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Abstract 

This paper presents the results of storm surge simulation in the South Central region of Vietnam using the Mike 

21-FM HD model. Wind pressure fields of typical storms were first identified in period of 1986-2005 using the 

parametric wind field model. Storm surge risk was then simulated based on the rare 10, 50 and 100-year frequency 

corresponding to 2030, 2050, and 2100 scenarios. Storm surge model was finally calibrated and validated using 

the level of water measured in the November 2009 Typhoon Mirinae and October 2013 Typhoon Nari. The results 

show that storm surges were consistent with water level variation and amplitude; the maximum and minimum 

storm surges were 2.34m in the Binh Thuan coastal area and 0.78m in the Khanh Hoa coastal area, respectively. 

The results of this study demonstrated the use of MIKE 21-FM HD model for the simulation of storm surges in 

the future plays an important role in damage risk reduction caused by storm surges.      
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1. Introduction 

Storm surges, or conversely sea level depressions are atmospherically forced oscillation of the water level in a 

coastal or inland water body (Karim & Mimura, 2008). The surges are generated mainly by wind stresses and, to 

a lesser extent, falling atmospheric pressure that produces a rise in water level at the rate of approximately 1cm/hPa 

fall in pressure (McInnes et al, 2002). Storm surges refer to the rise in sea level that may accompany severe storms 

and may result from both tropical and extratropical storms. A storm surge is a huge mass of water, tens to hundreds 

km wide, that sweeps across the coastline where a hurricane makes landfall. The peak storm surge level can reach 

more than 3m. The surge of high water topped by waves can be devastating. Along the coast, storm surges are the 

greatest threat to life and property (Sheng et al, 2010). It is therefore the accurate simulation of storm surge is 

essential for developing cost effective storm mitigation and preparation. 

A number of numerical models have been proposed to simulate storm surges such as MIKE (Li et al, 2017; 

Pan & Liu, 2015; Yan et al, 2016), FVCOM (Guo et al, 2009), ADCIRC+SWAN (Musinguzi et al, 2019; Sheng 

et al, 2010), SLOSH (Houston et al, 1999), SuWAT (Jiang et al, 2016) in coastal areas (Bode & Hardy, 1997; 

Casulli & Cheng, 1992; Sheng et al, 2006). Among these models, MIKE 21- Flexible Mesh (FM) Hydrodynamic 

(HD) model developed by Danish Hydraulic Institute is a well-documented, proven modelling technology that has 

been successfully applied in many recent studies (Afentoulis et al, 2017; Bruneau et al, 2017; Hu et al, 2019; Patro 

et al, 2009). It is therefore MIKE 21- FM HD model was used to simulate storm surges in this study.  

When simulation of storm surge, wave, currents, and inundation in the Outer Banks and Chesapeake Bay, 

Sheng et al (2010) indicated that the accuracy of storm surge simulations depends on many factors such as input 

data (e.g., bathymetry, topography, and wind/pressure fields), representation of important processes (e.g., flooding 

and drying, bottom friction, and effects of wave and tide), model grid resolution, and open boundary conditions. 

For example, Houston et al (1999) compared surface wind observations analysed by the Hurricane Research 

Division (HRD) to those computed by the parametric wind model used in the National Weather Service Sea, Lake, 

and Overland Surges from Hurricanes (SLOSH) model’s storm surge computations for seven cases in five recent 

hurricane. Hubbert & Mclnnes (1999) developed a high resolution storm surge inundation model to model 

coastal flooding due to storm surges which features a nesting capability and inundation algorithm. Sheng et al 
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(2006) proposed a high-resolution unstructured grid model to simulate storm tide in the Chesapeake Bay. In that 

study, the application of an unstructured grid in the Bay offers the greatest flexibilities in representing complex 

estuarine geometry near the coast and encompassing a large modelling domain necessary for storm surge 

simulation. Later, Sheng et al (2010) simulated storm surge, wave, and coastal inundation in the Northeastern Gulf 

of Mexico region during Hurricane Ivan in 2004. When conducting numerical model experiments to address the 

previously unexplained anomalously high storm surge along the Florida coast of Apalachee Bay during Hurricane 

Dennis, Morey et al (2006) indicated that it is important to use a large model domain to incorporate the effect of 

remote forcing contribution to storm surge. In addition, when simulating storm surges in the Bay of Bengal using 

one-way coupling between NMM-WRF and IITD storm surge model, Pattanayak et al (2016) suggested using 

simulated surface meteorological fields of a high-resolution mesoscale model, the storm surge can be predicted at 

least 2 days in advance of the actual landfall of tropical cyclones with reasonable accuracy. Most recently, Mohit 

et al (2018) assesses the impact of a major river basin in Bangladesh on storm surge simulation. It can be seen 

from the above discussion that previous studies on storm surge simulations were quite diverse in simulating storm 

surge by taking account on main factors, and therefore to assess the level of flooding areas. However, most these 

studies were limited to the effects of climate change causing sea level rise. It is therefore, in this study, this 

limitation will be considered by taking account on hypothetical storm tide scenarios to the future mean sea level 

when simulating storm surges. 

 

2. Study area and data used 

2.1 Study area 

 
Figure 1. Study area of the South Central region (right) of Viet Nam (left). 

The study area is located in the South Central provinces of Vietnam including Da Nang, Binh Dinh, Phu Yen, 

Khanh Hoa, Ninh Thuan and Binh Thuan. Its geographic location extends latitudinally from 10°33' N to 13°40'N 

and longitudinally from 105°44′38″E to 106°47′21″E (Figure 1). Due to the low-lying topography in the study 

area (Schmidt-Thome et al, 2015), natural disasters such as storm events tend to increase in frequency and strength 

(Neumann et al, 2015) make the region susceptible to flooding from storm surges (Imamura & Van To, 1997; 

Nguyen et al, 2007; Schmitt et al, 2013; Takagi et al, 2012; Takagi et al, 2014; Thai et al, 2018). 

 

2.2 Data used 

Digital elevation model data, the wind and pressure fields of the storm were used as a primary input data for storm 

surge simulation. In this study, based on the new information for each storm, wind fields used as forcing were 

generated using the parametric model proposed by Young & Sobey (1981). The past wind pressure fields were 

reproduced to simulate storm surges for the baseline scenario and to build future scenarios in storm surge risk 

simulation. The parameters were used to simulate the wind pressure field include storm center position, maximum 

wind radius, maximum wind speed, storm center pressure, atmospheric pressure.  

 

3. Method of simulation 

According to Young & Sobey (1981), the wind speed and pressure components are calculated according to the 
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following formulas: 

 �� = ���� � 	��
� exp �7 �1 − 	��
� (1) 

�� = ����exp ��0.00257	� + 0.05� �1 − 	��
� (2) 

�� = −0.5���−cosφ� (3) � = �� + �� (4) 

! = !" + �!# − !"�exp �− 	��
 (5) 

where Rm is the radius to maximum winds, Vmax is the maximum wind speed, Pc is the central pressure, Pn is 

the neutral pressure, φ is the angle between the radial arm and the line of maximum winds, Vf is the forward speed. 

The wind field consists of a rotational and a translational component. At a distance, R, from the centre of the 

cyclone, Vr is the rotational wind speed and Vt is the translational wind speed. 

There is no detailed scenario of storms and tropical depressions in the future, therefore, storm data in period 

of 1945-2017 has been used to produce hypothetical storm data to build the Weibull probability distribution 

function. Based on these types of data, thereby calculating the maximum wind velocity and pressure at the center 

of storms corresponding to the rare frequency. In this study, the rare frequency distribution of storms corresponding 

to repeating frequencies of 10, 50 and 100 years were calculated. In particular, the 10-year frequency corresponds 

to the level of simple irrigation systems (greater than level IV), 50-year frequency corresponding to IV-level 

irrigation systems and 100-year frequency corresponding to II-level irrigation systems, corresponding to grade-II 

irrigation works (according to the National Technical Regulation for irrigation systems of Vietnam). The 

calculation results were summarised in Table 1. 

 
Figure 2. Distribution of maximum wind speed (left) and central pressure (right).  

 

Table 1. The probability of parameters on each time interval. 

              Time 

Parameters 

Probability (P) 

10-year 50-year 100-year 

���� (m/s) 30 41 45 !�$# (hpa) 970 946 936 

With the support of MIKE 21- FM HD model, a tidal current field model is established through the numerical 

integration of horizontal momentum equation and continuity equation based on the two-dimensional shallow water 

equations (Wang et al, 2016). The two horizontal momentum equations for the x- and y- component, and the local 

continuity equation are expressed by the following equations: %ℎ%' + %ℎ()%* + %ℎ+̅%- = ℎ. (6) 

%ℎ()%' + %ℎ()/
%* + %ℎ+())))%- = 0+̅ℎ − 1ℎ %2%* − 1ℎ/

234
%3%* + 56�3 − 57�3  

− 134 8%.��%* + %.�9%- : + %%* �ℎ;��� + %%- <ℎ;�9= + ℎ(>. 

(7) 

%ℎ+̅%' + %ℎ(+))))%* + %ℎ+̅/
%- = −0()ℎ − 1ℎ %2%- − 1ℎ/

234
%3%- + 5693 − 5793  

− 134 8%.9�%* + %.99%- : + %%* <ℎ;�9= + %%- <ℎ;99= + ℎ+>. 

(8) 

where t is the time; x and y are the Cartesian co-ordinates; h = ɳ+d is the total water depth; d is the still water 

depth; h is the surface elevation; ( and + are the velocity components in the x and y direction; f = 2Ωsin(Ф) is the 
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Coriolis parameter (Ω is the angular rate of revolution and Ф is the geographic latitude); g is the gravitational 

acceleration; ρ is the density of water; vt is the vertical turbulent (or eddy) viscosity; pa is the atmospheric pressure; 

ρ0 is the reference density of water; s is the magnitude of the discharge due to point sources; us and vs are the 

velocity components by which the water is discharged into the ambient water; sxx, sxy, syx and syy are components 

of the radiation stress tensor; Txx, Txy, Tyx and Tyy are components of viscous force; τsx and τsy are the x and y 

components of the surface wind; τbx and τby are the x and y components of the bottom stress. 

 

4. Model set-up, calibration and validation 

4.1 Model set-up 

  
a. Unstructured grid in East Sea. b. Bathymetry in East Sea. 

Figure 3. Unstructured grid (left) and bathymetry (right) in East Sea. 

The calculated area was extended to the entire East Sea extending latitudinally from 98°N to 122°N and and 

longitudinally from 2°E to 24°E. The unstructured grid used in this work was designated containing 4014 nodes 

and 6830 elements. Grid resolution varies from approximately 35km in the deep East Sea to less than 5km in 

channels ensuring the detail for coastal area (Figure 3-a). The terrain in the study area was extracted from 

topographic at different scales ranging from 1:10,000 to 1:1,000,000 (Figure 3-b). 

Wind pressure fields from 10 strong typhoons including TESS (1988), THELMA (1991), ANGELA (1992), 

LOLA (1993), KYLE (1993), TERESA (1994), ZACK (1995), ERNIE (1996), FAITH (1998) and LINGLING 

(2001) (as shown in Figure 4) were used in combination with future scenarios to simulate storm surges in the South 

Central coastal areas corresponding to the rare frequencies as mentioned above. 
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a. Wind field caused by typhoon TERESA in 1994. 

  
b. Pressure field caused by typhoon TERESA in 1994. 

  
c. Wind field caused by typhoon ZACK in 1995. 

  
d. Pressure field caused by typhoon ZACK in 1995. 

Figure 4. Wind and pressure fields caused by typhoons in 1994 and 1995. 

 

4.2 Model calibration and validation 

The hydraulic model was calibrated and validated using the results of the tidal harmonic analysis in January 2016 

and July 2016 at Quy Nhon station. Roughness coefficient in the model is a factor that has a greater influence on 

the change of phase and tidal amplitude, therefore, this coefficient was adjusted to correct the reliability of the 

model. The roughness coefficient depends on the structure, the roughness of the bottom layer. However, there was 

not enough data on the bottom layer structure of the regions in the modelling area. Thus, the calculation of 

roughness coefficient was not feasible. In this study, roughness coefficient was divided based on different depth 

thresholds. The greater the depth, the smaller the coefficient of roughness and vice versa. Based on the depth field 

collected by survey, the roughness coefficient was calculated according to a specific depth (Figure 5). This 

roughness coefficient was then used for the first run of the model. 
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Figure 5. Distribution of Manning roughness coefficient in East Sea. 

The results shows that the amplitude, phase and tidal oscillations of calculated water level were strong 

consistent with harmonic analysis of tidal data during the survey in both time periods (Figure 6). These results 

indicated the model parameters were completely reliable to simulate storm surge. 

 
Figure 6. Comparison chart of calculated water level and harmonic analysis of tidal data at Quy Nhon station in 

January (upper) and July (lower) of 2016. 

The storm surge model was calibrated and validated based on two typically strong storms: MIRINAE 

(occurred in November of 2009) and NARI (occurred in October of 2013). The calibration of storm surge model 

is actually the calibration of the wind friction component. Under storm conditions, the coefficient of wind friction 

increases due to the increase of wind speed. A set of wind friction parameters is specifically used as follows: (i) if 

wind velocity was lower than 7m/s, the coefficient of wind friction is 0.001255; (ii) if wind velocity was higher 

than 20m/s, the coefficient of wind friction was 0.0039. The comparison results show the consistency of the phase 

and amplitude between the two data series collected during the two storms. The largest deviation between peaks 

was only about 0.1m in storm MIRINAE and 0.4m in storm NARI (Figure 7). Therefore, it can be concluded that 

the model parameters especially the wind friction coefficient were sufficiently reliable for other storms. 
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Figure 7. Comparison of calculated water level with measured data at Quy Nhon station during storm 

MARINAE in 2009 (left) and at Quy Nhon station during storm MARINAE in 2009 (right). 

 

5. Results and discussion  

Table 2. The maximum storm surges in the period 1986-2005 and in case of the rare frequency of 100 years 

corresponding to scenarios in 2100. 

No 
Lat. 

(°) 

Long. 

(°) 

MSS* 

(m) 

MSS** 

(m) 
Area No 

Lat. 

(°) 

Long. 

(°) 

MSS* 

(m) 

MSS** 

(m) 
Area 

1 107.21 10.40 0.34 1.49 Ba Ria 

-Vung 

Tau 

17 109.22 13.73 1.06 1.13 

Binh 

Dinh 

2 107.36 10.46 0.36 1.68 18 109.23 13.77 1.04 1.05 

3 107.48 10.50 0.38 1.80 19 109.25 13.94 1.06 1.07 

4 107.85 10.71 0.41 1.47 

Binh 

Thuan 

20 109.21 14.09 1.19 1.08 

5 107.90 10.72 0.41 1.38 21 109.18 14.20 1.22 1.05 

6 108.08 10.91 0.46 2.34 22 109.14 14.35 1.50 1.21 

7 108.36 11.02 0.47 1.98 23 109.07 14.55 1.36 1.20 

8 108.54 11.16 0.47 1.82 24 109.06 14.64 1.31 1.20 

Quang 

Ngai 

9 108.75 11.27 0.48 1.66 25 109.00 14.83 1.47 1.40 

10 109.04 11.58 0.68 1.12 
Ninh 

Thuan 
26 108.92 14.99 1.64 1.45 

11 109.12 11.90 0.61 1.27 

Khanh 

Hoa 

27 108.90 15.18 1.42 1.41 

12 109.17 12.43 1.71 2.04 28 108.87 15.28 1.77 1.49 

13 109.34 12.77 1.10 1.48 29 108.71 15.42 2.05 1.93 
Quang 

Nam 
14 109.36 12.82 0.83 0.78 30 108.56 15.58 1.95 1.98 

15 109.29 13.15 0.97 1.00 
Phu 

Yen 

31 108.42 15.82 1.68 1.89 

16 109.24 13.48 0.88 1.33 32 108.28 15.99 1.60 2.19 
Da 

Nang 

Notes: Lat. and Long. are latitude and longitude; MSS* and MSS** are the maximum storm surges in period of 

1986-2005 and of the rare 100-year frequency corresponding to scenarios in 2100, relatively. 
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Storm surge in 1988 storm TESS  Storm surge in 1991 storm THELMA 

  
Storm surge in 1992 storm ANGELA Storm surge in 1993 storm KYLE 

  
Storm surge in 1993 storm LOLA Storm surge in 1994 storm TERESA 

  
Storm surge in 1995 storm ZACK Storm surge in 1996 storm ERNIE 

  
Storm surge in 1998 storm FAITH Storm surge in 2001 storm LINGLING 

Figure 8. Storm surges in 10 strong storms in the 1986-2005 period. 
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Storm surges in 10 typical storms in the 1986-2005 period were shown in Figure 8. The detailed calculation 

results at 32 points along the coastal areas in the South Central region were summarised in Table 2. Simulation 

results from Figure 9-left show that the most affected area by storm surges was the area from Phu Yen to Da Nang 

with a rise of up to 2m in Quang Nam, approximately 1.8m in Quang Ngai province and about 1.5m in Phu Yen 

province during period of 1986-2005. The least affected area was found in the coastal areas of Ba Ria-Vung Tau 

with the largest increase of 0.4m. Medium-low storm surges were detected in the coastal areas in Binh Thuan 

(ranging from 0.41m to 0.48m), Phu Yen (from 0.88m to 0.97m). Medium-high storm surges were found in the 

coastal areas of Khanh Hoa (from 0.61m to 1.71m), Binh Dinh (from 1.04m to 1.5m), Quang Ngai (from 1.31m 

to 1.77m) and Quang Nam (from 1.68m to 2.05m). In general, to a certain extent, the coastal areas in the South 

Central region of Vietnam were strongly affected by storm surges. 

Simulation results of storm surges for 100-year frequency were statistically summarised in Table 2 and shown 

in Figure 9-right. Data from Figure 9 shows that the maximum storm surge were found in Binh Thuan province 

with an increase of about 2.34m; the minimum storm surge was in Khanh Hoa province with the water level rise 

of about 0.78m. The high storm surges were detected in the coastal areas of Da Nang, Quang Nam, Quang Ngai, 

Khanh Hoa and the southern coast of Ninh Thuan. Relatively low storm surges occurred mainly in coastal areas 

of Quang Ngai, Binh Dinh and Phu Yen and Ninh Thuan. 

 
Figure 9. Map of the maximum storm surges in the 1986-2005 period (left) and in case of the rare 100-year 

frequency corresponding to scenarios in 2100 (right) in the South Central Coast of Vietnam. 

 

6. Conclusions 

In this study, storm surges were simulated in the South Central coast of Vietnam under climate change using the 

Mike 21-FM model. Wind pressure fields were derived from in the 1986-2005 period. Wind pressure fields of 

typical storms were first identified in period of 1986-2005 using the parametric wind field model. Storm surge risk 

was then simulated based on the rare 10, 50 and 100-year frequency corresponding to 2030, 2050, and 2100 

scenarios. Storm surge simulation parameters were calibrated and validated by the survey data collected in the 

November 2009 Typhoon Mirinae and October 2013 Typhoon Nari. The study results show the maximum and 

minimum storm surge of 2.34m and 0.78 were detected in the coastal areas of Binh Thuan province and Khanh 

Hoa province, respectively. This study demonstrated the Mike 21-FM is an effective model to simulate storm 

surges under climate change in the coastal areas.  
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