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Abstract 

According to Intergovernmental Panel on Climate Change (IPCC) rising of global surface temperature, sea level 

rises, arctic and land ice decrease, erratic precipitation and increase of CO2 concentration are the main indicators 

of climate change. The main objectives of the study was to investigate the possible hydrological impacts of climate 

change on stream flow and sedimentation in Tikur Wuha watershed, by downscaling canESM2 (Canadian Earth 

System Model of second generation) global climate model using Statistical Downscaling Model (SDSM). Based 

on IPCC recommendation baseline periods (1987–2016) were used for baseline scenario analysis. Future scenario 

analysis was performed for the 2020s, 2050s, and 2080s. canESM2 model consists of Representative 

Concentration Pathway (RCP) RCP2.6, RCP4.5 and RCP8.5 scenarios. Impact assessment on stream flow and 

sediment yield was done by Soil and Water Assessment Tool (SWAT) hydrological model. SWAT model 

performance in simulating monthly stream flow for the study area was satisfactory with R2 (0.77 and 0.87), NSE 

(0.70 and 0.77) and D (-16 and -9) for calibration and validation periods respectively. The result of downscaled 

precipitation and temperature reveals a systematic increase in all future time periods for all three scenarios; RCP2.6, 

RCP4.5 and RCP8.5 scenarios. These increases in climate variables are expected to result in increase in mean 

annual stream flow of 8%, 13%, and 15 % for RCP2.6 scenario, 17%, 24%, and 31% for RCP4.5 scenario and 

14%,24% and 35% for RCP8.5 scenario for the 2020s, 2050s, and 2080s, respectively. This leads to increment of 

sediment yield from different sub watershed. The estimated soil loss rate from different sub-watersheds had ranged 

from 0.42 tons/ha/yr to 28.31 tons/ha/year (1987-1999), whereas the annual weighted average soil loss rate from 

the watershed was estimated 16.80 tons/ha/year (2000-2100). Future work need to consider studying the effects of 

different climate change adaptation strategies. 
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1. INTRODUCTION 

1.1. Background 

The Intergovernmental Panel on Climate Change (IPCC) defines climate change as in the state of the climate that 

can be identified by changes in the mean and/or the variability of its properties, and that continues for an extended 

period, decades or longer. It refers to any change in climate over time, whether due to natural variability or as a 

result of human activities (IPCC, 2007). The rising of global surface temperature, sea level rises, arctic and land 

ice decrease, erratic precipitation and increase of CO2 concentration are the main indicators of climate change. 

The shift in temperature and precipitation patterns affects the hydrology process and availability of water resource 

(IPCC, 2013). 

Developing countries, particularly those in Africa are likely to be vulnerable to climate change as recurrent 

droughts, flood and siltation of water bodies continue to bring misery to millions in Africa (Nawaz et al., 2010). 

The impact is worse for the contemporary African population where about 25% already experience water stress. 

Considering population increments and water use, it has been estimated that the portion of the African population 

at risk for water stress and scarcity will increase to 65% in 2025. Climate change is, however, expected to aggravate 

the current stress on water resources availability in Africa (Dile et al., 2013). 

Studies at Bilate watershed in the Ethiopian Rift valley basin suggested that climate change could affect by 

decreasing of water resources (Tekle, 2014). Similarly, in Geba river basin shows the implication of reduced water 

availability and impacts on agricultural production (Ashenafi, 2014). On other hand, research conducted on Upper 

Blue Nile River Basin shows the positive change of precipitation in future (Mekonnen and Disse, 2016). Both 

researchers indicated that climate change strongly affects Ethiopian agriculture and socio-economic aspect. 

Tikur Wuha watershed, located under the southern Rift valley basin of Ethiopia, contains the main tributary 

(Tikur Wuha river) of Lake Hawassa. To ensure the sustainability of Lake Hawassa, proper and sustainable 

management of this watershed is crucial. Thus, studying the hydrological impacts of climate change in Tikur Wuha 

watershed is very important though not studied yet. That is why this study was designed. The objectives of the 
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current study were: (1) to generate ensembles of future rainfall and temperature series using SDSM for a range of 

representative scenarios, (2) to simulate projected impacts of climate change on hydrological characteristics of the 

Tikur Wuha watershed using the hydrological model (SWAT). 

 

2.  MATERIALS AND METHODS 

2.1. Description of study area 

2.1.1. Location 

The Tikur Wuha watershed approximately lies between 6050’N-7010’N and 38030’E-38044’30’E latitude and 

longitude respectively (Fig1) and covers a catchment area of 620.73 km2. Its elevation ranges from 1688 to 

2984masl. It contains Tikur Wuha River which is the upstream of Lake Hawassa drained from the Cheleleka 

Wetlands.  

 
Figure 1: Location of Tikur Wuha watershed 

2.1.2. Climate 

 Meteorological data collected from three different stations of the watershed indicated that the mean annual rainfall 

(mm) is 955.3, 1097.1 and 1150.4 in Hawassa, Haisawita and Wondo Genet College of Forestry and Natural 

Resources respectively (1987-2016). As indicated in Figure 2 below, the watershed has a bimodal rainfall pattern 

(Kebede et al., 2014). Maximum temperature showed 27.4oC, 22.9oC and 24.4oC at Hawassa, Haisawita and 

Wondo Genet meteorological stations. Minimum temperature extends up to 13.1oC, 11.3oC and 9oC at Hawassa, 

Haisawita and wondo Genet metrological stations respectively.  
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Figure 2: Mean monthly precipitation at Hawassa, Haisawita and wondo Genet Meteorological stations (1987-

2016). 

2.1.3. Topography 

The watershed has marked topographic variation. The dominant slope classes are 8-15% and 15-30% covering 

about 54% of the total area. The slope class of 3-8% covers 21.6%, while the slope class of >30% covers 19% 

which is majorly the Northern, Easter and south Eastern escarpments of the sub watershed area. The remaining 5% 

of the total area is included in 0-3% slope class based on FAO slope classification for soil and water conservation 

(FAO, 2006). 

 

2.2. Methodology 

2.2.1. Data sources  

Weather data were required for two purposes. First, the data were used for statistical downscaling model (SDSM), 

secondly the data were used as input to the SWAT (QSWAT) model for simulation of hydrological processes. 

Based on these objectives, daily maximum (Tmax) and minimum (Tmin) temperature and precipitation data were 

collected from Ethiopian National Meteorological Agency (NMA) for three metrological stations (Hawassa, 

Haisawita and Wondo Genet). Those three meteorological stations assumed as represent the whole watershed area. 

A single rain-guage station should represent an area that fulfills with the World Meteorological organization. As 

indicated by Dingman (2002) a single rainfall gauge density for tropical mountainous region is 300-1000 

km2/gauge. This study area gauge density is ranging from 59km2/gauge to 221km2/gauge is which enough to 

represent study area.  

Stream flow and soil shapefiles were obtained from Ministry of Water, Irrigation and Electrification of 

Ethiopia. DEM and Landsat images downloaded from USGS Earth explorer. 

2.2.2. Weather Data processing 

Collected daily maximum temperature, minimum temperature and precipitation data has been weighted using 

Thiessen polygon technique of GIS (Enyew et al., 2014; Gumindoga et al., 2017; Liu et al., 2017). Figure 3 shows 

the Thiessen polygons for Tikur_Wuha watershed showing the area of influence of each of the three weather 

stations: Hawassa (17.7%), Haisawita (38.51%%) and Wondo Genet (43.79%). Using this area coverage of each 

station weighted mean maximum temperature, minimum temperature and precipitation have been used for 

calibration, validation and scenario generation. 
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Figure 3: Thiessen polygons for Tikur wuha watershed 

2.2.2.1. Weather generator data  

Weather generator data of the study area was calculated using WGN excel macro. Download the WGN excel 

macro from SWAT (https://swat.tamu.edu/) to develop weather generator (WGEN user) for the study area.  

2.2.3. Data quality checking 

2.2.3.1. Filling of missing data 

 In this study, all metrological station daily data quality was checked to manage missed, suspended and outlier of 

the predictand data using SDSM. 

After checking the data quality, Missing or gap record was filed using the well-known methodology of inverse 

distance weighing method (IDW) of GIS. 

2.2.3.2. Consistency analysis 

The consistencies of the data set of the given stations were checked using double mass-curve method with reference 

to their neighborhood stations. 

2.2.3.3. Screening the downscale predictor variables 

The choice of appropriate downscaling predictor variables was under taken through the screen variable option of 

SDSM using correlation analysis, Partial correlation analysis, and scatter plot partial correlation analysis was done 

for selected predictors to see the level of correlation with each other. This statistics identify the amount of 

explanatory power of the predictor to explain the predictand (Wilby and Dawson, 2007). Finally, the scatter plot 

was carried out in order to identify the nature of the association (linear, nonlinear, etc.), whether or not data 

transformation(s) may be needed, and the importance of outliers. 

2.2.4. Spatial data processing 

The spatial data set were projected in addendum UTM Zone 37, which is the transverse Mercator projection 

parameter for Ethiopia, using QGIS 2.6. The land uses/covers data were reclassified for QSWAT2012 database 

from landsat8 for the study area map. In addition to map preparation, the land use lookup table was prepared with 

SWAT code of land use database. 

The soil database were extracted and collected from Harmonized World Soil Database (HWSD) and FAO 

soil Classification of world soil. The collected soil properties were edited to QSWAT2012 soil database. After the 

soil database has been adjusted for QSWAT software, the soil lookup table has been prepared with similar names 

of the database. 

The digital elevation model (DEM) is one of the input data for QSWAT model. For this study, the digital elevation 

model was downloaded from Earth Explorer-USGS (https://earthexplorer.usgs.gov/). The grid resolution lies at 

30*30 m. It is necessary for the stream network processing in SWAT model. 
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2.5. Climate and Hydrological modeling approach  

Two modeling approaches were used in this study. The first part was climate change modeling approach and the 

second was hydrological modeling approach. The model outputs were finally analyzed, summarized and presented 

as maps, graphs and tables. 

 

2.6. General circulation model (GCM) set up and climate change scenarios 

Climate change scenario was obtained from GCM the World Climate Research Program’s (WCRP’s) Coupled 

Model Inter-comparison Project phase 5 (CMIP5) multi-model dataset (Wilby and Dawson, 2007). For this study, 

canESM2 (Canadian Second Generation Earth System Model) which was freely available at the Canadian climate 

change scenario group website (http://ccdsdscc.ec.gc.ca/?page=pred-canesm2) was used and downscaled to the 

site level using the Statistical Downscaling Model (SDSM).  

The model results were available for RCP2.6 (low emission), RCP4.5 (medium to low emission) and RCP8.5 

(high to medium emissions) scenarios (Wayne, 2013). The result was used to produce the future scenario. This 

model was applied in this study because of the following reasons. Firstly, the GCM model is widely applied in 

many climate change impact studies. The results of CanESM2 can be easily downscaled using SDSM (Dile et al., 

2013) and the model provides daily predictor variables which can be used for the Statistical Downscaling Model. 

Secondly, it provides large scale daily predictor variables which could be used for the statistical downscaling 

model (SDSM) (Wilby and Dawson, 2007). Thirdly, a single run was downloaded for each scenario, and data were 

extracted for the pixel containing the observation stations. Lastly, the model has given 20 ensemble model result 

when statistically downscaled and correctly used RCP scenario that have high climate mitigation policy (Riahi et 

al., 2007) and RCPs offer a better understanding in terms of the concentration of future greenhouse gases for 

running climate models than previous scenarios (Meinshausen et al., 2011). 

2.6.1. Downscaling techniques 

For this study, SDSM 4.2.9 decision support tool for the assessment of regional climate change impacts developed 

by Wilby and Dawson (2007) was used to downscale large-scale predictors and it was freely downloaded from 

http://www.sdsm.org.uk. 

SDSM develops statistical relationships, based on multiple linear regression techniques, between large-scale 

(predictors) and local (predictand) that is precipitation and maximum and minimum temperature for this study 

which could be used as input for hydrological modeling. 

2.6.2. Predictor variables 

Large-scale predictor variable information is freely obtained from the Canadian climate impact scenario group 

with web address of: http://ccdsdscc.ec.gc.ca/?page=pred-canesm2. The National Center for Environmental 

Prediction (NCEP_1961-2005) reanalysis data and CanESM2 predictor variables for the RCP2.6, RCP4.5 and 

RCP8.5 are obtained on a grid by grid box basis from a resolution of 2.5° latitude by 3.75° longitude. Since the 

geographical location of the watershed is between 6050’N-7010’N and 38030’E-38044’30’’E latitude and longitude 

respectively, the required predictor data that represents the watershed were downloaded from the nearest average 

location of the watershed (Wilby and Dowson, 2007). 

2.6.3. Screening the downscale predictor variables 

The choice of appropriate downscaling predictor variables was undertaken through the screen variable option of 

SDSM using correlation analysis, Partial correlation analysis, and scatter plot partial correlation analysis for 

selected predictors to get the level of correlation with each other. These statistics identify the amount of 

explanatory power of the predictor to explain the predictand (Wilby and Dawson, 2007). Finally, the scatter plot 

was carried out to identify the nature of the association (linear, nonlinear, etc.), whether or not data 

transformation(s) may be needed, and the importance of outliers. 

SDSM model has two processes called conditional and unconditional processes to be specified before the 

analysis takes place. In case of daily temperature where the predictand-predictor process is not regulated by the 

intermediate process, so, the unconditional process was used, whereas, for daily precipitation where the amounts 

depend on the occurrence of wet-day, the conditional process was chosen (Benestad et al., 2008). Significance 

value is used to test the significance of predictor–predictand correlations and it was set as the default of the 

probability level at 0.05 (p<0.05). 

Several analyses were made by selecting a maximum of 6 out of 26 predictor variables at a time till best 

predictor-predictand correlations were found even though up to 12 predictors are possible to select at a time (Wilby 

and Dowson, 2007). 

2.6.4. Model calibration and validation 

The model was calibrated for precipitation and maximum and minimum temperature (predictand variables) along 

with a set of predictor variables and computed the parameters of multiple regression equations with an optimization 

algorithm. Daily data were used for model calibration for data representing the current climate condition of the 

period 19 years (1987–2005). The event threshold was set to 0°C for temperature and 0.1 mm/day for precipitation 

in order to treat trace rain days as dry days (Wilby and Dawson, 2004). 
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Validation was done based on 11 years of simulation for years 2006–2016. Validation of the model was 

performed using the results of the weather generator and independent observed data that were used for calibration.  

2.6.5. Scenario generation 

The period from 1987-2016 were considered as a base period whereas the period from 2017-2100 were considered 

as future periods. The future periods have been divided into three time horizons; from the 2020s (2017-2044), 

2050s (2045-2072), and 2080 (2073-2100) and analyses were made for each time horizons. 

 

2.7. Hydrological (SWAT) model setup and analyses 

SWAT is a semi-distributed, continuous time, rainfall runoff model developed by the USDA Agricultural Research 

Service (ARS) and simulations are performed using a daily time step. In addition, the movement of water, sediment, 

and agricultural chemical yields are simulated depending on varying soils, land use and management in complex 

watersheds over long time periods (Dixon and Earls, 2012).  

After the data was collected and prepared, the model setup was done for all input data by following five steps 

which were used for SWAT model setup: (1) watershed delineation, (2) HRU definition, (3) weather data definition, 

(4) parameter sensitivity analysis, and (5) calibrations and model performance evaluation. 

 

3. RESULT AND DISCUSSION 

3.1. Predictor variable selection 

Predictor variables that have better spatial and temporal correlation with the predictand of all weather parameters 

for the study area at significance level of less than 0.05 are presented in Table 1. The application of these empirical 

predictor-predictand relationships of the observed climate is to downscale ensembles of the same local variables 

for the future climate. This is based on the assumption that the predictor-predictand relationships under the current 

condition remain valid under future climate conditions. 

Table 1: List of predictor variables that had better spatial and temporal correlation with the predictands at 

significant level of less than 0.05(p<0.05). 

Predictand Predictorors (NCEP reanalysis) Symbol Parti.corr(R) P_valu 
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Surface air flow strength ncepp1_fgl.dat -0.093 0 

Surface zonal velocity Ncepp1_ugl.dat -0.067 0 

Surface divergence Ncepp1zhgl.dat -0.022 0.03 

850 hpa zonal velocity Ncepp8_ugl.dat -0.033 0.00 

850 hpa geo potential height Ncepp850gl.dat -0.185 0 

Specific humidity at 500hpa Nceps500gl.dat -0.133 0 

Specific humidity at 850 hpa Nceps850gl.dat -0.233 0 

M
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Mean sea level pressure ncepmslpgl.dat -0.108 0 

Surface air flow strength ncepp1_fgl.dat -0.078 0 

Surface velocity ncepp1_Zgl.dat -0.019 0.0821 

500hpa wind direction ncepp5thgl.dat -0.071 0 

850 hpa air flow strength ncepp8_fgl.dat -0.031 0.0031 

Specific humidity at 500hpa nceps500gl.dat -0.019 0.0851 

Surface specific humidity ncepshumgl.dat 0.032 0.0021 

P
re
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Mean sea level pressure ncepmslpgl.dat -0.028 0.1109 

Surface Meridians velocity ncepp1_vgl.dat -0.047 0.0069 

Surface velocity ncepp1_zgl.dat -0.002 0.5583 

500 hpa zonal velocity ncepp5_ugl.dat -0.081 0 

500 hpa meridians velocity ncepp5_vgl.dat -0.146 0 

850 hpa meridians velocity ncepp8_vgl.dat -0.076 0 

850 hpa geo potential height ncepp850gl.dat 0.047 0.0067 

Specific humidity at 500hpa nceps500gl.dat -0.001 0.5627 

Hence, hpa is a unit of pressure, 1 hPa = 1 mbar = 100 Pa = 0.1 kPa. 

The result of predictor-predictand selection indicate that the partial correlations of surface air flow strength 

has the strongest association with maximum and minimum temperature. In addition, maximum and minimum 

temperatures are strongly correlated with 850 hpa geo potential height, which shows their heavy dependence on 

regional temperatures. Since the partial correlation coefficient (r) shows the explanatory power that is specific to 

each predictor, all are significant at p ≤ 0.05. 

3.1.4. Model calibration and validation 

The SDSM calibration was done for the period of 19 years (1987-2005) at a monthly model type in order to see 

the monthly temporal variations. The results showed that, the simulated precipitation, maximum and minimum 

temperature had good agreements with the observed results. The overall agreement was good which are located in 

Table 2. 
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Table 2: Calibrated and validated precipitation, maximum and minimum temperature 

Predictands R2  

 Calibration Validation 

Precipitation 0.94 0.95 

Maximum temperature 0.97 0.99 

Minimum temperature 0.92 0.98 

 

 
 

 
 

 
Figure 4: Calibrated and observed mean daily minimum temperature (oC) (a) and mean daily maximum 

temperature (oC) (b), mean daily precipitation (mm) (c) in the time step in Tikur wuha watershed. 

Validation was done using an independent observed data for the period of eleven year from 2006 to 2016. 

Here also twenty ensembles (runs) of daily values were generated and the averages of these ensembles were taken 

for the comparison. The correlation coefficients that were found during the calibration are also maintained during 

the validation as shown in Table 2. A good agreement was also found between the observed and simulated 

precipitation (R2=0.94 and 0.95 for calibration and validation) though it is a conditional process and for minimum 

and maximum temperature were R2 =0.92 and 0.97 respectively during calibration. 
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Figure 5: Validated and observed mean daily minimum temperature (a), maximum temperature (b) and 

precipitation (c) 

 

3.2. Future climate change Scenario generation 

The climate scenario for the future period was developed from statistical downscaling using the GCM predictor 

variables for the three emission scenarios for 84 years based on the mean of 20 ensembles. The analysis was done 

based on 28 years period from 2017-2044, 2045-2072 and 2073-2100. The IPCC recommends 1986-2005 as a 

climatological base period in impact assessment. In this study baseline period climatic condition is analyzed based 

on meteorological station records of the study area. Hence, for this research, the period from 1987-2016 was taken 

as a base period within which the comparison was made. The observed climatological data collected from 

Ethiopian meteorological agency contain more consistent time series records from the period 1987 and onwards 

than the period before 1987 and this is why the period from 1987-2016 was taken as a base period. 

3.2.1.Minimum temperature 

As it can be seen from Figure 6 (a, b and c), the results for annual mean minimum temperature showed an 

increasing trend for both scenarios (RCP2.6, RCP4.5 and RCP8.5) from 2017 to 2100. With respect to monthly 

minimum temperature, the downscaled minimum temperature scenario indicates that there might be an increasing 
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trend on the months of January, June and July for RCP2.6 scenarios from 2017 to 2100. But March (2045-2100), 

August (2017-2072), September and November (2017-2100) months shows a decreasing trend for RCP2.6 

scenario. In the RCP4.5 scenario the projected minimum temperature shows an increasing trend in January, 

February, June and July months from 2017-2100. But from August to December the minimum temperature shows 

a decreasing trend from 2017-2100 except October (a slight increase on 2017-2044). In the RCP8.5 scenario the 

minimum temperature shows an increasing trend on January, February, June, July, and October months from 2017-

2100. But April, May, August, November and December months showed a decreasing trend from 2017-2100.  The 

highest increment of minimum temperature was projected on RCP8.5 scenario in the month of January +3.09°C, 

+3.09°C, and +3.26°C for the 2020s, 2050s and 2080s periods respectively. The annual minimum temperature 

showed an increasing trend which is in line with previous study conducted on Bilate watershed of the Central Rift 

Valley of Ethiopia (Tekle, 2014). 

 
 

 
 

 
Figure 6: Change of downscaled monthly minimum temperature from the baseline period for canESM2 RCP2.6 

(a), RCP4.5 (b) and RCP8.5 (c) 
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3.2.2. Maximum temperature 

The mean monthly, seasonal and annual change in maximum temperature for the future period (2017-2100) for 

both RCP2.6, RCP4.5 and RCP8.5 scenarios are shown in Figure 7 (a, b, c). As it can be seen from Figure 7, the 

results (2017-2100) for annual mean maximum temperature showed an increasing trend for the three scenarios 

(RCP2.6, RCP4.5 and RCP8.5) from 2017 to 2100. With respect to monthly maximum temperature, the 

downscaled maximum temperature scenario indicates that there might be an increasing trend from January to April 

and from October to December for both scenarios (RCP2.6, RCP4.5 and RCP8.5) from 2017 to 2100. But from 

May to September the projected maximum temperature shows a decreasing trend for both scenarios except July (a 

slight increase for RCP8.5 for 2020s). The highest increment of maximum temperature was projected in the month 

of October, +1.9°C for RCP8.5 scenario. The increment was higher but not worth based on IPCC-TGICA, (2007) 

in which the globally averaged surface air temperature was projected to warm 1.4°C to 5.8°C by 2100. 

 
 

 
 

 
Figure 7: Change of downscaled monthly maximum temperature from the baseline period for canESM2 RCP2.6 

(a), RCP4.5 (b) and RCP8.5 (c) 
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3.2.3.Precipitation 

As it can be seen from Figure 8 (a, b and c) the results (2017-2100) for annual percentage change in precipitation 

showed an increasing trend for the three scenarios (RCP2.6, RCP4.5 and RCP8.5). In 2020s (2017-2044) the 

increment of annual percentage change of precipitation were  from +13.8%, +14% and +13.2% for RCP2.6, RCP4.5, 

and RCP8.5 scenario respectively. In 2050s (2045-2072) the increment of annual percentage change of precipitation 

were +14.6%, +15.4% and +17.4% for RCP2.6, RCP4.5 and RCP8.5 scenario respectively. In 2080s (2073-2100) 

the increment of annual percentage change of precipitation were +16%, +15.4% and +19.44% for RCP2.6, RCP4.5 

and RCP8.5 scenario respectively.This increement indicate similar result with IPCC-TGICA, (2007) that rainfall 

increase or decrease (up to ±20%) in 2100. 

The results of this study was thus in line with the previous researches done on upper Blue Nile basin, Tana 

basin, Bilate catchment of Central Rift Valley Basin of Ethiopia (Kim et al., 2008, Taye, 2010, Tekele, 2014). 

Moreover, UNFCC (2007)  assessed regional impacts and vulnerabilities to climate change in four regions 

including Africa and the results showed that annual mean rainfall would increase in East Africa due to climate 

change. 

On monthly basis, the percentage change in precipitation is not systematic, i.e precipitation increases in some 

months and decreases in some other months. The percentage changes in precipitation increases from July to 

November, January and March monthes. But decreases in February, April and June months for the future (2017-

2100) periods for all senarios. The increment is most dramatic in January  for both RCP2.6, RCp4.5 and RCP8.5 

scenarios in which the precipitation increases by 67% (2050s), 40% (2050s) and 70.5% respectively. The decrease 

in precipitation on the month of February which reaches to a maximum of 43% (2073-2100), 45% (2073-2100) 

and 43.4% (2073-2100) for RCP2.6, RCP4.5 and RCP8.5 scenario respectively. 

Seasonally, the precipitation increases in Belg (February-May), and Kiremit (June-September) in which the 

precipitation increases up to a maximum of 12% (2073-2100) for RCP2.6 scenario, 16% (2073-2100) for RCP4.5 

scenario and 20% (2073-2100) for RCP8.5 scenario in the Belg season and 21% (2017-2044) for RCP2.6 scenario, 

and 20% (2017-2044) for RCP4.5 scenario and 20.23% (2045-2072) for RCP8.5 scenario in the Kiremit season. 

A study done by Rizwan et al. (2010)  on Blue Nile based using HadCM3 model also showed that, the mean 

precipitation increases in Kiremt season for both A2 and B2 scenarios which is in line with this study (RCP2.6, 

RCP4.5 and RCP8.5 scenarios). Moreover, in Kiremit season the average precipitation projections for the entire 

Nile basin (2020 and 2080) by Beyene et al. (2010) showed increasing trends. Belg and Kiremt seasons, the 

average precipitation projections on Gilgel Abay River (2020, 2050 and 2080) by Dile et al. (2013) showed 

increasing trends. The increment of precipitation in Belg and Kiremit season may have an opportunity for 

agriculture since these two seasons are the cropping season in Ethiopia as well as Rift vally basin. Precipitation 

decreases in Bega (October–January) season  by 6.28% (2017-2044) and 6.31% (2073-2100) for RCP2.6, 9.5% 

(2017-2044) and 1.8% (2073-2100) for RCP4.5 scenarios. In addition, for RCP8.5 scenarios the the precipitaion 

showed increasing trends for 2050s and 2080s scenarios, but a slight decreament on 2020s scenario. 

 

 

  



Journal of Environment and Earth Science                                                                                                                                        www.iiste.org 

ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)  

Vol.10, No.2, 2020 

 

39 

 
 

 
 

 
Figure 8: Percentage change in monthly, seasonal and annual precipitations in the future (2017-2100) for RCP2.6 

(a), RCP4.5 (b) and RCP8.5 (c) scenario from the base period 

 

3.3. SWAT Hydrological Model  

3.3.1. Watershed characteristics 

3.3.1.1. Watershed delineation and HRU definition of model input 

The Tikur Wuha watershed has an area of 62073 ha which resulted in 69 sub watersheds having 548 HRUs. The 

sub-basins area calculated from the total watershed ranged in 7.0 ha (sub basin 56) to 2861.8ha (Sub basin 51), 

with an average of 1434.4ha. Among 69 sub-watersheds, 19 have area under 500ha, 26 sub-watersheds have area 

between 500 and 1000ha, 17 sub watersheds have area between 1000-2000ha and the rest 7 sub-watersheds have 

area between 2000 and 2861.8ha. 

SWAT divide all sub basins up in to one or more representative HRUs by defining and overlaying the land 

use, soil type and slope of the study area sub watersheds. In order to balance the representation detail of land use, 

soil and slope with the complexity caused by increase number of HRUs, thresh hold values were determined for 

land use (15%), soil (10%), and slope (15%) in this study. 

The total 548 HRUs resulted in the model had a minimum size of 0.78 ha and maximum of 129.81 ha with 

an average HRU of 10.38 ha. The redefined result of DEM of the area by SWAT model used in HRUs distribution 

of sub-basin is located in Figure 9. 
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Figure 9: Sub basin of Tikur Wuha watershed 

3.3.1.2. Land use/land cover characterization 

Six land use/land cover types were identified using Landsat images which is downloaded from Earth Explorer-

USGS (https://earthexplorer.usgs.gov/ ), December 12,2017 Landsat8 images. After image processing, land 

use/cover map was developed which has an overall classification accuracy of 85.71% and kappa statistic of 0.79 

using ERDAS IMAGINE 2015. As it can be observed in Figure 10, most portion of the watershed was covered 

with cultivated and Forest land, which accounts for 46.6% and 23.6% respectively of watershed area. 

 
Figure 10: Land use/cover type of Tikur Wuha watershed 
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3.3.1.3. Soil characterization 

The soil group classified in the study area is shown in Figure 11 as Leptosol, Vertic cambisol, Vertic Luvisol, 

Vitric Andosol, Haplic Luvisol and Eutric Cambisol . Major type of soils are Vertic Luvisol and Haplic Luvisol 

covering an area of 24584.8 ha and 24307.2 ha and accounting for 39.6% and 39.2% respectively of Tikur Wuha 

watershed. 

 
Figure 11: soil type of Tikur Wuha watershed 

Source: Shapefile from Ministry of water, irrigation and electrification of Ethiopia 

3.3.2. Model sensitivity analysis 

Sensitivity analysis was carried out before calibrating the model to save time during calibration. In this study, 

identifying sensitive parameters enables to focus only on those parameters which affect most the model output 

during calibration since SWAT model has a number of parameters to deal with. Some parameters do not have any 

influence on the model output while some may have little effect. 

3.3.3. Parameters sensitive to stream flow  

Impact assessments on stream flow were done by soil and water assessment tool (SWAT) hydrological model with 

different sensitivity parameters. Even though there were more than 26 sensitivity parameters those were used for 

stream flow calibration, around 12 parameters were selected for this study. Those 12 parameters are sensitive, 

were used to calculate the amount of flow from the watershed. The parameter identification was done by using the 

monthly flow data from 1987 to 1994. 

SWAT-CUP global sensitivity analysis has been carried out for the parameters. According to the result from 

the global sensitivity analysis, initial Soil Conservation Service (SCS) runoff curve number for moisture condition 

II (CN2) was found to be the most sensitive parameter followed by Ground water delay (GW_DELAY), Soil 

evaporation compensation factor (ESCO), Saturated hydraulic conductivity (SOL_K) and Soil bulk density 

(SOL_BD) ranking up to fifth position. Based on the analysis result, Available water capacity (mm water/mm soil) 

(SOL_AWC), Base flow recession constant (ALPHA_BF), Manning's roughness coefficient for main channel flow 

(CH_N2) and Groundwater "revap" coefficient (GW_REVAP) were relatively less sensitive parameters in flow 

simulation. On the other hand, parameters such as Manning’s “n” value for overland flow (OV_N), threshold water 

level in the shallow aquifer for return flow to occurs (GWQMN) and Effective hydraulic conductivity in the main 

channel (CH_K2) were found to be least sensitive in runoff yield simulation. 

3.3.4. Model calibration for flow 

Flow calibration was performed for a period of eight years from 01/01/1987 to 31/12/1994, within which the first 

two year were considered as a warm up period in order to set hydrologic processes to reach into equilibrium. 
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Observed daily stream flows were adjusted on the monthly basis using excel and Simulations runs were conducted 

on monthly basis to compare the modeling output with the measured monthly discharge at the outlet of Tikur Wuha 

watershed. Manipulation of the identified parameter values were carried out within the allowable ranges 

recommended by SWAT developers. The value of the selected sensitive parameters was changed so many times 

within the acceptable ranges until satisfactory results were met between the monthly simulation runs and monthly 

measured discharges. 

After all these adjustments in SWAT model, the simulation was done and parameters were calibrated using 

SUFI2 in SWAT_CUP and the calibrated parameters were updated in the model and the final simulation was run 

using sensitive parameters. 

The calibration results in Table 3 show that there is a good agreement between the simulated and measured 

monthly flows. Percent of error of the observed and simulated monthly flows at Tikur Wuha outlet was found as -

16% which is well within the acceptable range of ±20%. Further a good agreement between observed and 

simulated monthly flows are shown by the coefficient of determinations (R2=0.77) and the Nash-Suttcliffe 

simulation efficiency (ENS=0.70) and thus fulfilled the requirements suggested by Santhi et al. (2001) for R² >0.6 

and ENS> 0.5. 

Table 3: Calibration Statics for simulated flow on Tikur Wuha gauge station 

Period Mean monthly flow (m3/s) % Error R2 ENS 

 Observed Simulated   
1994-1999   6.6      5.5 -16 0.77 0.7 

The graphical representation of the simulated and observed monthly flow was shown in Figure 13 indicating 

a reasonable agreement. Even though the model slightly overestimates the peak values in the months in August 

and September of 1987 and in the year 1992 (Figure 12), and underestimates in remaining part of the calibration 

period. The overall flow was well simulated and the trend shows good patterns. 

 
Figure 12: Calibration results of average monthly simulated and observed flows (1987-1994) 

3.3.5. Model validation for flow 

Validation of the model was carried out using an independent data set for five years from 1995-1999 without 

making further adjustments of sensitive parameters. 

As it can be seen from Table 4, there is good agreement between monthly observed and simulated flows at Tikur 

Wuha River gauge station. The percent of error between the observed and simulated monthly flow was only -9% 

and it is found within the tolerable range of ±20%. The coefficient of determinations (R2) and Nash-Sutcliffe 

simulation efficiency (ENS) were found to be 0.87 and 0.77 respectively and these shows a very good correlation 

of the simulation results with the observed values. 

Table 4: Validation statics for simulated flow on Tikur Wuha gauge station 

Period Mean monthly flow (m3/s) % Error R2 ENS 

Observed Simulated 

1994-1999 9.6 8.8 -9% 0.87 0.77 

Even though the model slightly overestimates the peak values in 1995 and the month of August-November 

of 1998 and underestimates the remaining years, there was a good agreement between observed and simulated 

results (Figure 13). 
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Figure 13: Validation results of average monthly simulated and observed flows (1995-1999) 

Thus, the validation check illustrates the accuracy of the model for simulating time periods outside of the 

calibration period. The model performed as good in the validation period (1995-1999), as well as for the calibration 

period (1987-1994) at Tikur Wuha gauge station. Hence, the set of optimized parameters used during calibration 

process can be taken as the representative set of parameters to explain the hydrologic characteristic of the Tikur 

Wuha watershed and further simulations using SWAT model could be carried out by using these parameters for 

any period of time. Thus, the total annual stream flow and mean monthly stream flow of Tikur Wuha watershed 

were expected that 92.7m3/s and 7.7 m3/s in the base period respectively. 

Based on SWAT model output, spatially the highest rate of discharge was occurred at Northern, Southern, 

Northwestern, and some central parts of the watershed. whereas the lowest discharge rate was occurred at central 

(plane areas), Parts of Northern and Southern of the watershed (figure 14). Vertic Luvisol was the major dominate 

soil existing in the area where the highest discharge was occurred. The dominant land use type and slope class 

where highest discharge occurred where agricultural land and 15-30% slope class respectively. 

 
Figure 14: Spatial distribution of runoff in Tikur Wuha watershed 
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3.3.6. Impact of climate change on stream flow 

The period from 1987–1999 were used as a base period against which the climate change impact was assessed. 

The daily precipitation and minimum and maximum temperature used for impact assessment were SDSM model 

results for the future three data periods of 34, 34 and 33 time series years (2000-2033, 2034-2067 and 2068-2100) 

respectively and SWAT hydrologic model was re-run for each data periods and the SWAT parameters identified 

during the calibration period also remains valued. 

Other climate variables such as wind speed, solar radiation, and relative humidity were assumed constant 

throughout the future simulation periods, which are not possible in actual case (Abbaspour et al., 2007). Even 

though it is definite that in the future land use changes will also take place, this was also assumed constant. 

For this study the impact of climate change on stream flow was predicted based on temperature and rainfall changes 

on monthly, seasonal, and annual basis. The simulation results for the future three time horizons in terms of 

monthly and annual average total flow volume are summarized in the Tables 5, 6 and 7 below. 

Table 5: Mean monthly predicted Stream flow for RCP2.6 scenario 

Year Months 

Jan Feb Mar Apr May Jun Jul     Aug Sep Oct Nov Dec Total 

Observed 7.7 6.6 7.0 6.8 7.1 7.1 7.5 8.0 8.3 9.1 8.8 8.6 92.7 

2020s 8.1 5.6 7.9 6 8 7.2 13.1 8.9 8.9 9.6 9.4 7.9 100.5 

2050s 8.4 5.4 7.9 5.4 8 7.9 12.4 12.8 9.2 9.9 9.6 8.1 104.9 

2080s 8.8 5 8.1 8.1 8.8 6.1 13 11.2 10.3 10.3 9.6 7.4 106.8 

 

Table 6. Mean monthly predicted Stream flow for RCP4.5 scenario 

Year Months 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Observed 7.7 6.6 7.0 6.8 7.1 7.1 7.5 8.0 8.3 9.1 8.8 8.6 92.7 

2020s 10 6.2 7.9 6.9 9.8 6.9 12.3 10.5 9.9 9.6 10.1 8.6 108.7 

2050s 11.1 6.9 7.7 6.4 10.3 6.7 12.6 12.8 10.5 10.2 10.8 9.2 115.2 

2080s 10.7 5.1 11.2 6.1 10.6 7.1 12.3 13.5 10.5 11.8 11.5 10.9 121.4 

 

Table 7. Mean monthly predicted Stream flow for RCP8.5 scenario  
Months 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Observed 7.7 6.6 7.0 6.8 7.1 7.1 7.5 8.0 8.3 9.1 8.8 8.6 92.7 

2020s 7.9 6.7 8.8 7.4 6.3 9.8 12.9 8.7 9.9 8.8 11.3 7.9 106.4 

2050s 7.4 6.4 9.5 9.2 6.6 11.3 12.2 11.9 12.2 10 10.1 8.8 115.7 

2080s 8.6 5.6 10.2 10.1 6.7 11.6 13.8 15.4 11.1 12.8 10.8 9 126 

As it can be seen from figure 15 (a, b and c) the results (2000-2100) for average annual total flow volume 

showed an increasing trend for RCP2.6, RCP4.5 and RCP8.5 scenarios as compared to the base period. The 

percentage increment of total average annual flow volume ranges from 8% (2000-2033) to 15% (2068-2100) for 

RCP 2.6 scenario, and for RCP4.5 scenario the increment ranges between 17% (2000-2033) and 31% (2068-2100). 

For RCP8.5 scenario the percentage of total annual increment of discharge volume ranging from 14% (2000-2033) 

and 35% (2068-2100). As compared to the base period, the mean annual flow volume results of this study 

confirmed the previous researches done by Beyene et al. (2010) and Dile et al. (2013) also showed that annual 

inflow volume on Gilgel Abay River increases in the future periods. In addition, this study in agreement with 

Kebede et al. (2014) in which the annual discharge on Tikur wuha river to the Lake Hawassa shows increasing 

trend. 

On monthly basis, in the month of July to November the average monthly total flow volume increases 

throughout the future three time horizon for both RCP2.6, RCP4.5 and RCP8.5 scenarios as compared to the base 

period. The highest flow volume increment was recorded on the month of July up to 78% (2000-2033), 71% (2034-

2067) and 88% (2068-2100) for RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively. On the other hand, the 

decrement of flow was recorded for RCP2.6, RCP4.5 and RCP8.5 scenarios were recorded; For RCP2.6 scenario 

the slight decrement showed on the months of December up to 8 %, 5% and 13% for 2020s, 2050s and 2080s 

respectively. For RCP4.5 scenario the highest decrement recorded on the month of February up to 15%, 5% and 

29% for 2020s, 2050s and 2080s respectively. For RCP8.5 the decrement reaches up to 8%, 12% and 22% 

respectively, in the month of February. 
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Figure 15: Change in average stream flow for the period 2000-2100 as compared to the baseline period (1987-

1999) at Tikur Wuha watershed for RCP2.6 (a), RCP4.5 (b) and RCP8.5 (c) scenario. 

Seasonally, the average total flow volume increases in Belge and Kermit season. In Bega season (the slight 

decrement for RCP2.6 and RCP8.5 scenarios) for future time horizons. However, the highest increment is shown 

in Kermit season (June-September) in which the percentage change ranges between 32-37% (2068-2100), 38-41% 

(2068-2100) and 54-68% for RCP2.6, RCP4.5 and RCP8.5 scenario respectively. The percent of increment for 

RCP8.5 (high emission) scenario was higher than RCP2.6 (medium to low) and RCP4.5 (medium emission) 

scenarios. This study reveals the increment of flow volume during Belg season in line with (Tekle, 2014). 

Rizwan et al. (2010) carried out research in northern part of Ethiopia on the upper Blue Nile using different 

GCM out puts including HadCM3 and canESM2 and the results showed that the runoff increases in the future in 

the major rainy seasons (June-September) which causes the possibility of flood occurrences in the future due to 

extreme runoff. This study also reveals the increment of runoff in Kiremt season in line with (Rizwan et al., 2010).  

In general, climate change results in an increase in flow volumes on Tikur wuha River. Meanwhile, the 

increase in flow will feed significant amount of inflows for the Lake Hawassa. However, the increase inflow 

volume of Tikur Wuha River is more significant in “Belg and Kiremt” which may cause flooding problems on 

Hawassa town and surrounding agricultural land. Therefore, with climate change the runoff of Tikur Wuha River 
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may become much more seasonal and as a result the flow of the River may highly reduce in some months and 

season while the flow highly increases in some part of the year. 

3.3.7. Spatial distribution of simulated sediment yields in Tikur Wuha watershed 

Even though calibrations and validation of sediment yield was not performed, the model runs were done for a 

period of 13 years (1987-1999). The Simulated output of sediment yields of each sub-watershed areas were 

identified in Tikur Wuha watershed. Identifying erosion prone areas in the watershed enables the watershed 

management to be applied to the proper areas to reduce the sediment yield. Spatial analysis of sediment prone 

areas is one of the many tasks SWAT can do while modeling sediment. SWAT is powerful in spatial visualization 

of sub basin or HRU level detail so that one can see which area produces high sediment and which area produces 

less. 

The 13 years average simulated annual suspended sediment generated were 15.79 tons/ha/yr. From 69 sub-

catchments of Tikur Wuha watershed, one sub-watershed generated an average annual sediment yield of 28.31 

t/ha/yr (sub basin 3) while, 34 sub-watersheds generated average annual sediment yield ranging from 0.42-9.11 

ton/ha/yr, 23 sub watersheds generated average annual sediment yield ranging from 11.23-19.22 and the remaining 

11 sub-watersheds generate average annual sediment yield ranging from 22.22-26.27 t/ha/yr. 

According to FAO (2006), degree of erosion classification the class assigned to the annual sediment yield 

map of the study area was reclassified in to five major categories of soil erosion hazard areas such as none to slight 

(0.4-9 t/ha/yr), slight (10-20 t/ha/yr), moderate (21-50 t/ha/yr), severe (50-75 t/ha/yr) and very severe (more than 

75 t/ha/yr). Based on this classification, the degree of erosion in Tikur Wuha watershed was classified as, none to 

slight (49.27%), slight (33.33%) and moderate (17.4 %). Therefore, similar study in Ethiopia indicate that soil 

erosion by water represents a major threat to the long-term productivity of agricultural and water bodies in the 

Ethiopian highlands where the estimated soil erosion rates ranges from 16 t ha−1 y−1 to as much as 300 t ha-1y−1 

(Hurni, 1993). 

In addition, the ranges of tolerable soil loss level for various agro-ecological zones of Ethiopia were found 

from 2-18 t/ha/yr (Hurni, 1993). In average, Tikur wuha watershed generated an average annual sediment yield up 

to 15.79 ton/ha/year, it is under tolerable range. But, the simulated soil loss rate of some of sub-watersheds of 

Tikur Wuha watershed exceeds the maximum tolerable soil losses rate of 18 tons/ha/yr. This indicates that soil 

erosion is a serious problem of the study area. Thus, among all sub-watersheds that indicated in Tikur Wuha 

watershed Northern, Northeastern, Southern and Southwestern parts of the watershed are at risk to soil erosion 

(see Figure 16). 

 
Figure 16: Spatial distribution of simulated sediment yields in sub basins (1987-1999) 
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Daily weather data, soil and land use/land cover data were used in the SWAT model. The model had been run both 

annually and monthly for the mentioned period and several types of output had been produced. Figure 18 represents 

the predicted value of average annual sediment yield. It can be concluded that the same trend had been assessed 

for inflow and sediment yield simulation; this indicate that the two processes are strongly related. The maximum 

flow and sediment yield correspond to in sub basin 3 which is more of agricultural land and its slop range 15-30%. 

The simulated future sediment yield indicated on figure 17 (a, b, c) for RCP2.6, RCP4.5 and RCP8.5 scenarios. 

 
 

 
Figure 18: Simulated mean annual sediment yield for RCP2.6 (a), RCP4.5 (b) and RCP8.5 (c)  

In future period, the predicted average annual sediment yield from the watershed would have been 16.80 

tons/ha/yr. Depending on this the average annual sediment yield; a total amount of 1.05×108 tons would have been 

transported to the outlet of the watershed or inlet of Lake Hawassa during the period 2000 to 2100 (with in one 

hundred one years). 

 

4. CONCLUSIONS AND RECOMMENDATIONS 

4.1. CONCLUSION 

 The result of this study showed a general increasing trend for precipitation, maximum and minimum temperatures 

in all three time periods (2020s, 2050s and 2080s). The precipitation showed that increasing trends for the future 

time horizons mainly in the major parts of the rainy season (June to September), Seasonally in Belg and Kiremt 

season while it decreases in Bega season. The increment of precipitation in these seasons may be a good 

opportunity for agriculture; however, increment of temperature, flow volume and sediment yield may affect the 

area. 

Due to climate change, the average monthly, seasonal and annual inflow volume changes mainly increase 

within the increasing of precipitation. Tikur Wuha watershed generates an average flow of 7.7 m3/s and the average 

annual sediment yield of 15.79 tons/ha for the base periods. In the future period, the predicted average annual 

sediment yield from the watershed will be 16.80 tons/ha/yr transported to Lake Hawassa from the period 2000 to 

2100. It is the higher sediment yield which affect the Lake; by rising the sea-level and flooding around agricultural 
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areas mainly during rainy season (June- September). In addition, the simulated soil loss rate of some of sub-

watersheds of Tikur Wuha watershed exceeds the maximum tolerable soil losses rate. This indicates that soil 

erosion is a serious problem of the study area. Thus, among all sub-watersheds that Northern, Northeastern, 

Southern and Southwestern parts of the watershed are at risk to soil erosion for the future periods. In general, this 

study confirmed that climate change is likely to have severe impact on the hydrologic flow of Tikur wuha 

watershed. 

 

4.2. RECOMENDATIONS 

Knowing the seasonal simulated long term average annual precipitation, temperature, stream flow and sediment 

yield components in the future is useful to recommend better alternative and complementary action of climate 

change. Keeping in view, the threats to the survival of Tikur Wuha watershed and Lake Hawassa, the following 

points are recommended for its proper conservation and management. 

 Afforestation around the Cheleleka wetland and adoption of soil conservation measures around 

erosion prone areas of the watershed to prevent siltation of the Lake Hawassa. This will help to 

maintain ecological balance besides preventing sediment deposition. It will also improve the 

productivity of the ecosystem. 

 Future work need to consider also studying the effects of different climate change adaptation strategies. 

 The models and model outputs used in this study possessed a certain level of uncertainty. The model 

simulation considered land use changes and other climatic variables such as wind speed, sunshine 

hours, and relative humidity remain constant for the future time horizons although it is not true in the 

actual case. Hence, the results of this research should be taken carefully and be considered as 

indicative prediction of the future and further researches should be extended by considering the future 

land use changes and other climatic variables. In addition, lack of recorded sediment data, calibration 

and validation of sediment yield not possible. 

 The results of this study are based on the outputs of a single GCM. However, it is recommended to 

use different GCM outputs to compare the results of different models that would result different 

hydrological impacts. Meanwhile, the GCM was downscaled to a catchment level only using 

statistical downscaling model which is a regression based model, even though other methods exists 

which are used for impact assessment. Thus, this research should be extended in the future considering 

other downscaling methods. 

 As mentioned above, lack of sediment data was the major challenges of this study. Hence, any of the 

concerned bodies should give due attention to data recording and even for data handling (reliable data). 
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