.000	347	493**	.180	
Noise	148	.202	347	1.000	.161	046	
O_3	.066	027	493**	.161	1.000	.187	
<u> </u>			1 () ()	1146	107	1 (1(1(1)	

			Activity G				
	Temp	RH	WS	Noise	NO_2	SO_2	
Temp	1.000	488**	528**	.262	.209	142	
RH	488**	1.000	.166	159	445**	.252	
WS	528**	.166	1.000	136	091	.149	
Noise	.262	159	136	1.000	.450**	025	
NO_2	.209	445**	091	.450**	1.000	219	
SO_2	142	.252	.149	025	219	1.000	
			Activity H				
	Temp	RH	WS	Noise	O_3	CO_2	
Temp	1.000	713**	243	.047	.194	342*	
RH	713**	1.000	.125	304	120	.314	
WS	243	.125	1.000	.139	421*	- 195	
Noise	.047	304	.139	1.000	480**	.271	
O ₃	.194	120	421*	- 480**	1.000	685**	
CO ₂	342*	.314	195	.271	685**	1.000	
	Activ	ity I					
	Temp	RH	WS	Noise	PM_{10}	PM _{2.5}	CO
Temp	1.000	773**	383*	.040	.376*	.010	.328
RH	773**	1.000	.438*	099	703**	183	671**
WS	383*	.438*	1.000	.043	219	163	204
Noise	.040	099	.043	1.000	019	.018	028
PM_{10}	.376*	703**	219	019	1.000	.416*	.962**
PM_{25}	.010	183	163	.018	.416*	1.000	.350*
CO	.328	671**	204	028	.962**	.350*	1.000
	Activ	ity J					
	Temp	RH	WS	Noise	PM_{10}	PM _{2.5}	CO
Temp	1.000	892**	024	.049	.477**	.689**	.194
RH	- 892**	1.000	.052	.067	- 490**	735**	153
WS	024	.052	1.000	.287	.004	040	051
Noise	.049	.067	.287	1.000	078	.028	020
PM_{10}	.477**	490**	.004	078	1.000	.793**	.203
PM _{2.5}	.689**	735**	040	.028	.793**	1.000	.289
CO	.194	153	051	020	.203	.289	1.000
			Activity K				
	Temp	RH	WS	Noise	NO ₂	SO ₂	
Temp	1.000	920**	.047	603*	021	.233	•
RH	920**	1.000	068	.540*	.147	352	
WS	.047	068	1.000	.032	- 594*	008	
Noise	603*	.540*	.032	1.000	144	143	
NO ₂	021	.147	594*	144	1.000	407	
SO ₂	.233	352	008	143	407	1.000	
	00		Activity L			1.000	
	Temp	RH	WS	Noise	NO ₂	SO ₂	
Temn	1.000	- 178	361	.144	- 451	314	
RH	- 178	1,000	.037	.553	613*	050	
WS	361	.037	1.000	073	.110	105	
Noise	.144	.553	073	1.000	648*	.200	
NO ₂	451	613*	.110	648*	1.000	.470	
SO_2	314	050	105	.200	.470	1.000	

			Activity M				
	Temp	RH	WS	Noise	O_3	CO_2	
Temp	1	471*	088	218	142	048	
RH	471*	1	.193	.188	347	015	
WS	088	.193	1	.232	219	.098	
Noise	218	.188	.232	1	053	.000	
O_3	142	347	219	053	1	008	
CO_2	048	015	.098	.000	008	1	
Activity N							
	Temp	RH	WS	Noise	NO_2	SO_2	
Temp	1.000	787**	428**	.070	528**	403*	
RH	787**	1.000	.524**	.109	.693**	.526**	
WS	428**	.524**	1.000	.410*	.371*	.353*	
Noise	.070	.109	.410*	1.000	.256	.312	
NO_2	528**	.693**	.371*	.256	1.000	.285	
SO_2	403*	.526**	.353*	.312	.285	1.000	
Activity O							
	Temp	RH	WS	Noise	PM_{10}	PM _{2.5}	CO
Temp	1	879**	461*	.079	145	346	.169
RH	879**	1	.484**	334	.406*	.575**	151
WS	461*	.484**	1	030	064	.132	.044
Noise	.079	334	030	1	452*	394*	.021
PM_{10}	145	.406*	064	452*	1	.751**	.283
PM _{2.5}	346	.575**	.132	394*	.751**	1	121
CO	.169	151	.044	.021	.283	121	1
Activity P							
	Temp	RH	WS	Noise	O_3	CO_2	
Temp	1.000	401	203	.305	225	460	
RH	401	1.000	.156	493	.318	.036	
WS	203	.156	1.000	.237	116	.441	
Noise	.305	493	.237	1.000	633**	010	
O_3	225	.318	116	633**	1.000	.407	
CO_2	460	.036	.441	010	.407	1.000	
Activity Q							
	Temp	RH	WS	Noise	NO_2	SO_2	
Temp	1.000	946**	116	235	.255	.273	
RH	946**	1.000	.066	.248	317	287	
WS	116	.066	1.000	301	086	377	
Noise	235	.248	301	1.000	175	.013	
NO_2	.255	317	086	175	1.000	.091	
SO_2	.273	287	377	.013	.091	1.000	

Note: *Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the $\overline{0.01}$ level (2-tailed).

3.5. Correlation Between the Traffic Volume and Air Pollutants (Somanya and Mataheko)

There was a statistically significant, strong positive correlation between traffic volume and PM_{10} , rs(2) = .928, p < .001. whereas there was no statistically significant correlation between traffic volume and air pollutants at the Mataheko location.

4. Conclusions

The study results confirmed (Somanya) location recorded air pollutants significantly above the WHO and GSA permissible limits. Mataheko also recorded values that exceeded the WHO and GSA limits except for SO_2 . Statistically comparing the median of the two locations showed that they were not the same and differed significantly. Also, the sampling day mattered when considering the quantity of pollutants generated. Even though it was expected that the number of cars per hour estimated from the Mataheko location was twice as much as that of the Somanya location, it did not produce twice as many pollutants; instead, traffic volume only showed an association between PM_{10} at the Somanya location.

Similarly, there was a strong association between the meteorological parameters and the air pollutants

across the two sampling locations. The pollutants generated from the road construction sampling were also significantly above the WHO and GSA standards. These include PM₁₀, PM_{2.5}, NO₂, SO₂, and noise.

Acknowledgments

The authors are grateful to the Pan African University (PAULESI) for the first author's Ph.D. program, supported by the African Union Commission. Specifically, the first author is thankful to Mr. Thomas Asare for his immense financial support during the program.

References

- Aboh, I.J.K. & Ofosu F.G. (2010). Determination of mass, element and black carbon concentrations in 2005/2006 harmattan aerosol at Kwabenya near Accra. *Journal of Ghana Science Association* **12**(2), 64-75.
- Aboh, I.J.K., Henriksson, D., Laursen, J., Lundin, M., Ofosu, F.G., Pind, N., Lindgren, E.S. & Wahnström, T. (2009). Identification of aerosol particle sources in semi-rural area of Kwabenya, near Accra, Ghana, by EDXRF techniques. *X-Ray Spectrom* 38, 348–353.
- Atiemo, S.M., Ofosu, F.G., Aboh, I.J.K. & Oppong, O.C. (2012). Levels and sources of heavy metal contamination in road dust in selected major highways of Accra, Ghana. *X-Ray Spectrometry* **41**(2), 105–110.
- Azarmi, F., Kumar, P., Marsh, D., & Fuller, G.W. (2016). Assessment of the long-term impacts of PM10 and PM2.5 particles from construction works on surrounding areas. *Environmental science Processes and impacts* 18(2), 208-21.
- Boahene, M., Sulemana, R. & Sossou, K. B. (2019). Assessment of heavy metal concentrations in particulate matter (PM10) in the ambient air of selected roadsides in the Accra metropolis of Ghana, *West Africa Journal of applied thought* **6**(1), 33-54.
- Dionisio, K.L., Arku, R.E., Hughes, A.F., Vallarino, J., Carmichael, H., Spengler, J.D., Agyei mensah, S. & Ezzati, M. 2010. Air pollution in Accra neighborhoods: Spatial, socio-economic, and temporal patterns. *Environ. Sci. Technol.* **44**(7), 2270-2276.
- Dotse, S.Q., Asane, J.K., Ofosu, F.G. & Aboh, I.J.K. (2012). Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana, 2008. *Research Journal of Environmental and Earth Sciences* 4(1), 20-25.
- Font, A., Baker, T., Mudway, I.S., Purdie, E., Dunster, C. & Fuller, G.W. (2014). Degradation in urban air quality from construction activity and increasedtraffic arising from a road widening scheme. *Science of the Total Environment* 497(498), 123-132. Retrieved from https://doi.org/10.1016/j.scitotenv.2014.07.060.
- Fuller, G.W. & Green, D.C. (2004). The impact of local fugitive PM10 from building works and road works on the assessment of the European Union Limit Value. *Atmospheric Environment* 38, 4993-5002.
- Health Effects Institute. (2020). State of Global Air 2020. Data source: Global Burden of Disease Study 2019. IHME, 2020. Retrieved from https://www.stateofglobalair.org/.
- Kylander, M.E., Rauch, S., Morrison, G.M. & Andam, K. (2003). Impact of automobile emissions on the level of platinum and lead in Accra. *Journal of Experimental Monitoring* **5**(1), 91-95.
- Ofosu, F.G., Aboh, I.J.K. and Bamford, S.A. (2015). Ambient air PM10 particulate levels at Ashaiman near Tema in Ghana. *BJAST* 12(4), 1-14.
- Safo-Adu, G., Ofosu, F.G., Carboo, D. & Armah, Y.S. (2014). Heavy metals and black carbon assessment of PM10 particulates along Accra-Tema Highway in Ghana. International Journal of Science and Technology 3(8), 467-474.
- World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: executive summary. World Health Organization. Retrieved from https://apps.who.int/iris/handle/10665/345334.
- Zhang, H., Wang, Y., Hu, J., Ying, Q. & MingHu, X. (2015). Relationships between meteorological parameters and criteria air pollutants in three mega cities in China. *Environmental Research* 140, 242–254. Retrieved from http://dx.doi.org/10.1016/j.envres.2015.04.004

Web references

IQAir. (2021, updated 15th October, 2021). World air quality report, region and city PM 2.5 ranking. Retrieved from https://www.iqair.com/world-air-quality-ranking.