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Abstract 
Mining and other anthropogenic activities are increasingly destroying forest cover in tropical forest areas of 

Africa, threating to deplete the entire forest reserves. These depletions not only affect the ecosystems but also 

have dire implications on global ecological balance and climate. Using Landsat 7 ETM+ satellite images, the 

study used a combined unsupervised and supervised classification methods to determine the rate of change of the 

various land use and land cover classes in the mining district of Prestea Huni Valley. The method produced very 

high accuracies with the least overall accuracy being 95.4272% with a Kappa coefficient of 0.9339. A change 

detection analysis revealed very significant loss of forest cover as a result of direct mining activities to be 96.78 

square kilometres between 2002 and 2015. The results also suggested an overall forest cover loss rate of about 

71.63 square kilometres per annum for the periods between 2002 and 2015 which poses a threat to the 493.55 

square kilometres of forest cover left in the study area study, if proper monitoring and rehabilitation programmes 

are not put in place. 

Keywords: LULC, Degradation, Hybrid Classification, Surface Mining, Forest Cover, Environment, Landsat 

ETM+ 

 

1 Introduction 
Anthropogenic and natural activities have caused various forms of alterations to natural landscape leading to 

land use and land cover (LULC) changes. These have resulted in different forms of degradation with its resultant 

adverse effects on arable land, ecosystem, biodiversity, water bodies, greenhouse effects, forestry, ambient 

climate, and soil amongst others (Ayine 2001; Fonji & Taff 2014; Vittek et al. 2014). According to Malaviya et 

al. (2010) and Musa & Jiya (2011) the conflict between human interests and nature has been the major factor of 

LULC changes. Top amongst these conflict of interests are industrialization, urbanization, and intensification of 

agriculture.  

Surface mining, both small and large scale, is one of the most destructive industries that result in 

massive land use and severe environmental changes in the world. Mining is known to have had adverse effects 

on land, surface hydrology, groundwater, ambient air and human health (Ogola et al. 2002; Zobrist & Giger 

2013). According to Scheueler et al. (2011), the destructive effects of mining activities on the environment and 

catchment communities can outweigh the socio-economic and infrastructural benefits if strict environmental 

monitoring and rehabilitation codes are not in place. In early 2006 artisanal surface mining (galamsey) became 

so popular in the Prestea Huni Valley District (PHVD) that it became a threat to natural forest covers and farm 

lands. The activities of surface mining continue to degrade forest, farmlands and creeks within the catchment 

area until now. These activities usually destroy the land without any corrective or rehabilitation obligations. The 

destructive effects of surface mining on the natural land can span several thousands of hectares which can occur 

within relatively short time periods. Traditional environmental and land degradation monitoring approaches 

including surveying have proven to be inadequate for timely and cost effective degradation and LULC change 

monitoring. Using multispectral optical remote sensing methods, these rapid vast land deformation and changes 

can be monitored over specific periods to ascertain annual rate of degradation in order to map out effective 

reforestation, rehabilitation and land restoration strategies by the various stakeholders, regulators, and policy 

makers (Gupta 2001; Firouzabadi et al. 2008; Weih Jr & Riggan Jr 2010; Zhang & Wang 2014).  

In order to manage resource exploitation, whilst protecting the natural environment, LULC 

classification techniques have been developed to classify, map, quantify and monitor the extents of 

environmental changes (Anderson 1976; Xiubin 1996; Fonji & Taff 2014). Scholarly studies conducted on 

LULC have predominantly been based on either supervised or unsupervised classification techniques to classify 

and quantify detected land use changes. These have been identified to give fairly good accuracies, each with 

merits and demerits based on feature heterogeneity amongst other factors (Congalton 1991; Hégarat-Mascle et 

al. 1997; Giacinto et al. 2000; Bruzzone et al. 2002). Due to the relative uniformity in brightness levels across 

several spectral classes and relative difficulty in identifying very distinct land use classes, a hybrid approach was 

adopted for this study in order to utilise the merits of both approaches to enhance the overall accuracies of the 

classification. According to studies conducted by Enderle & Weih Jr (2005) and Omo-Irabor & Oduyemi (2007), 

accuracies of classification of medium resolution images like Landsat TM/ETM+ can be increased by integrating 
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both methods. Studies conducted by Kantakumar & Neelamsetti (2015) also used a hybrid method that combined 

both unsupervised and supervised classification methods by initially identifying "natural" pixel classes within the 

image without prior knowledge and then using the training data to define the identified classes.  

In this study, a hybrid approach is utilised to classify Landsat TM/ETM+ image and detect LULC changes in the 

study areas over the past two decades as result of mining and other anthropogenic activities. 

 

2 Materials and Methods Used 

2.1 Study Location 

The Prestea Huni Valley District (PHVD) is in the Western Region of Ghana, in West Africa. The Local 

Authority District (LAD) is bounded on the north and south by latitudes 5°39’N and 5°21’N respectively, and on 

the east and west by longitudes 1°53’W and 2°12’W respectively. PHVD is the third largest gold producer in 

West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes of gold during the last century). The 

district as one of the nation’s highest rainfall regions has several hectares of tropical forest cover and reserves. It 

has 2 large scale surface mining operations with over 3,000 workforces, an underground mine and several other 

small scale mining groups (predominantly artisanal mining groups). The main economic activities in PHVD is 

mining, agriculture, and trading. Figure 1 below shows a map of the study area. 

 
Figure 1: Map showing Study Location 

 

2.2 Data 

This study made use of Landsat historical imageries from the Landsat 7 Enhanced Thematic Mapper plus 

(ETM+). The data was acquired from the United States Geological Survey (USGS) Earth Resource Observation 

Data Center through the Glovis website. The choice of Landsat data source was made on the basis of extensive 

continuous imagery archives, higher spectral and spatial resolution, consistency, comparably low cost of 

acquisition, quality, and frequency of observation which makes it suitable for LULC monitoring and 

management. Based on the year of comparison identified for this study, Landsat 7 (ETM+) images covering the 

different time periods (multi-temporal) were used to derive land cover data for 2002, and 2008, and 2015. The 

image quality was limited to not more than 5% cloud cover. The characteristics considered for the choice of 

acquired satellite images depended on their technical specifications, which included temporal resolution, spatial 

resolution, spectral resolution, cloud cover, zenith/nadir angle, sun elevation, swath width, and image size 

(Lasaponara & Masini 2012; Jones 2015). Table 1 shows meta data and technical specification of images used 

for the LULC classification and change detection analysis.  
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Table 1: Meta data and Technical Specification of Image Used 

 
Source: (USGS, 2014; NASA, 2015) 

Landsat 7 ETM+ has archive data on the earth’s land over the past three to four decades, creating a 

historical archive extensive enough for global coverage, yet detailed enough to characterize human-scale 

processes on a large scale (Jones 2015). Its multispectral characteristics and medium temporal and spatial 

resolutions makes it especially suitable for LULC change detection covering larger areas. Using the standard 

‘false colour’ composite (bands 4, 3, and 2), the natural colour band combinations (bands 3, 2, and 1), and the 

‘natural-like’ rendition band combinations (bands 7, 4, and 2), a colour image RGB is created to help in the 

LULC change classification and identification of the various land use classes within the study area.  

 

Figure 2: Colour RGB band combinations - the natural colour band combinations (3, 2, 1), ‘false colour’ 

composite (4, 3, 2), and the ‘natural-like’ rendition band combinations (7, 4, 2) 

Figure 2 above shows the colour RGB band combinations used for the LULC classification analysis. 

Forty (40) ground points’ coordinates data (x,y) each of the different LULC classes within the study 

area were also surveyed using a GPS. These points were used as ground truth data for the supervised 

classification and accuracy assessment. 

 

2.3 Methods 

The methodology involved image pre-processing and image classification. The image processing stage of the 

methodology involved spatial/spectral subsetting and gapfilling. The spatial subsetting process involved 

cropping out unwanted geographical areas that do not form part of study area. Spectral subsetting on the other 

hand was used to limit the application of the classification analysis to selected bands of the image. Using the 

Localized Linear Histogram Match (LLHM) technique, gaps in Landsat 7 ETM+ images with Scan Line 

Corrector (SLC) off which results in approximately 22% data loss, were filled with data from previously 

acquired Landsat scene without data gaps (Scaramuzza et al 2004). The process is a two band linear 

transformation approach which is applied to the “filling” image to adjust it based on the standard deviation and 

mean values of each band, of each scene. A hybrid approach of both image classification techniques, 

(a) (b) 
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unsupervised and supervised, were adopted in this study. The first approach involved the use of K-means 

unsupervised classification method to identify individual pixels to be classified by searching for natural clusters 

within the dataset. These identified clusters of all pixels in the image were subsequently used as a basis to 

compare actual LULC classes that are actually present in the study area using land cover maps, and aerial photos 

to create digitised preliminary training data (Lee & Lewicki 2002). Ground truth training data and the 

preliminary training data are then used to define the training locations which are representative samples for each 

LULC class in the image (Foody & Mathur 2004). The supervised classification technique used was the 

Maximum Likelihood Classification (MLC) which was derived from the Bayes theorem (Strahler 1980; Foody et 

al 1992; Maselli et al 1994). It is based on the probability that a pixel with a particular feature vector belongs to a 

particular land cover class based on the training of a visual classifier for four different land use LULC classes 

(Asmala 2012). The process makes use of a discriminant function to allocate each pixel to the class with the 

highest likelihood. Class mean vector and covariance matrix are the important inputs to the function and are 

estimated from the training data of a particular class (Perumal 2010). The LULC classes used for the supervised 

classification included forest (woodland), light vegetation, disturbed land and settlement, and water bodies. 

Figure 3 shows the methodological process model adopted for the study. 

 
Figure 3: Methodological Model for Study 

The purpose of adopting a hybrid approach to classification was to increase the overall classification 

accuracies. Accuracy assessment simply quantifies how good a classification was done by the classifier. The 

accuracy of a classification is a validation process conducted by comparing the classification results with ground 

truth referenced data that accurately reflects the true land-cover of the study area (Brabyn et al. 2014). The 

accuracy assessment therefore was a representation of the difference between the final supervised classification 

and the reference data. As result, highly accurate reference data that are randomly distributed over the study area 

were selected for the assessment while keeping in mind the temporal significance of the reference data to the 

overall accuracy assessment. 

 

3 Results and Discussion 

3.1 LULC Classification and Change Detection 

The final LULC classification was used to prepare maps to be used to visualize LULC changes for PHVD and to 

compare various classes of land cover across the study area. Using maximum likelihood classification, four 

distinctive land cover classes were chosen for the identification and display of the spectral signatures of land 

cover/land use types – mining areas/settlement, vegetation, forest, and water bodies. The areas classified as 

vegetation were mostly either agricultural farmlands or non-agricultural vegetation. The water bodies within the 

study area were either water in tailings embankments or ponds of water in mined out pits of both large scale 

corporate mining and artisanal miners.  Figure 4 shows the LULC classification across the study area during 

2002 and 2008. 
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LULC Classification of PHVD - 2002 LULC Classification of PHVD - 2008  

Figure 4: LULC Classification Map of PHVD – 2002 and 2008 

Table 2, which is the change detection statistics for the period between 2002 and 2008 shows significant 

changes in the LULC classes in PHVD with increase in overall vegetation and water by about 786.75 and 2.12 

square kilometres respectively. This increase in vegetation cover is primarily due to the conversion of large areas 

of forest (about 732.59 square kilometres) to agricultural farmlands, clearing of forest for mining activities, and 

illegal logging of timber species without replacement. Areas of water have increased due to the expansion of 

tailings water storage facility of a corporate mining operation and also ponding of a few of their mined out pits.  

Total loss of forest cover between 2002 and 2008 amounted to about 758.63 square kilometres. This corresponds 

to forest cover loss of about 126 square kilometres per annum between 2002 and 2008. It can be seen from table 

2 that mining activities and urbanisation caused directly very significant degradation of about 101 square 

kilometres (25.42sq. km in vegetation loss and 75.54sq. km in forest cover loss), representing 16.8 square 

kilometres per annum of degraded land as a result of mining and urbanisation. However, overall mining and 

settlement areas reduced from 282.16 square kilometres in 2002 to 251.93 square kilometres in 2008. This may 

be attributed to rehabilitation of mined out areas by corporate mining organisations with vegetation and 

vegetation growth as a result of abandonment (114.32 sq. km).  

Forest area recovery (15.69 sq. km) was also as a result of planned rehabilitation with forest tree species and 

forest growth as a result of abandoned agriculture. This reduced resultant degraded land as a result of mining and 

urbanisation between 2002 and 2008.  

Table 2: Change Detection Statistics 2002 - 2008 
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Table 3: Summary Statistics of LULC Change Detection 2002 - 2008 

 
From the LULC classification map in figure 5 and the change detection statistics table 4, there was 

further reduction in forest cover in the study area and corresponding increase in vegetation, mining and 

settlement areas, and water.  

Overall vegetation/agricultural land cover in PHVD increased by 201.95 square kilometres (14.55%). 

From table 5, overall mining and settlement areas increased by 14.43 square kilometres (5.73%). Vegetative 

cover loss due to mining and settlement areas was 100.15 square kilometres and forest cover loss attributable to 

mining and settlement was 27.76 square kilometres. Total degraded land as a result of mining and settlement for 

the period between 2008 and 2015 was 127.91 square kilometres. This represented an annual degradation 

between the periods as 16.00 square kilometres. Table 5 also shows an overall change of 27.74 square kilometres 

in water and pond areas which indicates an annual increment of 3.47 square kilometres. These are attributable 

mainly to mined out pits that have been filled with rainwater and the expansion of the Bogoso surface mine 

tailings water storage facility. Total degradation liability as a result of mining and settlement for the study area 

therefore amounted to 42.17 square kilometres as of December 2015. Total forest cover continued to be depleted 

at an alarming rate of 30.52 square kilometres per annum over the 8 year period between 2008 (January) and 

2015 (December). 

LULC CLASSIFICATION OF PHVD – 2008 LULC CLASSIFICATION OF PHVD – 2015  

Figure 5: LULC Classification Map of PHVD – 2008 and 2015 

Significant areas of forest cover (306.83 sq. km) was lost to agricultural farmlands and other vegetation 

outgrowths. This accounts for about 41.60 per cent of forest cover loss between 2008 and 2015. Total effective 

forest cover loss between January 2008 and December 2015 was 244.12 square kilometres (339.97 sq. km loss 

and 95.85 sq. km gain) 
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Table 4: Change Detection Statistics 2008 - 2015 

 
Table 5: Summary Statistics of LULC Change Detection 2008 - 2015 

 
Though the change detection statistics showed a decrease in mining area/settlement by 5.04 square 

kilometres per annum between 2002 and 2008, there was however an increase in mining areas between 2008 and 

2015 by almost 5.27 square kilometres (1.80 sq. km – increment in mining area and 3.47 sq. km – increment in 

ponded mined out pits). Also in the periods between 2002 and 2008, 130.1 square kilometres (86.16%) of mining 

areas were covered with vegetation or forest cover as opposed to 99.68 square kilometres (72.17%) of vegetative 

or forest cover of mining areas for the period between 2008 and 2015. This represented an annual class change of 

mine land rate of 21.68 square kilometres between 2002 and 2008 as opposed to 12.46 square kilometres per 

annum for 2008 to 2015. The statistics suggest a reduction in rehabilitation efforts between 2008 and 2015, 

however the increase in uncontrolled artisanal mining contributes largely to the observed increase in degraded 

lands. Mining activities can be thought of having a rippling effects on all the four main LULC changes within 

the study area. Most farmers who lose their agricultural lands to mining activities (25.42 sq. km in 2002 to 2008 

and 100.15 sq. km in 2008 to 2015) encroach into forest zones to continue with their farming. This further causes 

a reduction and conversion of forest cover to agricultural farmlands. Some mining activities also take place 

within the forest zones (75.54 sq. km in 2002 to 2008 and 27.76 sq. km in 2008 to 2015) which also cause direct 

forest cover loss and degradation of land. The figure 6 below shows a graphical representation of the LULC 

changes. 
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Figure 6: LULC Changes – 2002 to 2015 

 

3.2 Accuracy Assessment 

Using the class confusion matrix, an appraisal of the performance of the classifier was done to show the number 

per class of well classified and mislabelled instances. The salient measures of accuracy were the overall accuracy 

expressed as a percentage of the total number of pixels classified correctly and the kappa coefficient which is an 

estimation of agreement in categorical data by extracting the actual percentage expected by chance from the 

correctly classified percentage (Landis & Koch, 1977). Table 6 shows the accuracy assessment of the 

classification for each of the 3 different years classified showing the overall accuracies and their corresponding 

kappa coefficients. The combined classification approach was very useful and produced very good classification 

accuracies. 

Table 6: Summary LULC Accuracy Assessment 

Year 

LULC Accuracy Assessment 

Overall Accuracy (%) Kappa Coefficient 

2002 96.0691 0.9350 

2008 95.4272 0.9339 

2015 95.8346 0.9370 

 

4 Conclusion 
The significant increase in both vegetation, and mine and settlement areas  are as result of the vast decrease in 

forest cover between 2002 and 2015. Only about 30% of the existing forest cover of 2002 exists in 2015 with 

about 62% direct loss to vegetation and farming and about 6% direct loss to mining and settlement. Whiles 

farming and other anthropogenic activities have contributed to the fast depletion of the forest cover, mining has 

also accounted for a significant amount of the depletion. Vegetation and farming areas loss to mining was about 

14% of the entire mined area and forest cover loss accounted for about 36% which is more than twice the loss of 

farmlands to mining activities. This shows the distructive effect of these artisanal mining activities on forest 

cover. The continous cycle of farmers relocating farmlands by clearing forest areas for new farms to make up for 

mining land take, affects forest areas most as seen in studies also conducted by Scheueler et al. (2011). The 

environmental and forest cover liabilities caused by mining, industrilisation and urbanisation need to be properly 

monitored and reported to create awareness on the extent of degradation and destruction within these 

communities. Most artisanal mine land takes, are aboadoned to allowed vegetation growth, but this practice does 

not assure effective land restoration and rehabilitation. The study shows an alarming continous reduction in 

forest cover which has various environmental implications on the study area including reduction in capacity to 

sequester carbon, susceptibility to soil erosion, biodiversity losses, ecological imbalance, and  climatic changes  

(Fonji & Taff, Using satellite data to monitor land-use land-cover change in North-eastern Latvia, 2014). The 

continous monitoring of reduction of forest cover is therefore important for mining regulators, environmental 

protection agency, town and country planning, various stake holders and the government to take a proactive 

approach in monitoring and enforcing mining and development laws to manage and conserve the fast depleting 

forest cover within the study area and the region at large. Concessions of mining companies are therefore needed 

to be properly demarcated and their mining areas monitored to determine the annual rates of LULC changes as a 

result of their operations and charged to effectively restore lost forest cover. Small scale artisanal mining should 
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be properly regulated and regulators should also ensure their adherance to mining and environmental 

rehabilitation laws. 
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