Solid Waste Management at University Campus (Part 6/10): Preliminary Estimation of Combustibility and Energy Potential of the Waste

Diana Starovoytova School of Engineering, Moi University, Kenya

Abstract

This is a-sixth-piece in a-series of 10. To-examine waste-combustibility, its Moisture-Content (MC), Ash-Content, and Volatile-matter, were established, in-accordance-with the-UNEP (2015); ASTM D3174-12; and ASTM D1102: 2013 alongside-with ISO 562: 2010, respectively. A-Tanner-triangle-concept and itscombustibility-requirements informed the-study, and enable to-visualize the-combustibility potential, graphically. The-study established that, for the-waste, at the-subject-university: (a) MC ranges from 10.76 to 57.66 %, with an-average of 36. 84%; (b) Ash-content ranges from 14.1 to 42.79%, averaging 23.11%; (c) Volatile-matter ranges from 21.78 to 51.34%, with an-average of 38.03%; (d) From the-graphical-judgment of the-Tanner triangle, it was projected that: (i) 37% by weight, of the-total-waste, is high in-moisture-content (57. 66%), and according to the-Tanner-combustibility-requirements cannot be combusted, without auxiliary-fuel (e.g., autothermic-combustion), and hence should-be composted, or vermicomposted, or anaerobically-digested, to-generate biogas, and produce a-stabilized-organic-humus, or Microbial-Fuel-Cells (MFCs) can-be-used for electricity-production; (ii) 41% of the-total-waste is combustible; and (e) 87.8% of the-solid-waste has thecapability of being-converted to heat-energy. Waste-to-Energy (WtE) technologies, alongside with selectedmyths, surrounding them, were, hence, reviewed. The-current-study is largely-preliminary, therefore, furtherstudies, such-as: comprehensive Proximate and Ultimate-Analysis of solid-waste, generated by the-university, is further recommended. In-addition, the-study recommends to-conduct a-feasibility-assessment of WtEtechnologies, at the-university, via decision-matrix. The-findings of this-research provide a-necessary-baselinedata, for the-four-subsequent-studies, in the-series, and also, hopefully, add to-the-body of knowledge, on thesubject-matter.

Keywords: Tanner triangle; Moisture Content, Ash; Volatile matter, Waste-to-Energy (WtE), Composting, Vermicomposting.

1. Introduction.

1.1. Solid waste generation-trends and practices.

It-is-estimated that global-waste-generation will-double by 2025, to-over 6 million-tons of waste, per-day, and the-rates are *not* expected to-peak by the-end of this-century. By 2100, global-waste-generation may hit 11 million tons, per-day (World-Energy-Council, 2016). Municipal-solid-waste (MSW) management-system aims to-handle health, environment, aesthetic, land-use resources, and economic-concerns, related-to *improper* disposal of waste (Al-Waked *et al.*, 2014; Ouda & Cekirge, 2014; Nemerow, 2009). Population, urbanization-growth, and the-rise of standards of living, have all dramatically-accelerated the-municipal solid-waste (MSW) generation in-developing-countries (Guerrero *et al.*, 2013; Minghau *et al.*, 2009). Developing-countries, however, are *not* able to-cope-with the-MSW-generation-growth, and open-landfills remain the-dominant-method of waste-disposal (Ouda *et al.*, 2013; Ouda, 2013).

In-many-countries, MSW-management has often been-regarded as a-public-service with-low priority: anuisance and a-burden (Starovoytova, 2018 a; 2018 b; Mutz *et al.*, 2017). In-this-regard, the-2015 United-Nations Sustainable-Development-Goals (SDGs), as-well-as UN Habitat's New-Urban Agenda (2016), call for improvements in-WM-practices, as a-basic-service, to citizens.

On-the-other-hand, *Energy* is a-critical-issue for Africa, where large-number of people does *not* have access to-reliable-energy (Scarlat *et al.*, 2015). For-example, according-to Kenya: Energy Profile (2012), Kenya currently has a-national-electrification-level below 15%. Kenya's energy-sources consist of *imported* fossil-fuels and renewable-sources, which include biomass, hydro, geothermal, solar, and wind. Total-installed-electricity-capacity (2010) is 1,429 MW (Hydro-electric -- 52.1%; Geothermal -- 13.2%; Conventional-Thermal -- 32.5%; Wind, and Others -- 2.2%) (IRENA, 2010). Only about 5% of the-rural-households have access-to electricity, while biomass, mainly-fire-wood, accounts for 77% of the-total-energy, consumed. In-addition, the-Ministry of Energy, in-Kenya, has identified several-long and short-term challenges, such-as: Inadequate-power-supply-capacity, due-to rise in-demand for electricity, which is growing faster, than the-ability to-install additional-generation-plants; Over-dependence on hydro-power, which exposes the-country to-power-rationing, due-to extreme-weather-conditions, such-as drought; Shortage of transformers and overstressed-distribution-network; Dependence on donor-funding for various-projects; Long-delays in-development of power-infrastructure,

because building of power generation, transmission and distribution-network is capital-intensive and takes inordinately-long-time from-conception to-commissioning; Low-investments in power-generation by private-investors; Inadequate-sea-port-facilities for handling imported-coal and natural-gas, which are cheaper primary-energy-resources, than petroleum oil-based-fuels for power-generation; High and ever-rising-international-prices of fossil-fuels; Obsolete oil-refinery-system; Conflict with food-security-issues, when developing the-bio-diesel-industry; and Unrealistic-demands by local-communities where energy-resources, like coal, gas, and oil, are discovered (https://softkenya.com/kenya/challenges-facing-energy-sector-in-kenya/).

1.2. Waste-to-energy (WtE) as a-compromise, between high-energy-demands and the-state of the-environment.

The-compromise, between the-energy and the-environment, is a-recent-controversial-issue. Generally, people assume that energy-generation and environmental-protection-activities contradict each-other. More-clearly, most of the-energy-generation-systems exploit the-natural-resources and are a-hazard to the-environment, in-terms of source-depletion and environmental-contamination. One of the-solutions of this-problem is to-implement synergy, between environmental-protection and energy-generation (Alpaslan *et al.*, 2001). Resource-recovery, from waste, can play a-role, in-minimizing the-impact of MSW on the-environment, with the-additional-benefit of providing a-local-source of energy (Scarlat *et al.*, 2015).

There are four-principal-methods for resource-recovery or disposal of MSW (Themelis et al., 2002): (1) Recovery of materials: Recovered (by recycling) paper, plastic, rubber, fiber, metal, and glass, can be re-used toproduce similar-materials; (2) Recovery of energy: Recoverable-energy is stored, in-chemical-form, in all-MSWmaterials, that contain hydrocarbons; this includes everything, except metals, glasses, and other-inorganicmaterials (e.g., ceramics, plaster, etc.). By-combusting such-wastes (via Mass Burn WtE plants; Fluidized-Bed WtE Plants; Refuse Derived Fuel (RDF), electricity and steam can-be-generated; (3) Bioconversion: Thenatural-organic-components of MSW (e.g., food and plant wastes, paper, etc.) can be composted aerobically (i.e., in the-presence of oxygen) to carbon-dioxide, water, and a-compost-product, that can be used as soil-conditioner. On the-other-hand, anaerobic-digestion, or fermentation, produces methane, or alcohol and a-compost-product; this method provides an-alternate route for recovering some of the-chemical-energy, stored in the-hydrocarbonfraction of MSW; and (4) Direct disposal methods should be used for any-fraction of the-MSW that is not or *cannot* be subjected to-any of the-above-three-methods, plus any-residuals from-these-processes (e.g., ash fromcombustion). The-methods involve sanitary-landfill, lagooning, disposal into-surface-waters, in-deep-wells, or at-sea/ ocean. In-developed-countries, the-use of direct-disposal-methods, at-present, is highly-restricted, to well engineered-sites and selected-categories of non-objectionable-wastes. In-contrast, in-most-developing countries indiscriminate-waste-dumping is a-common-practice.

Waste-managers and decision-makers, in-developing and emerging-countries, have-to-respond to-thesechallenges, and in-recent-times, waste-to-energy (WtE) has-been increasingly-viewed as-a-solution to-theproblems, derived-from rising-waste-quantities, indiscriminate waste-dumping, in-expanding-cities, as-well-as rapidly-growing-energy-demands. WtE refers to a-family of technologies, which treat waste, to-recover-energy, in the-form of heat, electricity, or alternative-fuels, such-as biogas. The-scope of the-term 'Waste-to-Energy' is very-wide, encompassing a-range of technologies of different-scales and complexity. These can include theproduction of cooking-gas, in-household-digesters, from organic-waste; collection of methane-gas, from landfills; thermal-treatment of waste, in-utility-size incineration-plants; co-processing of Refuse-Derived-Fuel (RDF), incement-plants, or gasification, among-others (Moya *et al.*, 2017). Waste-to-energy (WtE) technologies are assessed in-this-study.

1.3. Previous-research and purpose of this-study.

Recent-study by Starovoytova & Namango (2018 b) have revealed, that both; students and vendors: (i) haverecognized SWM as a-major-problem, at-the-campus; and (ii) perceived the-campus as-dirty and very-dirty. Another-study by Starovoytova (2018 c) estimates, that the-subject-university-campus generates about 5, 111. 65 tons, of mixed-waste, per-year, on-average. Out of which: (i) Food-waste, which is compostable, accounts to 1,891.31 tons/per year; and (ii) Recyclables, included: paper (mixed & corrugated) - 32% (1,635.73 tons/per year); glass - 13% (664.43 tons/per year); plastic and metals, each - 8% (408.93 tons/per year); and E-waste and other-*non*-combustibles, each - 1% (51.12 tons/per year). Her-study is also revealed, that:" Every-day theuniversity is literally throwing-away profit, as the-waste is just disposed-off at the-dumpsite, without any-formal waste-reduction, at-source, recycling, or composting". The-same-study also recommended further-studies on Moisture-Content and Energy-Potential of the-waste, at the-campus, as a-next-logical-step.

The-need to-increase the-share of renewable-energy and reduce GHG-emissions, along-with raisingenvironmental-consciousness, to-protect the-environment from polluting and unsustainable- practices, such-as indiscriminate-waste-dumping, practiced at the-university, will in-turn, call for noble- approaches. According to the-World-Energy-Council (2016), "treating *residual*-waste with various Waste- to-Energy (WtE) technologies is a-viable-option for disposal of solid-waste and energy-generation. Many-factors, however, will influence thechoice of technology, and every-region will have-to properly- assess its-specific-context, to-implement the-most reasonable-solution". In-this-regard, a-study, in-the university-context, is necessary, to-identify the-customized and most-practicable-solutions, to-current wasteful-SWM-practices.

To-examine different-alternatives to current-SWM-practices, at the-university, such-as, (WtE)- technologies, currently available, first, the-assessment of the-waste-combustibility and Energy-potential of the-waste, at subject-university should-be-conducted, which in-turn require examination of selected-waste properties. Chandrappa & Das (2012), specified important-chemical-properties, measured for solid-waste, such-as: (1) moisture (water-content can change chemical and physical-properties); (2) volatile-matter; (3) ash; (4) fixed-carbon; (5) fusing-point of ash; (6) calorific-value; and (7) percent of carbon, hydrogen, oxygen, sulphur, and ash. Besides, the-major physical-characteristics, measured in-waste, are: (1) bulk-density; (2) size-distribution of components; and (3) moisture-content. Other-characteristics, which may-be-used, in-making-decision about SWM, are: (1) color; (2) voids; (3) shape of components; (4) optical-property; (5) magnetic-properties; (6) flammability; (7) electric-properties; and (8) putrescence of solid-waste (Buekens, 2005). This-study will be limited-to such-parameters-as: moisture-content, ash, and volatile-matter.

According to Islam (2016):"... characteristics of the MSW stream, like ... moisture-content, are critical-factors to determine energy recovery alternatives". The-next-section elaborates on the-waste moisture-content.

Moisture-content (MC) has a-great-influence on the-heat of combustion, as-well-as in-the biologicalprocesses of organic-matter. MC plays an-important-role in-understanding the-nature of the-waste, as high-MC indicates presence of higher-fraction of organic-materials. MC is a-key-factor that greatly-shapes decisions, involved in-the-conversion of organic-waste into-compost and biogas, making use of solid-waste as a-fuel, and designing landfills or incineration-plants (Eyinda & Aganda, 2013). In-particular, MC is a-dominant-factor inaerobic-composting (Liang *et al.*, 2003). It provides better degradation of organic-matter, and maintains temperature for longer-time-period. Moisture is important for the-activity of microbes, because it increases therate of metabolism. The-activity of microbes is at-minimum, when low-moisture is provided (Tiquia *et al.*, 1996). The-moisture is also inversely proportional to the-temperature and the-microbe-activity (Makan *et al.*, 2012). MC is one of the-critical design and operating-parameters, used in-compost-engineering-systems. As a-result, MC-analysis is one of the-most-commonly performed analytical-methods on solid-waste (Ozcan *et al.*, 2016).

On-the-other-hand, moisture increases the-weight of solid-wastes, and thereby, the-cost of collection and transport. In-addition, moisture-content is a-critical-determinant in the-economic-feasibility of waste-treatment by incineration (Vesilind *et al.*, 2002), because wet-waste consumes more-energy (for evaporation of water and in-raising the-temperature of water-vapor), hence, wastes should be insulated from rainfall or other-extraneous-water. For-example, combustion of solid-waste depends on MC; high-moisture-content results in low-net-energy from the-waste i.e., low-calorific-value (Eyinda & Aganda, 2013).

Many-scholars, all-over the-globe, have conducted analysis of MC, Combustibility, and Energy-potential of waste, such-as: Moya *et al.*, 2017; Mugo *et al.*, 2016; Islam, 2016; Dolgen *et al.*, 2015; Ezeah *et al.*, 2015; Ouda *et al.*, 2015; Omari, 2015; Scarlat *et al.*, 2015; Al-Waked *et al.*, 2014; Omari *et al.*, 2014; Ouda & Cekirge, 2014; Khamala & Alex, 2013; Katiyar *et al.*, 2013; Das & Bhattacharyya, 2013; Medina, *et al.*, 2013; Ellyin, 2012; Amber *et al.*, 2012; Yildiz *et al.*, 2012; Ferreira *et al.*, 2012; Kothari *et al.*, 2010; Ryu, 2010; Tsai & Kuo, 2010; Salomon & Lora, 2009; Chang & Davila, 2008; Cheng *et al.*, 2007; Kathiravale *et al.*, 2004; *et al.*, 2003; Themelis *et al.*, 2002; Mbuligwe, 2002; Kumar, 2000; and Leão & Tan, 1997. Studies, at university-context, however, are deficient. In-the-light of the-above-information, this-study is focused on Combustibility, and Energy-potential of waste, at the-subject-university. Its-findings will hopefully assist in the-decision-making on ISWM-system, to-be developed, for the-campus.

2. Materials and Methods.

2.1. Background.

The-study was conducted at the-Moi-University (MU), situated at Kesses-Constituency, the-Uasin Gishu-County, Kenya. MU is the second-largest-public-university, after the-University of Nairobi. As of 2007, it had over 20,000 students, including 17,086 undergraduates. It operates eight-campuses and two-constituent-colleges (Starovoytova & Cherotich, 2016 b). The-study was conducted over a-four-week sampling-period, in-2017 calendar-year, across the-MU, *main*-campus.

Analogous to Starovoytova (2017), interested-readers could-refer to Starovoytova *et al.* (2015) to-find informative-synopsis regarding Kenya, and its-educational-system. Besides, study by Starovoytova & Cherotich (2016 a), provides valuable-particulars, on MU, where the-study was conducted. The- geographical-position on the-subject-university can be accessed *via* Starovoytova & Namango (2018 a).

2.2. Determination of Combustibility.

The-ability of waste to-sustain a-combustion-process, without supplementary-fuel, depends on a-number of physical- and chemical-parameters, of which the-lower (inferior) calorific-value is the-most-important. The-

minimum-required lower-calorific-value, for a-controlled-incineration, also depends on the-furnace design. Thecombustibility of MSW is determined by analysis and heating-value of MSW, which is the-ash and water-free calorific-value (H_{awf}) expresses the-lower-calorific-value of the-combustible-fraction (ignition-loss of drysample). For direct-incineration and energy-recovery, the-waste calorific-value should-be at least 2000-2500 kcal/kg, and 1500-1600 kcal/kg for the-combustion, without additional-fuel. If the-heating-value is below 1200 kcal/kg, it is understood that the-solid-waste *cannot* be economically burned. The-other-method of combustibility-determination is *via* Tanner-combustion-triangle (Worrel & Vesilind, 2008). In-this-study, thecombustibility was determined graphically *via* Tanner-triangle.

2.3. Determination of Moisture Content (MC).

Currently, many-moisture-meters are available, for the-determination of MC, in the-*field*. This-study, however, used proven, traditional *laboratory* oven-drying testing-method. According-to Komilis *et al.* (2012), oven-drying is always part of the-sample-preparation-protocol for quantitative-analysis. Although time-consuming, this-method is precise, straight-forward, and can-be-used to-analyze many-samples, simultaneously. In the-wet-weight-method of measurement, the-moisture-content (MC), in a-sample, was expressed as-a-percentage, of the-weight, of the-material, when wet, whereas in the-dry-weight-method, it was expressed as-a-percentage of the-weight of the-material, when dry. The-study used the *wet*-weight method in-accordance-with the-UNEP, Mapping Solid Waste – II (2015), with *no* correction done, for cross-contamination of wastes.

Apparatus used for the-determination of MC, are: (i) Weighing-device: a-balance, sensitive to 0.1 % of themass of the test-sample, and having a-capacity equal to, or greater than, the wet-mass of the-sample to-be-tested; (ii) Drying-device: an-oven, with thermostatically-controlled heating-chamber, capable of maintaining atemperature of $85 \pm 5^{\circ}$ C; (iii) Heat-resistant gloves/mitts, and pot-holders, to-remove-samples, from the-oven; (iv) Aluminum-Foil; (v) Clean-plastic-bags; and (vi) Stickers and marker-pen for labeling the-samples.

Representative-samples were collected-randomly, from the-identified-waste-generators, labeled, put in separate-clean-plastic-bags, and brought to the-testing-laboratory, for-testing, within the-same-day. Certain-amounts of waste, from each-sample, were inspected for signs of cross-contamination-with waste- liquids or rainwater, and then weighed to an-accuracy of *not* less than 0.10 kg, and then laid-down as-a-carpet that is max 3 cm-thick, in an-aluminum-foil; the-weight was recorded as W1. Several-samples were then positioned into preheated-fan-assisted-oven, to-allow the-maximum-air-circulation and exhaust of the-moisture-laden-air, and dried to constant-mass at $85 \pm 5^{\circ}$ C, for 48hours. Afterwards, the-samples were removed from the-oven, and kept in-desiccators, to-allow to-cool, naturally, for another 48 hours. Then the-samples were re-weighed and recorded, as W2. The-moisture-content (% H₂O) is then calculated as follows:

$$% H_2O = \frac{(W1 - W2)}{W1} x100$$

2.4. Determination of Volatile Matter.

Volatile-matter of a-municipal-solid-waste is a-vapor, released when the-waste is heated. The applicable standards, such-as, ASTM D1102: 2013 and **ISO 562: 2010**, were followed-in for determination of volatile- matter. The previous-sample, used for moisture-content-determination, was again heated in a-covered crucible, to-avoid contact with air, during de-volatilization. The-covered-crucible was placed-into a-furnace at $950\Box$ for 2 hours. Then the-crucible was taken-out, and cooled in-desiccator. The-weight difference, due-to de-volatilization was referred as volatile-matter, calculated by the-formula below:

Volatile Matter (%) =
$$\frac{(\text{Initial weight} - \text{Final weight}) \times 100}{\text{Initial weight}}$$

2.5. Determination of Ash content.

Ash is the-inorganic solid-residue, left after the-waste is completely-burned. ASTM D3174 - 12 Standardprocedure was used for ash-determination. The-remaining-waste-sample from volatile-matter examination was weighted, and placed into the-muffle-furnace at $750\square$ for 1 hour for combustion, until the-waste is completelyconverted-to-ash. When all-carbon was burnt, the-sample was cooled to-room temperature, and re-weighted. Ash-content was calculated as: Ash Content (%) = $\frac{\text{Weight of Ash} \times 100}{\text{Initial weight}}$

2.6. Determination of Energy potential.

The-combustion of waste liberates energy in the-form of heat. A-proportion of this-energy is used to-dry thewaste first (as the-moisture-content has to-be-eliminated). The-remaining-energy can then be-used to-generate power and some-useful-work. This therefore illustrates that the-higher the-moisture-content, the-smaller theenergy, available for doing-meaningful-work. This-available-energy can-be-computed as-follows (Eyinda & Aganda, 2013):

The-NET-energy, that can-be-extracted, from-waste is given by: *Enet =Egross-Edry*

Where: *Enet* = Net energy; *Egross* = gross energy; and *Edry* = Energy used to-dry the-waste.

From the-equation above, E d r y = H s + H f g (Eyinda & Aganda, 2013).

Where: Edry = the-energy, required to-dry the-solid waste, Hfg = the-heat of vaporization; and Hs = theenergy, used to-raise the-temperature of the-waste-water, from the-initial-temperature to vaporizationtemperature.

To-find HS; the-following-equation is given: $HS = M w \times C p \times (T S - T i)$ (Eyinda & Aganda, 2013)

Where: Mw = mass of moisture in-solid-waste; Cp = Heat-Capacity of water; Ts = VaporizationTemperature; and Ti = Initial-Temperature.

Finding latent-heat of vaporization, is done by $Hfg = Mw \times Hfg$ (Eyinda & Aganda, 2013).

To-determine the Net-Energy, the-following-formula was derived: $Enet = (M-Mw) \times Cv$ (Eyinda & Aganda, 2013).

Where: *Cv* = *Calorific value of dry waste;*

Therefore: Enet = (M-Mw) - [(MwCp (Ts-Ti)) + MwHfg] (Eyinda & Aganda, 2013).

2.7. Data Analysis.

Microsoft-Excel, for Windows XP-Professional 10; and GraphPadPrism 6.00 for Windows, were used for dataanalysis. Descriptive-statistics were also-used to-highlight patterns and general-trends, in the-data-sets.

3. Results and Analysis.

3.1. Moisture Content (MC).

Figure 1 shows waste-samples arrangement, in the-oven, during MC-determination, while Table 1 shows theresults for MC, for 5 waste-generators, at MU, and Figure 2 shows comparative graph of MC.

Figure 1: Arrangement of samples in the-oven.

Table 1: Moisture Content for 5 waste generators.					
	Stage Market	Laboratories	Administrative Offices	Eateries	Hostels
Wet weight (Ww), kg	1.035	0.790	1.310	0.685	1.360
Dry weight	0.600	0.705	0.830	0.290	0.855
(Wd), kg					
Weight difference	0.435	0.085	0.480	0.395	0.505
(Ww-Wd), kg					
Moisture Content, %	42.03	10.76	36.64	57.66	37.13

3.2. Summary of results for all-the-parameters.

Table 2 shows the-summary of the-results.

Table 2: Summary of the-results.						
Parameter	Units	Range	Mean			
Moisture Content (MC)	%	10.76 - 57.66	36.84			
Ash Content	%	14.1 - 42.79	23.11			
Volatile-matter	%	21.78 - 51.34	38.03			

3.3. Energy Potential.

The-annual average-temperature of Eldoret, Uasin-Gishu-County is typically 16.6 $^{\circ}$ C (Climatemps, 2017). Towork-out the-net-energy-potential, the-following-values are used: The-Calorific-Value of the-sampled waste was-taken as 12.48 MJ/Kg. This-Calorific-Value was determined, for solid-waste, in-Nairobi, using theguidelines provided by the-British-Standard, B.S. 1016: Part 5:1967. The-combustion of the-waste is done in an-Oxygen-Charged Bomb-Calorimeter, pressurized at 25 atmospheres (Eyinda & Aganda, 2013); Initialtemperature (Ti) = 16.6°C. From the-thermodynamics of water: Vaporization Temperature (Ts) = 100°C; Heat Capacity of water (Cp) = 4.2 kJ/Kg-K; Latent Heat of Vaporization (Hfg) = 2260kJ/kg; and the-average MC is 36.84%, according to Table 1. The-average mass of moisture (Mw) is therefore 36.84% of 1 kg, which is, Mw= 0.3684kg.

Substituting these values in the Net-Energy Equation:

Enet = (1-0.3684)12480 - [0.3684*4.2(100-16.6)) + 0.3684*2260] = 7882.368 - [129.043152+832.584]Enet = 6920.7408 kJ/kg.

To-determine the Egross: Enet=Egross-Edry (Eyinda & Aganda, 2013).

But $E dr y = H s + H f g E dr y = [mw x (T s - T i) + (mw x \Box f g)] = 0.3684 x 4.2(83.4) + (0.3684 x 2260) = 961.6272k J / K g E g r o s s = 6920.7408 + 961.6272 = 7882.368k J / K g$

The-efficiency of heat-production is worked out as: *Energy Efficiency=Enet/EgrossX* 100 =87.8% This means that 87.8% of the-solid-waste, at-the-university, has the-capability of being-converted to-heat-energy, through processes such-as: incineration, pyrolysis, and WtE-systems, for generating electricity.

4. Discussion.

4.1. Analysis of Results.

4.1.1. MC.

This-study established, that MC ranges from 10.76 to 57.66 %, with an-average of 36.84%. These-findings are in-accord-with reports of previous-investigations, which have found MC ranging from 17.73% to as-high-as 82% (see Kalanatarifard & Yang, 2012; Thitame *et al.*, 2010; Kumar & Goel, 2009; Igoni *et al.*, 2007; Cheng *et al.*, 2007; Gidarakos *et al.*, 2006; Mbuligwe, 2002; and The-World-Bank, 1999), although values of 40%-60% are typically observed. Likewise, according-to Tchobanoglous *et al.* (1993), the-MC of solid-wastes varies, between 15% and 40%, with an-average of 20%. However, MC may reach up to 60% - 70% from-time-to-time, depending, especially, on solid-waste-composition, climate-conditions, and socio economic-structure of the-particular-region. Mugo *et al.* (2016), also-stated, mixed-waste MC of 34.72%.

The-results differed, to-some-extent, with-the-findings by: (i) Katiyar *et al.* (2013), who noted, that MC of municipal-waste varied from 24.3 to 42.2% in-Bhopal, India; (ii) Yildiz *et al.* (2012), who indicated MC-values ranging from 15 to 40%; (iii) Omari, (2015), who noted that the-MC for Arusha municipal-waste ranges from 55.7 to 64.03%, by weight; (iv) Alhassan & Tanko, (2012), who reported that waste MC, from Nigeria gave 10.25%; (v) Chang *et al.* (2008), who reported that MC for solid-waste, from Taiwan, ranged from 37.6 to 65.9%; (vi) Ezeah *et al.* (2015) reported that MC ranges from 43.89 to 55.11, with an-average of 48.80%; and (vii) Das & Bhattacharyya, (2013), also established that MSW at Kolkata, India in-2010 gave MC of 46%, by weight.

It was also revealed, that 41% of the-total-waste, at the-university, fulfilled the-required-values for wasteincineration, without auxiliary-fuel, which should *not* exceed MC of 50%, as reported by Medina *et al.* (2013).

Burnley (2007) believes that utilizing information, related-to moisture-content enables waste-planners todetermine how feasible integrated-solid-waste-management approaches are likely to-be. Chang & Davila (2008), on the-other-hand pointed-out, that waste-planners need-to-bear in-mind, that the-calorific-value of wastesample decreases with the-increase in-moisture-content. This-study determined 57.66 % moisture-content in food-waste. This is higher, than the-results of Ezeah *et al.* (2015), obtained from the-*food-waste*-samples indicating an-average moisture-content of 48.80%. According-to Ozcan *et al.* (2016), high-organic-mattercontent in solid-waste-composition may be a-significant factor, which increases MC. The-findings are in-accord with previous-studies by Ozcan *et al.* (2016); Yildiz *et al.*, (2012); and Hui *et al.*, (2006). The-relatively-high MC, of *food-waste-samples* from this-study, might be indicative of waste with lower-calorific-values. Theimplication being that bioconversion-technologies, such-as AD, are more-suitable, compared to thermochemical-conversion-technologies, such-as combustion or gasification. The-implication of this-result is that with some-balancing, the-food-waste may be amenable to-disposable-options, such-as AD. Besides, according to Tchobanoglous & Kreith (2002), moisture can ruin many-materials, in-a-way, that they are impossible-to-recycle (e.g., if paper and cardboard are lay for long-periods of time, outdoors, and the-materials get wet, and also dueto small-yards, where mixing, and contamination, with other-surrounding-materials can-happen).

The-moisture also adversely-affects the-waste-to-energy conversion-process, as the-process consumes more energy to-evaporate-moisture from SW. Moist-waste, such-as garbage, burns *only* after at-least superficial-evaporation of the-moisture, contained (Buekens, 2005). Therefore, waste-to-energy concept receives less-attention in MSW-treatments, especially in tropical-region, where waste with high-moisture-content has been commonly-reported (Silvennoinen, 2013). However, reduction of moisture of MSW would be-beneficial to-convert-waste into-thermal-energy, effectively and efficiently. Use of solar-energy is a widely-practiced-strategy to-reduce-moisture-content, in-many-materials. For-example, Heshani *et al.* (2017), suggest a-method to-reduce-moisture in-MSW, by utilizing solar-energy, by developing a-model for moisture-reduction, where the-parabolic solar-energy-concentration-method is applied to-convert solar-energy into thermal-energy.

4.1.2. Volatile-matter. This-study established, that volatile-matter ranges from 21.78 to 51.34%, with an-average of 38.03%. These-findings are comparable with the-results of a-study, carried-out in Kolkata, where volatile-matter of 38.53% was reported. The-results are higher, than the-average volatile-matter of the-three-Indian-cities, with 23.7%; (Shodhganga, 2007). The-finding of an-average volatile-matter is much-lower than the-one, reported by Omari *et al.* (2014) of 78.9%.

4.1.3. The ash content.

This-study determined, that the-waste-ash-content ranges from 14.1 to 42.79%, averaging 23.11%. These findings are comparable with the-average ash-content from the-three-Indian-cities, that was reported to be 27.7% (25.94% in Chandigarh, and 27.51% in Mohali and 29.9% in Panchkula). Similar-findings had also been observed for a study carried out in Delhi wherein ash content of 21.8% was reported from LIG-area (Shodhganga, 2007). The-average-finding is higher, than the one reported by Omari *et al.* (2014) of 10.5%.

These-differences can be due-to different-composition of the-waste, varied weather-conditions, during sample-collection, and the-procedure, followed, in determination of the-parameters, among-other- reasons.

4.2. Assessment of combustibility.

MSW can be-classified into 'dry' and 'wet' materials, on the-basis of their-moisture-content. From theperspective of energy-recovery, the 'dry' fraction can-be-divided into (Themelis *et al.*, 2002): (i) combustiblematerials, such-as paper, plastics, wood, etc.; and (ii) non-combustible or 'inert' materials, such-as metal and glass. There are three-options for handling the 'wet' fraction: (a) combustion; (b) aerobic, or anaerobicbioconversion; and (c) land-filling. From Starovoytova (2018c), combustibles, in the-university-waste, constitute-approximately 78% (on subtracting 22% of inert-materials from the-total-waste).

According to the-Tanner-triangle, the-wastes that are theoretically-feasible for combustion, without auxiliary-fuel, should-have-met the-following-limits: Moisture-content <50 %; Ash-content <60%; and Combustible-fraction >25% (BSI, 2011). These-limits inform the-combustible-area, shown in **Figure 3** as grey-shaded-region. The-average-values, for the-moisture-content and ash, presented in-**Table 1**, are plotted in a-Tanner-triangle-diagram, alongside-with approximated-Combustibles of 78% (see **Figure 3** in-red), to-see where it falls within the-grey-shaded-area indicating a-combustible-fraction.

Figure 3: Waste-combustibility-plot.

The-solid-waste, generated in-the-university, however, consists of considerable-moisture (57.66%), and hence, *cannot* be combusted, without auxiliary-fuel, but can be considered for composting. Besides, the-unpleasant-odors and liquids, associated with 'garbage' are due-to the-putrescible-organic-components of food and plant-wastes in the-'wet' stream. These-materials are less-than 40% of the-total MSW at the-campus; yet they contaminate and complicate the-transport and processing of the-rest of the-MSW. Therefore, it-is generally preferable to-separate the 'wet' and 'dry' components, at the-source. This is already being done at-some forward-looking-communities in-Canada, Europe, and Australia (Guvenc, 2016).

The-next-section provide some-details on conventional-composting, as-well-as vermicomposting.

4.3. Composting and vermicomposting.

Composting is increasingly-used-method to-treat any-type of organic-waste (REA, 2011; IEA, 2003). Forexample, Chandak (2010) described a-successful-community-based-model of composting across several-cities and towns in-Bangladesh. The-project reduced the-land-filling-budget of the-city; Valuable- resource was recovered from organic-waste, in the-form of compost, and the-project also created assured- revenue for 10 years, through sale of compost. 800 jobs were also-created for poor-urban-residents, and 50,000 metric tons of compost is produced every-year, for more-sustainable-farming. The-project avoids greenhouse-gas-emissions in the-amount of 89,000 tons of CO₂-equivalent, per-year. The-project has also-resulted in-behavioral-changes, inurban-communities, which were-actively-involved in-the-project, as they became convinced-about the-resourcevalue of waste. The-main-challenges to the-project were the-lack of a-policy-mechanism, to-create-opportunities for developing public-private-partnerships, and absence of the-practice of source-separation of waste, at thehousehold-level.

In-addition, numerous-studies (see REA, 2011; IEA, 2003) have recommended that composting, or even vermicomposting, can play a-vital-role in organic-waste-management, and in-turn improve agricultural-soil-fertility. According to Starovoytova (2012), the-climate of Kenya is, in some-ways, ideal for aerobic-degradation of wastes. According to Peasey (2000), year-round temperatures, above 20°C, ensure, that the-waste-material will-be-exposed to-conditions, that promote evaporation of moisture, from the-wastes, and conditions, which are favorable, for pathogen-destruction.

The-term *vermicomposting* means the-use of earthworms, for-example, epigeic-compost-worms, such-as *Eisenia foetida*, *Lumbricus rubellus* and *Eudrilus eugeniae*, for composting organic-residues. Earthworms can consume practically-all-kinds of organic-matter and they can-eat their-own-body-weight, per-day, e.g., 1 kg of worms can-consume 1 kg of residues, every-day (Aalok *et al.*, 2008). The-excreta (castings) of the-worms are rich in-nitrate. Vermicomposting, can be further-enhanced with cow-urine; undiluted-urine can-be-used for moistening organic-wastes, during the-preliminary-composting-period (before the-addition of worms.). After the-initiation of worm-activity, urine can-be-diluted-with an-equal-quantity of water, yielding vermicompost with a-higher N-content, in much-shorted-period, in-comparison-with traditional-composting (Munroe, 2004).

On-the-other-hand, traditional-thermophilic-composting characterized by long-duration of the-process, frequent-turning of the-material, loss of nutrients, during the-prolonged-process, and the-heterogeneous resultant-product. However, the-main-advantage of traditional-composting is that the-temperatures, reached during the-process, are-high-enough (over 70 °C), for an-adequate-pathogen-kill.

In-vermicomposting, the-earthworms take over the-roles of turning and maintaining the-material in anaerobic-condition, thereby reducing the-need for mechanical-operations. In-addition, the-product (vermicompost) is homogenous. However, the-major-drawback of the-vermicomposting-process is that the-temperature (less than 35 °C) is *not* high-enough, for an-acceptable-pathogen-kill. A-study by Ndegwa & Thompson (2001), has examined the-possibility of integrating traditional-thermophilic-composting and vermicomposting, with promising-results.

This-study also revealed, that 41% of the-total-waste is combustible; and 87.8% of the-solid-waste has thecapability of being-converted to heat-energy. The-(WtE)-technologies for such-waste are elaborated on in thenext-section.

4.4. WtE- technologies.

4.4.1. Classification.

Energy-conversion from-waste (waste-to-energy (WtE)) can be-obtained by utilizing different-technologies. Each-one of these WtE-solutions has specific-characteristics, and can-be more or less feasible, depending on many-parameters, including: the-type and composition of waste, its-energy-content, the-desired final-energy form, the-thermodynamic and chemical-conditions, in-which a-WtE-plant can operate, and the-overall energy-efficiency. **Figure 4** shows the-operational-principle and output(s) of the-three-main WtE technologies (thermo-chemical, bio-chemical, and chemical) with their-sub-technologies, and it gives an-overall-picture of the-available-options on the-market. There are also new-developments and research projects, aimed at promoting *alternatives* to-the-most-mature and established-technologies.

The-following-sections provide more-information on the-three-main WtE-technologies.

4.4.2. Thermo-chemical-Conversion.

Thermo-chemical-conversion-technologies are used to-recover-energy, from MSW, by-using, or involving, high-temperatures. The-dry-matter, from MSW, is most-suitable-feedstock for thermo-chemical-conversion technologies.

According-to Ellyin (2012), there are three-*principal*-ways to-recover the-energy-content of MSW, by treating it thermally; *via* pyrolysis, gasification, and combustion/incineration. These-processes are differentiated by the-ratio of oxygen, supplied to the-thermal-process, divided by oxygen, required for complete-combustion. This-ratio is defined as the 'lambda' ratio (λ), and in-the-case of pyrolysis, it-is equal to zero. Gasification is conducted at sub-stoichiometric-conditions and full-combustion is carried-out, using a-lambda greater than one. Simply put: Pyrolysis $\lambda = 0$, *no* air, all-external-heat; Gasification $\lambda = 0.5$, partial-use of external-heat; and Combustion $\lambda = 1.5 +$, *no* external-heat. Where λ represents: oxygen input/ oxygen, required stoichio-metrically, for complete-oxidation, of all-organic-compounds in-MSW.

Figure 4: WtE technologies (World-Energy-Council, 2016).

4.4.2.1. Incineration.

Combustion/incineration of MSW is the-complete-oxidation of the-combustible-materials, contained in thesolid-waste-fuel; the-process is highly-exothermic (Consonni & Viganò, 2012). MSW-incineration is the-burning of waste, in a-controlled-process, within a-specific-facility, that has-been-built for this-purpose. The-primarygoal of waste-incineration is to-reduce MSW-volume and mass, and also make it chemically- inert, in acombustion-process, without the-need of additional-fuel (autothermic-combustion). It also enables recovery of energy, minerals, and metals, from the-waste-stream (EU, 2006). Untreated-MSW is simply incinerated in massburn-systems. The-heat, given-off, is converted-into-steam, which can then be passed through a-turbine, togenerate-electricity (co-generation, or combined-heat, and power-plants), or to-produce both; electricity and lowtemperature-heat, suitable for space-heating (Kumar, 2000).

The combustible-materials, in-waste burn, when they reach the-necessary ignition-temperature and come into-contact-with oxygen, undergoing an-oxidation-reaction. The-reaction-temperature is between 850 and 1450°C, and the-combustion-process takes-place in the-gas and solid-phase, simultaneously, releasing heatenergy. After the-waste incineration-process, superheated-steam is produced, and then it-is used within acogeneration-system, to-produce energy and heat (Tan *et al.*, 2013). The electric-energy is produced by a-turbine, connected-to a-generator, and the-heat, by a-district-heating-system. The highest-environmental impact of MSW incineration is the-production of greenhouse-gas-emissions (GHG-E), causing public-health-concerns (Ashworth *et al.*, 2014). Besides, there are always about 25% residues, from incineration, in the-form of slag (bottom-ash) and fly-ash. Bottom-ash is made-up of fine- particulates, that fall-to the-bottom of the-incinerator, duringcombustion, whilst fly-ash refers to fine- particulates, in-exhaust-gases, which must-be-removed, in flue-gastreatment. These-residues need further- attention and, in the-case of the-hazardous-fly-ash, a-secure-place for final-disposal. Depending on the- bottom-ash treatment-options, ferrous and non-ferrous-metals can also be recovered, and the-remaining-ash can be further-enhanced to-be-used for road-construction and buildings (Grosso *et al.*, 2011).

In-order-to-implement incineration-system, the-lower-calorific-value of MSW must be at-least 7 MJ/kg, and must never fall below 6 MJ/kg in any-season, and stable-combustible-waste-supply (i.e., at-least 50,000 metric-tons/year) should-be-maintained (Dolgen *et al.*, 2005). At-the-university context, these mandatory-criteria *cannot* be fulfilled, and hence, the-incineration-plant should *not* be implemented. Moreover, in-addition-to high-capital and opeation-costs, of inceneration-facilities, they do emit hamful-substances to-both; the-environment and human-health, such-as: acidic-gases (hydrochloric-acid (HCl), hydrofluoric-acid (HF), sulphuric-acid (H₂SO₄)); particulates; oxides of nitrogen (NO_x); organic-compounds (dioxins and furans); and carbon-dioxide. Also, the-ash contains toxic-elements such-as: arsenic, cadmium, lead, and mercury, and treating the-ash, for the-pollutants beyond-limit is another-costly- affair (Kuras, 2009). Moreover, technology-wise, critics argue that incinerators destroy valuable-resources and they may also reduce incentives for recycling (Zhang *et al.*, 2012; and Klein, 2002).

4.4.2. 2. Gasification.

Solid-waste-gasification is the-partial-oxidation of waste-fuel, in the-presence of an-oxidant, of lower-amount, than that required for the-stoichio-metric-combustion (Thakare& Nandi, 2016; Eremed et al., 2015; Higman & Burgt, 2011), within high-range of working-temperatures (700-900°C) (Arena & Di Gregorio, 2013). Thegasification process breaks-down the-solid-waste, or any-carbon-based waste- feedstock, into-useful-by-products, that contain a-significant-amount of partially-oxidized-compounds, primarily a-mixture of carbon-monoxide, hydrogen, and carbon-dioxide. Furthermore, the-heat, required for the-gasification-process, is provided either by; partial-combustion, to-gasify the-rest, or heat-energy is provided, by using an-external-heat-supply (Higman & Burgt, 2011). The-produced-gas, which is called *syngas*, can be used for various-applications, after syngascleaning-process, which is the-greatest-challenge to-commercialize this-plant in-large-scale (Arena, 2012). Once the-syngas is cleaned, it can be used to-generate high-quality-fuels, chemicals, or synthetic-natural-gas (SNG); it can be used in a-more-efficient gas-turbines and/or internal-combustion-engines, or it can be burned, in aconventional-burner, which is connected to a-boiler and steam-turbine (Albrecht, 2015). It-is-important to-note, that the-heterogeneous nature of the-solid-waste-fuel, mechanical-treatment, ahead of gasification, sensitivity to feedstock properties, low-heating-value of waste-fuel, costly-flue-gas clean-up-systems, difficulty of syngas clean-up, and poor-performance at small-scale, have been a-great-challenge, during-gasification of MSW (Consonni, & Viganò, 2012; Oliveiraa & Rosa, 2003).

4.4.2. 3. Pyrolysis.

Pyrolysis of solid-waste is defined as a-thermo-chemical-decomposition of waste-fuel at-elevated temperatures, approximately between 300°C and 800°C, in the-absence of air, and it converts MSW into gas (syngas), liquid (tar) and solid-products (char). In-this-technology, waste requires the-mechanical- separation of glass, metals, and other-inert-materials. Syngas, gas produced during-pyrolysis-process, is mainly composed of methane, hydrogen, carbon monoxide, and carbon-dioxide. The net-calorific-value of syngas is normally between 15 and 20 MJ/Nm³ (Zafar, 2014). In-addition, a-recent-study found that after distillation of liquid-hydrocarbons (from the-pyrolysis of plastic-waste), the-resulting-synthetic-product has the-same-properties as the-petro-diesel-fuel (Agarwal *et al.*, 2013). The-amount of useful-products from pyrolysis-process (CO, H₂, CH₄, and other-hydrocarbons) and their-proportion depend entirely on the-pyrolysis-temperature and the-rate of heating (D'Alessandro *et al.*, 2013; Higman & Burgt, 2011).

4.4.3. Biochemical-Conversion.

Biological-conversion-technologies utilize microbial-processes to-transform-waste, and are restricted to biodegradable-waste, such-as, food and yard-waste. Accordingly, the-wet-matter from the-MSW (the biogenic-fraction) and agricultural-waste are the-most-suitable feed-stocks for biochemical-conversion- technologies. 4.4.3.1. Fermentation.

Fermentation is a-process, by which organic-waste is converted-into an-acid or alcohol (e.g., bio-ethanol, lacticacid, hydrogen) in the-absence of oxygen, leaving a-nutrient-rich-residue. The by-product of ethanolfermentation is residual-silage, after distillation, and is usually-used for animal-feeding, with recent-focus on finding-ways to-recover the-energy, contained in-it. Practical bio-ethanol-fermentation-plants are large, and anoptimal-sized-plant produces about 200,000-300,000 tons of ethanol, per-year (Braun *et al.*, 2010). By-usingyeast, the-biomass-fraction of MSW, can be fermented, to-generate ethanol, which can be used to-run internalcombustion-engines (Viitez *et al.*, 2000).

4.4.3.2. Anaerobic Digestion (AD).

AD is *only* suitable for processing organic-matter, i.e. biomass. AD is a-process, by-which organic-material is broken-down, by micro-organisms, in the-absence of oxygen, producing biogas, a-methane-rich-gas used as a-fuel, a-digestate, a-source of nutrients, used as fertilizer, and decontaminated-water (Di Maria *et al.*, 2017). AD utilizes the-biological-processes of many-classes of bacteria, and generally consists of four-steps: hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Xu *et al.*, 2002). For that-purpose a-gas-tight-reactor, a so-called anaerobic-digester, is used, to-provide favorable-conditions for microorganisms, to-turn organic-matter, the-input-feedstock, into-biogas and a- solid-liquid-residue called digestate. Biogas is a-mixture of different-gases, which can-be-converted-into thermal and/or electrical energy. The-flammable-gas methane (CH₄) is themain-energy-carrier in-biogas, and its-content ranges between 50 – 75%, depending on feedstock and operational-conditions (Wellinger *et al.*, 2013). Due-to its-lower-methane-content, the-heating-value of biogas, is about two-thirds that of natural-gas (5.5 to 7.5 kWh/m³). Another-option is to-upgrade biogas to bio-methane, with approximately- 98% methane-content, which can be used as a-substitute for natural-gas (Wellinger *et al.*, 2013).

The-time of operation, per-cycle, meaning how-long it takes for the-organic-waste to-be-processed by an-AD-plant, is usually 15 to 30 days (Bayard *et al.*, 2010). The-biogas, naturally-created, in sealed tanks, is utilized, to-generate renewable-energy, in the-form of electricity, or heat, with a-combined- heat, and power-unit (CHP). The-bio-fertilizer is pasteurized, to-make-it pathogen-free, and can-be-applied twice-a-year on-farmland, successfully-replacing the-fertilizers, derived from fossil-fuels. The-technology is widely-used to-treatwastewater, and can-also-be effectively-employed to-treat organic-wastes, from domestic and commercial-food-waste (<u>http://www.biogas-info.co.uk/about/</u>).

A-large-number of different anaerobic-digester-designs, does exist-worldwide, with varying-levels of complexity. According to Vögeli *et al.* (2014) and Wellinger *et al.*, (2013), AD can be classified by: (i) *Mode of feeding:* Batch or continuous-feeding; (ii) *Temperature range:* Psychrophilic ($< 25^{\circ}$ C), mesophilic ($35-48^{\circ}$ C) and thermophilic ($> 50^{\circ}$ C) conditions, where only the-latter-two are considered economically- viable. Thermophilic-conditions are recommended, when risk of pathogens is prevalent. Alternatively a- pasteurization at 70°C for 1 hour, or a-thermophilic-composting can-be-used, to-inactivate-pathogens for mesophilic-systems; (iii) *Reactor type:* Continuously-stirred-tank-reactors are common, for liquid feedstock, such-as catering-waste, or wastewater, or industrial-sludge, from food-processing, while plug-flow and batch-digesters, are used for solid-feedstock. Solid-feedstock can-be-dewatered, to-be-used in continuously stirred-tank-reactors; and (iv) *Number of stages:* One to multi-stage-digestion is possible.

Besides, according to Andriamanohiarisoamanana *et al.*, (2010), AD can be *Wet or Dry*: this refers to the-AD-feedstock, but the-difference, between the-two, is *not* significant. Wet-AD is 5-15% dry-matter, and can be pumped and stirred; while dry-AD is over 15% dry-matter and can-be-stacked. Dry-AD tends to be-cheaper, to-operate, as there-is less-water, to-heat, and there is more-gas-production, per-unit of feedstock. In-contrast, wet-systems require lower-capital-costs, for installation, but dry-systems tend to be favored for MSW-treatment, as 'dry' anaerobic-digestion-technologies operate with higher-solid-content and produce greater-heat. Moreover, there can be Vertical-Tank or Horizontal-Plug-Flow of a-bio-digester: Vertical-tanks take feedstock in a-pipe, on one-side, and digestate overflows, through a-pipe on the-other. Horizontal-plug-flow is chosen, when there is more-solid-feedstock. The-former is cheaper and simple to- operate, but presents the-risk of having the-feedstock, for inappropriate-periods of time, resulting in- possible-economic-losses. The-latter is expensive, to-build and operate, but the-rate of feedstock-flow in the-digester can be highly-controlled (<u>http://www.biogas-info.co.uk/about/ad/</u>).

The-choice of AD-technology will-depend on many-factors, such-as: type of feedstock, co/single digestion, space (e.g., plants will have to-have a-small-footprint in-urban-areas), desired-output (e.g., more- biogas for energy-production, waste-mitigation, bedding, digestate), infrastructure, and available- grants/financing. It-is very-flexible, as it can be designed, in-multiple-ways, according to the-context in which is intended to-operate.

The-feedstock usually requires pre-treatment, depending on the-kind available. For-instance, waste- food, from supermarket will-require removal of all-packaging, and screening for contaminants, such-as plastics and grit; while others, such-as manure or waste-crops, will need to-be-homogenized, to reach the-consistency, desired for optimum-fuel-output (Wilson *et al.*, 2013).

AD is a-promising-technology, with multiple-benefits, for a-wide-range of stakeholders, ranging from thelocal-community, farmers, to government. It-is considered to-be the-optimum-method for handling-food-waste, in an-environmentally-safe-way. While it-is *not* a-new-technology, since it dates from as-back-as 1800s, and experienced continuous-growth, and technical-development, throughout the-recent- years, the-market is rathersmall, with huge-room for expansion. The-organic-waste-fraction of MSW in developing-countries is usuallymuch-higher than in industrialized-countries, and agricultural-waste is also often-available for use as a-cosubstrate. Furthermore, many-developing-countries are located in-warm- climates. These conditions make AD particularly-interesting, in our-case.

4.4.3.3. Landfill gas utilization.

Gas-emissions, from landfills and waste-dumpsites, around the-world, are causing global-environmental impacts. Methane, one of the-gasses, emitted, is a-potent-greenhouse-gas, with a-global-warming potential that is 25 times greater-than CO_2 . A-study by Themelis & Ulloa (2007) showed, that worldwide, landfills produce about 75 billion Nm³ of landfill-gasses, and less than 3% of this-potential is used, to-produce energy or heat. Capturing methane-emissions from landfills is *not* only beneficial, for the- environment, as it helps mitigate climate-change, but also for the-energy-sector and the-community.

The-process, of capturing the-gasses, involves partially-covering the-landfill and inserting collectionsystems, with either vertical or horizontal-trenches. As-gas-travels, through the-collection-system, thecondensate (water) formed, needs-to-be-accumulated and treated. The-gas will be-pulled from the-collectionwells into the-collection-header, and sent to-downstream-treatment, with the-aid of a-blower. The-excess-gas will be-flared in-open, or enclosed-conditions, to-control emissions, during start-up, or downtime, of the-energyrecovery-system, or to-control the-excess-gas, when the-capacity for energy- conversion is surpassed. Applications for LFG include direct use in boilers, thermal uses in kilns (cement, pottery, bricks), sludge-dryers, infrared-heaters, blacksmithing-forges, leachate-evaporation, and electricity- generation, to-name a-few. LFG is increasingly-being-used for heating of processes, that create fuels, such- as biodiesel or ethanol, or directlyapplied, as feedstock for alternative-fuels, such-as compressed-natural- gas, liquefied-natural-gas, or methanol. The-projects, that use cogeneration (CHP), to-generate electricity and capture the-thermal-energy are moreefficient and more-attractive in this-sense (Mostbauer *et al.*, 2014).

4.4.3.4. Microbial Fuel Cells (MFCs).

MFCs are biochemical-catalyzed-systems, in which electricity is produced, by oxidizing biodegradable organicmatters, in the-presence of either; bacteria or enzyme (Rahimnejad *et al.*, 2015). Bacteria are more-likely to-beused in-MFCs, for electricity-production, which also-accomplish the-biodegradation of organic-matters and wastes. Good-sources of microorganisms include: marine-sediment, soil, wastewater, fresh-water-sediment and activated-sludge. MFCs consist of anodic and cathode-chambers, separated-by a-proton-exchange-membrane. The-anodic-part is usually maintained, in the-absence of oxygen, while the-cathodic can-be-exposed to-air, or submerged in aerobic-solutions. Electrons-flow, from the-anode to-the cathode, through an-external-circuit, that usually contains a-resistor, a-battery, to-be-charged, or some-other-electrical-device. More-information on practical-use of MFCs can be-obtained *via* Starovoytova *et al.* (2014). MFCs are affordable and usually-used insmall and medium-size-facilities, and hence, the- technology is potentially-appropriate in the-university, subject to further-independent-assessment.

4.5. Chemical Conversion.

Under Chemical-Conversion, the-esterification-process involves the-reaction of a-triglyceride (fat/oil) with alcohol, in-the-presence of an-alkaline-catalyst, such-as sodium-hydroxide. A-triglyceride has a-glycerine-molecule, as its-base, with three-long-fatty-acids, attached. The-alcohol reacts with the-fatty-acids, to-form a-mono-alkyl-ester, or biodiesel, and crude-glycerol, used in-the-cosmetic, pharmaceutical, food, and painting-industries. The-alcohol used is usually either; methanol, which produces methyl-esters, or ethanol, with ethyl-esters. The-base, applied for methyl-ester, is potassium or sodium-hydroxide, but for ethyl-ester the-former-base is more-suitable. The-esterification-reaction is affected by the-chemical-structure of the-alcohol, the-acid, and the-acid-catalyst. Biodiesel is used in the-transportation-sector, and can be produced from oils and fats, through three-methods: (i) base-catalyzed trans-esterification of oil; (ii) direct acid catalyzed trans-esterification of oil; and (iii) conversion of the-oil to its-fatty acids, and then to biodiesel. Base-catalyzed trans-esterification is the-most-economical-process http://www.see.murdoch.edu.au/info).

Moreover, so-called *Emerging-technologies*, include: Hydrothermal-Carbonization (HTC); Palletization; Wet-oxidation; freezing (of sludge) (Buekens, 2005); and Dendro-Liquid-Energy (DLE).

From the-above-information, and considering relatively-small-waste-generation-rates, and limited-finances, available, at the-university, a combination of composting, vermin-composting, and bio-methanation plant, incorporating Microbial-Fuel-Cells (MFCs), would help in achieving a better SWM-system. These-technologies were-chosen, for further-examination, on the-basis of lower-capital-cost (ton/year), net-operational-cost, per-ton, complexity of technology, and higher-efficiency, as-compared to-plasma-arc gasification and pyrolysis (Ouda *et al.*, 2015; Sorenson, 2010; Clark & Rogoff, 2010; Greater London Authority, 2008).

More-details, for each of the-listed-technologies, including: Diagram, suitable-waste, operational, legal, economic, and environmental-aspects, can be accessed *via* Mutz *et al.*, (2017); and World-Energy- Council (2016). In-addition, any-WtE-project is a-complex-undertaking and should-be-accompanied by a-professional and thorough feasibility-assessment. The-decision-matrix (with 12 parameters) presented in Mutz *et al.* (2017), can assist in-the-examination, of the-suitability of potential-technologies, for specific- contexts. The-study, hence, recommends to-conduct a-feasibility-assessment of WtE-technologies, at the-university, *via* the-decision-matrix.

4.6. Concluding remarks on WtE.

Waste-to-energy technologies (WtE) are promising technologies, especially for developing-countries, to- turn waste into a-useable-form of energy (El-Fadel *et al.*, 2002). Harnessing-energy, from waste, has many-benefits, such-as (Kothari *et al.*, 2010; Greenwood, 2009; Wang, 2009; Kathiravale, 2003; and Voelker, 1997): (i) It helps to-reduce dependency on-energy-imports; (ii) It contributes towards reducing carbon-emissions and meeting-renewable-energy-targets. In-fact, by the-world economic-forum report "Green Investing: Towards a Clean Energy Infrastructure" published in-2009, WtE is identified as one of the-eight-technologies, having significant-potential to-contribute to-future low-carbon-energy- system; (iii) When used for electricity-generation, these-technologies have a-steady and controllable-output, sometimes referred-to-as providing 'base-load' power; (iv) It has very-good-sustainability and greenhouse-gas saving-characteristics, as it makes further use of materials, that have-already-been-discarded; (v) reduces the-land-pressure-problem; (vi) create green-jobs; (vii) reduces the-cost of waste-transportation; and (ix) reduces use of precarious-energy-resources by the- society.

On-the-other-hand, it-is paramount, that recyclable-material is removed first, and that energy is recovered *only* from what remains, i.e. from the-residual-waste. In-addition, WtE can never solve the- problem alone, but rather needs-to-be-embedded in an-integrated SWM-system, that is tailored to the specific-local-conditions, with regards-to waste-composition, collection and recycling, informal-sector participation, environmental-challenges, financing, resource-prices, and other-aspects.

It-is-also-important to-be-aware of several-common-myths, which persist around WtE, such-as:

Myth 1: "WtE is an easy going solution to get rid of all the waste problems in a city"

The-situation is much-more-complex, and WtE needs professional-planning, construction, and operation. Unfortunately, there are several-companies, on the-market, which are inexperienced with the-conditions indeveloping and emerging-countries. Decision-makers need-to-be-aware that their-objective is first and foremost to 'sell' their-product, and *not* to-solve the-local-problem of SWM.

Myth 2: "A WtE plant can finance its costs exclusively through the sale of recovered energy"

In-Europe, where calorific-values of waste, and energy-prices, are higher, the-revenue, from non-subsidized sale of energy (in-form of heat and power) might cover operating-costs, but never the-entire-investment and capital-costs.

Myth 3: "With a WtE plant in operation, a big fraction of the energy demand of a city can be covered"

In-reality, energy from household-waste will *only* be able to-contribute a-small-fraction, to-the-overall electricity-demand of a city (\sim 5%). Utilization of heat is the-most-efficient-application in-Europe, but hardly-used in-developing-countries.

Myth 4: "You can make gold from garbage; even unsorted waste can be sold with profit to be used for further energy and material recovery"

In-reality, WtE is *not* a-business-model, which generates cost-covering-incomes. Revenues, from energysales help-to-cover part of the-overall-costs, of thermal-treatment, *but* additional-gate-fees, or other forms of revenues, are required, to-cover full-costs. In all-countries, waste-management as a-whole, has costs and *cannot* be considered, as a-profitable-business that could depend, exclusively, on the-sale of energy, Refuse Derived Fuel (RDF), and recycling-materials, at current-prices, for these-products.

Myth 5: "Qualified and experienced international companies are queuing up to invest and operate large WtE plants in developing and emerging countries at their own risk"

This is only partly-correct, as experienced-international-companies are presently-reluctant to-invest in-WtE, in developing and emerging-countries. The-legal, financial, and reputational-risks, are high, and any-project of the-private-sector has to-be-bankable.

These-myths are often-kept-alive, and can-obstruct informed-discussions. Besides, WtE-projects are expensive, and constitute a-substantial-financial-risk, for the-university. An-independent-assessment of costs and a-profound-understanding on financial-implications are, therefore, crucial for informed-decision making.

Future-oriented WM-concepts should fulfill economic and ecological-needs. Within this-context, pyrolysis or gasification of high-calorific-waste-fractions (sometimes referred-to-as ATTs (Advanced Thermal Treatments), can offer, in-combination-with power-plants and industrial-furnaces, an-alternative technical-solution, provided that it-is mainly used for selected-high-calorific waste. The-technical-approach represents a-possible-choice, within an-already fully-organized WM-system. However, according-to the-United-Nation Framework-Convention on Climate-Change (UNFCCC): "… in most if not all developing countries the conditions do not exist in a municipal set-up which justifies the application of pyrolysis or gasification. In addition the relatively high operation and investment costs do not justify experimenting with a niche technology for very selective fractions which are seldom found in municipal waste". For-example, on-average, the-capital-investment of WtE plants is approximately three times higher than the present coal-fired power plants (Themelis & Reshadi, 2009). In-this-regard, reduction of waste; separation of waste, at the-source; recovery of materials; recovery of energy; and bioconversion, should be-considered, at the-university, first.

5. Conclusion and Recommendations.

The-study established that, for the-subject-waste: (a) MC ranges from 10.76 to 57.66 %, with an-average of 36.84%.; (b) Ash-content ranges from 14.1 to 42.79%, averaging 23.11%; (c) Volatile-matter ranges from 21.78 to 51.34%, with an-average of 38.03%; (d) From the-graphical-assessment of the-Tanner triangle, it was projected that: (i) 37% by weight, of the-total-waste, is high in-moisture-content (57. 66%), and according to the-Tanner-combustibility-requirements *cannot* be combusted, without auxiliary- fuel (e.g., autothermic-combustion); and (ii) 41% of the-total-waste is combustible; and (e) 87.8% of the-solid-waste has the-capability of being-converted to heat-energy.

Potential of WtE-technologies, for the-campus-waste, were also-examined; it-is-important to-emphasize, however, that WtE-projects should *not* compete with waste-reduction and cost-efficient-reuse and material-recycling-measures. WtE is largely a-complementary-technology, for the-treatment of remaining/residual non-recyclable MSW-fractions.

Recommendations:

- (a) Food-waste should-be-composted, or vermicomposted, or anaerobically-digested, to-generate biogas, and produce a-stabilized-organic-humus, or Microbial-Fuel-Cells (MFCs) can-be-used for electricity-production.
- (b) 'Wet' and 'dry' waste-fractions should be separated, at source.

Besides, the-current-study is largely-preliminary, therefore, further-studies, are recommended, such-as:

- (i) Proximate and Ultimate-Analysis of solid-waste, generated by the-university.
- A-feasibility-assessment of WtE-technologies, at the-university, *via* decision-matrix. Besides, WtE-projects are expensive and constitute a-substantial-financial-risk for the-university. Anindependent-assessment of costs and a-profound-understanding on financial-implications are, therefore, crucial for informed-decision-making.

The-findings of this-research provide a-necessary-baseline-data, for the-four-subsequent-studies, in-the-series, and also, hopefully, add to-the-body of knowledge, on the-subject-matter.

6. Acknowledgment.

The-author wishes to-thank Research-Assistants, MIT, SOE, MU, Oyuga Victor Otieno and Ogelo Jared Ong'idi, for their-help in-sample-collection and testing.

References.

- Aalok, A; Tripathi, A.K; Soni, P. (2008). Vermicomposting: a better option for organic solid waste management. [Online] Available: http://www.krepublishers.com/02-Journals/JHE/JHE-24-0-000-000-2008-Web/JHE-24-1-000-000-2008-Abst-PDF/JHE-24-1-059-08-1636-%20Aalok-A/JHE-24-059-08-1636-%20Aalok-A-Tt.pdf (July 8, 2018).
- Agarwal, M.; Tardio, J. and Mohan, V. (2013). "Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective", *Bioresource Technology*, vol. 147.
- Albrecht, H. (2015). *Management of Municipal Solid Waste and Industrial Materials*. Report of the Standing Committee on Environment and Sustainable Development. [Online] Available: http://publications.gc.ca/collections/collection 2015/parl/xc50-1/XC50-1-1-412-8-eng.pdf (July 5, 2018).
- Alhassan, H. and Tanko, A. (2012). "Characterization of solid waste Incinerator bottom ash and the potential for its use", *International Journal of Engineering Research and Applications (IJERA)*, vol. 2, (4).
- Alpaslan, N.; Dolgen, D. and Boyacioglu, H. (2001). "Synergy between energy and environment: Biogas example", *Proceedings of the National Symposium on Renewable Energy Sources*, 39–44, ISBN 975-395-413-1.
- Al-Waked, R.; Ouda, O. and Raza, S. (2014). Potential value of waste-to-energy facility in Riyadh city-Saudi Arabia. JIMEC.
- Amber, I.; Kulla, D. and Gukop, N. (2012). "Generation, characteristics and energy potential of solid municipal waste in Nigeria", *Journal of Energy in Southern Africa*, Vol. 23(3).
- Andriamanohiarisoamanana, F.; Matsunami, N. et al. (2017). "High-solids anaerobic mono-digestion of riverbank grass under thermophilic conditions", *Journal of Environmental Sciences*, vol. 52(2).
- Arena, U.; Ardolino, F. and Di Gregorio, B. (2014). "Technological, environmental and social aspects of a recycling process of post-consumer absorbent hygiene products", *Journal of Cleaner Production*, 127.
- Arena, U. (2012). "Process and technological aspects of municipal solid waste gasification. A review", *Waste Management*, vol. 32.
- Ashworth, D.; Elliott, P. and Toledano, M. (2014). "Waste incineration and adverse birth and neonatal outcomes: a systematic review", *Environment International*, vol. 69(8).
- ASTM D1102: 2013. Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels.
- ASTM D3174 12. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal.
- Bayard, R. *et al.* (2010). "Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste", *Journal of Hazardous Materials*, vol. 175.
- Braun, R. et al (2010). Recent development in Bio-energy Recovery through fermentation, DOI 10.1007/978-3-642-04043-6 2, Springer.
- BSI (2011). Solid Recovered Fuels, Specifications and Classes. London, UK: British Standards Institution.
- Buekens, A. (2005). Pollution Control Technologies Vol. II Management of Combustible Waste, *Encyclopedia of Life Support Systems* (EOLSS).
- Burnley, S. (2007). "The use of Chemical Composition Data in Waste Management Planning A Case Study", *Waste Management*, 27.
- Chandak, S. (2010). Community-based Waste Management and Composting for Climate/Co-benefits Case of Bangladesh. Presented at the International Consultative Meeting on expanding Waste Management Services in Developing Countries, 18-19 March 2010, Tokyo, Japan. [Online] Available: http://www.un.org/esa/dsd/susdevtopics/sdt_pdfs/meetings2010/icm0310/1a_Surya_Chandak.pdf (July 23, 2018).
- Chang, N. and Davila, E. (2008). "Municipal Solid Waste Characterizations and Management Strategies for the Lower Rio Grande Valley, Texas", *Waste Management*, 28.
- Chang, C.; Wang, D.; Mui, M.; Cheng, M. and Chiang, H. (2008). "Characteristics of elements in waste ashes

from a solid waste incinerator in Taiwan", Journal of Hazardous Materials, vol. 165.

- Cheng, H.; Zhang, Y.; Meng, A. and Li, Q. (2007). "Municipal Solid Waste Fueled Power Generation in China: A Case Study of Waste-to-Energy in Changchun City", *Environ. Sci. Technol.*, 41.
- Clark, B. and Rogoff, M. (2010). Economic feasibility of a plasma arc gasification plant, city of Marion, Iowa. In: Proceedings of 18th Annual North American Waste-to-Energy Conference.
- Climatemps (2017). ClimaTemps. Retrieved from Eldoret Climate and Temperature: [Online] Available: http://www.eldoret.climatemps.com/ (July 19, 2018).
- Consonni, S. and Viganò, F. (2012). "Waste gasification vs. conventional Waste-to-Energy: a comparative evaluation of two commercial technologies", *Waste Management*, 32(4).
- D'Alessandro, B.; D'Amico, M.; Desideri, U. and F. Fantozzi, F. (2013)."The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration", *Applied Energy*, vol. 101.
- Das, S. and Bhattacharyya, B. (2013). "Municipal solid waste characteristics and management in Kolkata, India", *International Journal of Emerging Technology and Advanced Engineering*, vol. 3(2).
- Di Maria, F.; Barratta, M.; Bianconi, F.; Placidi, P. and Passeri, D. (2017). "Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds", *Waste Management*, vol. 59(1).
- Dolgen, D.; Sarptas, H.; Alpaslan, N. and Kucukgul, O. (2005). "Energy Potential of Municipal Solid Wastes", *Energy Sources*, 27. DOI: 10.1080/009083190523820.
- Ellyin, C. (2012). Small Scale Waste-To-Energy Technologies. M.S. degree in Earth Resources Engineering,

Department of Earth and Environmental Engineering, Columbia University.

- El-Fadel, M.; Bou-Zeida, E.; Chahineb, W. and Alayli, B. (2002). "Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content", *Waste Management*, 22.
- Eremed, W. (2015). Increasing energy recovery of waste-to-energy plants, PhD Thesis, Polytechnic of Milan.
- EU (2006). Integrated Pollution Prevention and Control, Reference Document on the Best Available Techniques for Waste Incineration. European Commission, Brussel.
- Ezeah, C.; Fazakerley, J.; Roberts, C.; Cigari, M. and Ahmadu, M. (2015). "Characterisation And Compositional Analyses Of Institutional Waste In The United Kingdom: A Case Study Of The University Of Wolverhampton", Journal of Multidisciplinary Engineering Science and Technology (JMEST), ISSN: 3159-0040 Vol. 2(7).
- Ferreira, A.; Vásquez, g.; Bribián, D. and Sastresa, E. (2012). "Estimation of the energy content of the residual fraction refused by MBT plants: a case study in Zaragoza's MBT plant", *Journal of Cleaner Production*, 20(1).
- Gidarakos, E.; Havas, G. and Ntzamilis, P. (2006). Municipal solid waste composition determination supporting the integrated solid waste.
- Greater London Authority (2008). Cost of Incineration and Non-Incineration Energy-from-waste-technologies. [Online] Available: http://legacy.london.gov.uk/mayor/environment/waste/docs/efwtechnologiesreport.pdf. (July 29, 2018).
- Greenwood, C. (2009). Green Investing: Towards a Clean Energy Infrastructure, Oppor. Carbon.
- Grosso, M. et al. (2011). "A quantitative estimate of potential aluminium recovery from incineration bottom ashes", *Resources, Conservation and Recycling*, 55(2).
- Guvenc, L. (2016). Characterization of the Packaging Waste and Economic Analysis in Kartal Municipality
- Borderland. Master's Thesis, Istanbul University Natural Science Institute, Istanbul, Turkey.
- Guerrero, L.; Mass, G. and Hogland, W. (2013). "Solid waste management challenges for cities in development countries", *J. Waste Manage.*, 33.
- Heshani, A.; Abeysinghe, A. and Handapangoda, H. (2017). Moisture reduction in Municipal Solid Waste (MSW) by parabolic solar dish method; Proceedings of the Third Undergraduate Research Symposium on Zoology & Environmental Management.
- Higman, C. and Burgt, M. (2011). Gasification. Gulf professional publishing.
- Hui, Y.; Li'ao, W.; Fenwei, S. and Gang, H. (2006). "Urban solid waste management in Chongqing: Challenges and Opportunities", *Waste Manag.*, 26.
- Igoni, A.; Ayotamuno, M.; Ogaji, S. and Probert, S. (2007). "Municipal Solid Waste in Port Harcourt, Nigeria", *Applied Energy*, 84.
- IEA (2003). Municipal Solid Waste and its Role in Sustainability: A position paper. *In:* Bioenergy (ed.). [Online] Available: www.ieabioenergy.com/media/40_IEAPositionPaperMSW.pdf. (July 7, 2018).
- IRENA (2010). Renewable Energy Country Profiles Policy and regulation review (REEEP), Kenya Gap Analysis (SEFA).
- Islam, N. (2016). Municipal Solid Waste to Energy Generation in Bangladesh: Possible Scenarios to Generate Renewable Electricity in Dhaka and Chittagong City. Hindawi Publishing Corporation.

ISO 562: 2010. Hard coal and coke -- Determination of volatile matter.

- Kalanatarifard, A. and Yang, G. (2012). "Identification of the Municipal Solid Waste Characteristics and Potential of Plastic Recovery at Bakri Landfill, Muar, Malaysia", *Journal of Sustainable Development*, 5.
- Kathiravale, S.; Abu., M.; Yunus, M. and Abd-Kadir, K. (2003). Predicting the Quality of the Refuse Derived Fuel from the Characteristics of the Municipal Solid Waste. *In:* 2nd Conference on Energy Technology Towards a Clean Environment, 12-14 February Phuket, Thailand.
- Kathiravale, S.; Abu., M.; Yunus, M. and Abd-Kadir, K. (2004). "Energy potential from municipal solid waste in Malaysia", *Renewable Energy*, 29.
- Katiyar, R.; Suresh, S. and Sharma, A. (2013). "Characterisation of municipal solid waste generated by the city of Bhopal, India", *International Journal of ChemTech Research*, vol.5, (2).
- Khamala, E. and Alex, A. (2013)." Municipal solid waste composition and characteristics relevant to the waste to-energy disposal method for Nairobi city", *Global Journal of Engineering, design and Technology*, vol. 2.
- Klein, A. (2002). Gasification: an alternative process for energy recovery and disposal of municipal solid wastes. Columbia University.
- Kothari, R.; Tyagi, V. and Pathak, A. (2010). "Waste-to-energy: A way from renewable energy sources to sustainable development", *Renewable and Sustainable Energy Reviews*, 14.
- Kumar, K. and Goel, S. (2009). "Characterisation of municipal solid waste (MSW) and a proposed management plan for Kharagpur, West Bengal, India", *Resources, Conservation and Recycling*, 53.
- Kumar, S. (2000). "Technology options for municipal solid waste to energy project", *Information Monitor on Environmental Science*, 5(1).
- Kuras, M. (2009). Waste Management and Technology. PPT: Thermal treatment of waste. Institute of Chemical Technology in Prague.
- Leão, A. and Tan, I. (1997). "Potential of municipal solid waste (MSW) as a source of energy in São Paulo: its impact on CO2 balance", *Biomass and Bioenergy*, 14 (1).
- Liang, C.; Das, K. and McClendon, R. (2003). "The influence of temperature and moisture contents regimes on the aerobic microbial activity of a bio solids composting blend", *Bioresource Technology*, 86(2).
- Makan, A.; Assobhei, O. and Mountadar, M. (2012). "Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco", *Iranian Journal of Environmental Health*, 10(3).
- Mbuligwe, S. (2002). "Institutional Solid Waste Management Practices in Developing Countries: a Case Study of Three Academic Institutions in Tanzania", *Resources, Conservation and Recycling*, 35.
- Medina, I.; Castillo, E. and R. Romero, R. (2013). "Physical and chemical characteristics of municipal solid waste in a rural locality", *International Journal of Business, Humanities & Technology*, vol. 3(8).
- Minghau, Z.; Xiumin, F.; Rovetta, A.; Qichang, H.; Vicentini, F.; Bingkai, L.; Giusti, A. and Yi, L. (2009). "Municipal solid waste management in Pudong New Area, China", *J. Waste Manage*. 29.
- Mostbauer, P.; Lombardi, L.; Olivieri, T. and Lenz, S. (2014). "Pilot scale evaluation of the BABIU process Upgrading of landfill gas or biogas with the use of MSWI bottom ash", *Waste Management*, vol. 34(1).
- Moya, D.; Aldás, C.; López, C. and Germánico, K. (2017). "Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies", *Energy Procedia*, 134.
- Mugo, N.; Nyaanga, D.; Owido, S.; Owino, G. and Muniu, J. (2016). "Classification and Characterization of Solid Waste – Case Study of Egerton University and its Environs, Kenya", *International Research Journal* of Engineering and Technology (IRJET), e-ISSN: 2395 -0056, Vol. 3(11).
- Munroe, G. (2004). Manual of On-Farm Vermicomposting and Vermiculture. [Online] Available: http://www.allthingsorganic.ca/pdf/Vermiculture_FarmersManual_gm.pdf (July 21, 2018).
- Mutz, D.; Hengevoss, D.; Hugi, C. and Gross, T. (2017). Waste-to-Energy Options in Municipal Solid Waste Management. A Guide for Decision Makers in Developing and Emerging Countries. Eschborn, Germany.
- Ndegwa, P. and Thompson, S. (2001). "Integrating compositing and vermicomposting in the treatment and bioconversion of biosolids", *Bioresour Technol*, 76.
- Nemerow, N., 2009. Environmental Health and Safety for Municipal Infrastructure, Land Use and Planning, and Industry, sixth ed. Wiley, Hoboken, N.J.
- Oliveiraa, L. and Rosa, L. (2003). "Brazilian waste potential: energy, environmental, social and economic benefits", *Energy policy*, vol. 31.
- Omari, A.; Baraka, M.; Kichonge, N.; et al. (2014). "Potential of Municipal Solid Waste, as Renewable Energy Source - A Case Study of Arusha, Tanzania", International Journal of Renewable Energy Technology Research, Vol. 3(6), ISSN: 2325 - 3924 (Online).
- Omari, A. (2015). "Characterization of Municipal solid waste for energy recovery. A case study of Arusha, Tanzania", *Journal of Multidisciplinary Engineering Science and Technology*, vol. 2 (1).
- Ouda, O.; Cekirge, H. and Raza, S. (2013). "An assessment of the potential contribution from waste-to-energy

facilities to electricity demand in Saudi Arabia", Energy Convers. Manage., 75.

- Ouda, O. (2013). "Assessment of the environmental values of waste-to-energy in the Gaza Strip", *Curr. World Environ.*, 8 (3).
- Ouda, O. and Cekirge, H. (2014). "Potential environmental values of waste-to-energy facilities in Saudi Arabia", *Arab. J. Sci. Eng. (AJSE)*, 39 (2).
- Ouda, O.; Raza, S.; Al-Waked, R.; Al-Asad, J. and Nizami, A. (2015). "Waste-to-energy potential in the Western Province of Saudi Arabia", *Journal of King Saud University* – Engineering Sciences.
- Ozcan, H.; Guvenc, S.; Guvenc, L. and Demir, G. (2016). "Municipal Solid Waste Characterization according to Different Income Levels: A Case Study", *Sustainability*, 8.
- Rahimnejad, M. *et al.* (2015). "Microbial fuel cell as new technology for bioelectricity generation: A review", *Alexandria Engineering Journal*, 54(3).
- Ryu, C. (2010). "Potential of Municipal Solid Waste for Renewable Energy Production and Reduction of Greenhouse Gas Emissions in South Korea", *Air & Waste Manage. Assoc.*, 60.
- REA (2011). Renewable Energy Association. Energy from Waste. A Guide for Decision-Makers.
- Salomon, K. and Lora, E. (2009). "Estimate of the electric energy generating potential for different sources of biogas in Brazil", *Biomass and Bioenergy*, 33(9).
- SDGs (2015). United-Nations Sustainable-Development-Goals. [Online] Available:
 - https://sustainabledevelopment.un.org/ (July 11, 2018).
- Scarlat, N.; Motola, V.; Dallemand, J.; Monforti-Ferrario, F. and Mofor, L. (2015). "Evaluation of energy potential of Municipal Solid Waste from African urban areas", *Renewable and Sustainable Energy Reviews*, 50.
- Silvennoinen, H. (2013). The Effect of Moisture In Certain Wastes And Their Recovery, Processing And Recycling. Bachelor's thesis Degree Program of Material Engineering.
- Sorenson, C. (2010). Comparative Financial Analysis of Fast Pyrolysis Plants in South West Oregon (Ph.D. thesis).
- Starovoytova, D. and Cherotich, S. (2016 a). "Analysis of Masculinities Across Engineering Disciplines", *Research on Humanities and Social Sciences*, Vol.6, No.18, ISSN 2224-5766(Paper).
- Starovoytova, D. and Cherotich, S. (2016 b). "Challenges Faced by Female-Students in Engineering Education", *Journal of Education and Practice (U.S.A.)*, ISSN 2222-1735 (Paper) ISSN 2222-288X (Online), Vol.7, No.25, 2016.
- Starovoytova, D. and Namango, S. (2018 a). "Solid Waste Management (SWM) at a University Campus (Part 3/10): Waste Generators, Current Practices, and Compliance with Relevant-law-provisions", *Journal of Environment and Earth Science*, ISSN (Paper) 2224-3216, ISSN (Online) 2225-0948; Vol. 8 (6).
- Starovoytova, D. and Namango, S. (2018 b). "Solid Waste Management (SWM) at a University Campus (Part 4/10): Solid Waste Management at University Campus (Part 4/10): Perceptions, Attitudes, and Practices of students and vendors", *Journal of Environment and Earth Science*, ISSN (Paper) 2224-3216, ISSN (Online) 2225-0948; Vol. 8 (7).
- Starovoytova, D. (2018 c). "Solid Waste Management (SWM) at a University Campus (Part 5/10): Solid Waste Management at University Campus (Part 5/10): Characterization and Quantification of Waste, and Relevance of the Waste Hierarchy in its Management", *Journal of Environment and Earth Science*, ISSN (Paper) 2224-3216, ISSN (Online) 2225-0948; Vol. 8 (8).
- Starovoitova, D. (2012). "Kenya"s Perspective on Ecosan", Journal of Agriculture, Pure and Applied Science and Technology (JAPAST), 13, ISSN 2073-8749.
- Starovoytova, D. (2017)."Scientific Research, Writing, and Dissemination: (Part 3/4)-Scientific Writing", *Journal of Education and Practice*, ISSN 2222-1735 (Paper), ISSN 2222-288X; Vol. 8, No.28.
- Starovoytova, D.; Tuigong, D.; Sitati, S.; Namango, S. and Ataro, E. (2015). "Potential of Theory of Innovative Problem Solution (TRIZ) in Engineering Curricula", *International Journal of Innovative Science, Engineering & Technology*, Vol. 2 Issue 5, ISSN 2348-7968.
 Starovoytova, D. (2018 a). "Solid Waste Management (SWM) at a University Campus (Part 1/10):
- Starovoytova, D. (2018 a). "Solid Waste Management (SWM) at a University Campus (Part 1/10): Comprehensive-Review on Legal Framework and Background to Waste Management, at a Global Context", *Journal of Environment and Earth Science*, ISSN (Paper) 2224-3216, ISSN (Online) 2225-0948, Vol. 8 (4).
- Starovoytova, D. (2018 b). "Solid Waste Management (SWM) at a University Campus (Part 2/10): Review on Legal Framework and Background to SWM, in-Kenya", *Journal of Environment and Earth Science*, ISSN (Paper) 2224-3216, ISSN (Online) 2225-0948, Vol. 8 (5).
- Starovoytova, D.; Namango, S.; Makokha, A. and Ataro, E. (2014)."Acceptance, Operational Challenges and Conceptual Optimization of Biodigester System in Embu Prison", *Journal of Energy Technologies and Policy*, (U.S.A.), Vol. 4, No. 12, ISSN 2225-0573.
- Shodhganga (2007)."Chapter 4: Characterization Of Municipal Solid Waste In Tricity". [Online] Available: https://shodhganga.inflibnet.ac.in/jspui/bitstream/10603/184721/7/07_chapter%204.pdf (July 12, 2018).

- Tan, S.; *et al.* (2014). "Economical and Environmental Impact of Waste-to-Energy (WTE) Alternatives for Waste Incineration, Landfill and Anaerobic Digestion", *Energy Procedia*, vol. 61.
- Tchobanoglous, G. and Kreith, F. (2002). Handbook of Solid Waste Management; second edition. McGraw-Hill Inc.
- Tchobanoglous, G.; Theisen, H. and Vigil, S. (1993). Integrated Solid Waste Management: Engineering Principles and Management Issues; McGraw Hill: New York, NY, USA.
- Thakare, S. and S. Nandi, S. (2016). "Study on Potential of Gasification Technology for Municipal Solid Waste (MSW) in Pune City", *Energy Procedia*, vol. 90.
- Themelis, N. and Reshadi, S. (2009). "Potential for Reducing the Capital Costs of WTE Facilities", *American Society of Mechanical Engineering*. doi:10.1115/NAWTEC17-2366
- Themelis, N.; Kim, Y. and Brady, M. (2002). "Energy recovery from New York City solid wastes", *ISWA journal: Waste Management and Research*, 20.

Themelis, N. and Ulloa, P. (2007). "Methane generation in landfills", Renewable Energy, vol. 32(6).

- Thitame, S.; Pondhe, G. and Meshram, D. (2010). "Characterisation and Composition of Municipal Solid Waste (MSW) Generated in Sangamner City, District Ahmednagar, Maharashtra, India", *Environmental Monitoring and Assessment*, 170.
- Tiquia, S.; Tam, N. and Hodgkiss, I. (1996). "Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents', *Bioresource Technology*, 55(3).
- Tsai, W. and Kuo, K. (2010). "An analysis of power generation from municipal solid waste (MSW) incineration plants", *Taiwan Energy*, 35.
- UNEP (2015). United Nations Environment Program Division of Technology, Industry and Economics. PPT: Mapping Solid Waste – II: Sample Collection & Analysis. By Dr. Mushtaq Ahmed Memon. [Online] Available: www.unep.or.jp (July 11, 2018).
- UNFCCC "United Nation Framework Convention on Climate Change", [Online] Available:
- https://cdm.unfccc.int/Projects/projsearch.html. (July 18, 2018).
- UN Habitat (2016). The New Urban Agenda was adopted at the United Nations Conference on Housing and Sustainable Urban Development (Habitat III), held from 17 to 20 October 2016 in-Quito, Ecuador. [Online] Available: https://habitat3.org/the-new-urban-agenda (July 7, 2018).
- Vesilind, A.; Worrel, W. and Reinhart, D. (2002). Solid waste Engineering, Thomson Brooks/Cole, Singapore.
- Viitez, E.; Mosquera, J. and S. Ghosh, S. (2000). "Kinetics of accelerated solid-state fermentation of organic-rich municipal solid waste", *Water science and Technology*, vol. 41.
- Voelker, B. (1997). Waste-to-Energy: Solutions for Solid Waste Problems for the 21st Century. [Online] Available: www.p2pays.org/ref/09/08624.pdf. (July 22, 2018).
- Vögeli, Y.; Lohri, C.; Gallardo, A.; Diener, S. and Zurbrügg, C. (2014). Anaerobic Digestion of Bio-waste in Developing Countries, EAWAG, Dübendorf.
- Wang, L.; Gang, H.; Gong, X. and Bao, L. (2009). "Emission reductions potential for energy from municipal solid waste incineration in Chongqing", *Renewable Energy*, 34.
- Wellinger, A.; Murphy, J. and Baxter, D. (2013). The Biogas Handbook. Science, Production and Applications. Cambridge: Woodhead Publishing.
- Wilson, B.; Williams, N.; Liss, B. and Wilson, B. (2013). Comparative Assessment of Commercial Technologies for Conversion of Solid Waste to Energy, EnviroPower Renewable, Inc..
- The World Bank (1999). Technical Guidance Report: Municipal Solid Waste Incineration. [Online] Available: http://www.worldbank.org/urban/solid_wm/erm/CWG%20folder/Waste%20Incineration.pdf. (July 12, 2018).
- World Energy Council (2016). World Energy Resources. Published by the-World-Energy-Council.
- Worrel, W. and Vesilind, P. (2008). Solid Waste Engineering. 2nd ed., Cengage Learning.
- Xu, H.; Wang, J.; Zhang, H. and Tay, J. (2002). "A comparative study of anaerobic digestion of food waste in a single pass, a leachate recycle and coupled solid/liquid reactors", *Water Science and Technology*, no. 46.
- Yildiz, S.; Yaman, C.; Demir, G.; Ozcan, K.; Coban, A.; Sezer, K. and Gorene, S. (2012). "Characterization of municipal solid waste in Istanbul, Turkey", *Environmental Progress & Sustainable Energy*, vol.32.
- Zafar, S. (2014). *Overview of Biomass Pyrolysis*. [Online] Available: http://www.bioenergyconsult.com/tag/biofuels/ (July 15, 2018).
- Zhang, Q.; Dor, L.; Fenigshtein, D.; Yang, W. and Blasiak, W. (2012). "Gasification of municipal solid waste in the Plasma Gasification Melting process", *Applied Energy*, vol. 90.