
Journal of Environment and Earth Science                                                                                                                                        www.iiste.org 

ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) 

Vol.6, No.11, 2016 

 

51 

Evaluation of Specific Humidity over Nigeria using Artificial 

Neural Network 
 

Adeyemi Babatunde      Ogidan Raphael 
Department of Physics, Federal University of Technology, Akure, Ondo State, Nigeria 

 

Abstract 

Weather forecasting is the application of science and technology to predict the state of the weather for a future 
time at a given location using quantitative data of past or present experiences. In this paper neural network–
based autoregressive moving average with exogenous inputs (NNARMAX) and autoregressive moving average 
with exogenous inputs (ARMAX) models were used to obtain specific humidity (q) from the meteorological 
parameters  obtained from the archives of Nigeria Meteorological Agency NIMET, Oshodi Lagos, Nigeria. The 
data which covers a ten year period (1999-2008) were the daily temperature and relative humidity data taken at 
09:00 hour and 15:00 hour over sixteen stations evenly distributed across Nigeria. The results showed that the 
two models could be applied to predict specific humidity (q) at all the selected stations. The performance 
evaluation mean square error (MSE) for training and validation error (MSTE & MSVE) that were obtained at 
most of the stations  showed that the NNARMAX model yielded better performances than the ARMAX model 
for instance, at Lagos, the mean square validation error (MVE) for training at 09:00 hour are 0.0007 and 0.2396 
for NNARMAX and ARMAX respectively. 
Keywords: Weather Forecasting, Artificial Neural Networks, ARMAX model, time series. 
 
1. INTRODUCTION 

Water vapour is the link between the surface and the atmosphere in the hydrological cycle. At current 
concentration, water vapour is the most important greenhouse gas in the atmosphere being the gas that absorbs 
most solar radiation (Adeyemi, 2009, Kiehl and Trenbert, 1997). Almost all water vapour in the atmosphere 
originated from the surface of the Earth where water evaporates from the ocean and the continents owing to the 
sun’s radiation, and is transpired by plants into the atmosphere through evapotranspiration. Once in the 
atmosphere, water vapour can be transported horizontally and vertically by the three-dimensional circulation of 
the atmosphere and may condense to form liquid water or ice crystals in clouds (Adeyemi, 2009). The cycle is 
completed when water returns to the Earth’s surface in various forms of precipitation such as rain or snow. This 
cycle is closely tied to atmospheric circulation and temperature patterns. Water vapour causes about two third of 
the natural greenhouse effect of the Earth’s atmosphere. Several climate models show that an increase in 
atmospheric humidity by 12-25% will have the same global mean radiative effect than doubling the CO2 
concentration (Harries, 1997). Specific humidity (q), which is the amount of water vapour at the surface is 
expected to increase with rising surface temperature, where the presence of liquid water is not a limiting factor 
(Held and Soden, 2000).  

Weather forecasting basically entails predicting how the present state of the atmosphere will change 
(Donald, 2012). This may be achieved with the use of state-of-the-art method in science and technology. Since 
ancient times, weather prediction has been one of the most interesting and fascinating field. Scientists have tried 
to forecast meteorological characteristics using a number of methods, some of these methods being more 
accurate than others (Elia, 2009). The chaotic nature of the atmosphere requires tools with high computational 
power to solve the equations that describe the atmospheric conditions. Artificial Neural Network (ANN) has that 
capacity to solve problems whose solutions require knowledge that is difficult to specify but for which there are 
enough data. This tool has been widely used to solve problems that are too difficult to solve by conventional 
mathematical methods. It is a computer-based problem solving tool inspired by the original biological neural 
network (the brain). This makes ANNs to be treated like the multivariate nonlinear nonparametric statistical 
methods (White, 1989; Ripley, 1993). They have been found to be useful and efficient in describing processes 
that are difficult to describe using complex physical or conceptual models (Hsu et al. 1995). ANN is a modelling 
and prediction tool widely accepted as a technique offering an alternative way to tackle complex and ill-defined 
problems (Kalogirou, 2001). Vandergrift et al. (2005), have studied Forecasting space weather with ANN and 
they found that an ANN can be trained to predict the shock arrival with better accuracy than linear techniques. 
Ozgur (2005) has selected three simple neural network (NN) architectures, i.e. ANN, Auto-Regressive Models 
and sum of square errors, for comparison of forecasting probabilities and he found that ANNs were able to 
produce better results than AR models when given the same data inputs.  Lee (2004) predicted long-term tidal 
level using back propagation neural network, he concluded that back-propagation neural network model also 
efficiently predicts the long-term tidal levels than conventional harmonic method. Artificial neural network 
(ANN) modelling technique offers a better solution for developing a more generalized model for prediction of 
solar radiation data using climatological parameters. ANN with different topologies have been developed for 
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spatial prediction of wind speed in different parts of the world and they discovered that ANN has good 
predictability than empirical approach (Fadare, 2010). In this research, we have developed Artificial Neural 
Network-based Autoregressive Moving Average with external inputs (NNARMAX) model and compared it with 
the Autoregressive Moving Average with external input (ARMAX). In most of the past studies, the results 
obtained from complex ANN models were compared with those from more standard linear techniques such as 
regression (e.g. Schoof and Pryor, 2001; Bryant and Shreeve, 2002; Alp and Cigizoglu, 2007; Zhigang et al., 
2005 Ustaoglu et al., 2008).  

The objective of this research is to evaluate specific humidity (q) over four regions of Nigeria using 
Artificial Neural Network (ANN) method and compared the Neural Network Based Autoregressive Moving 
Average with Exogenous Input (NNARMAX) model with a pure mathematical model known as Autoregressive 
Moving Average with Exogenous Input (ARMAX) model. For the purpose of comparison using the 
NNARMAX and the ARMAX models, the performance of the models have been evaluated in terms of the 
selected performance criteria: mean training error (MTE) and mean validation error (MVE). The selected 
performance criteria were chosen as the statistical criteria for measuring the developed models performance 
according to (Ljung, 1999). The purpose of the validation is to get an estimate of the accuracy (or error rate) so 
that the best model can be picked out of the two models for future study (James 2013).  
 

2 MATERIALS AND PROCEDURES 

2.1 Source of Data 
Ten years weather data (1999-2008) were collected from the archives of Nigerian Meteorological Agency 
NIMET, Oshodi Lagos, Nigeria. The data are daily values of maximum temperature and relative humidity at 
09:00 hour and 15:00 hour of the day for sixteen (16) stations evenly distributed across Nigeria (See Figure 1). 
The stations are further grouped into four climatic regions which include Sahel (Kano, Kaduna, Maiduguri and 
Sokoto), Mid-Land (Bida, Abuja, Minna and Jos), Guinea Savannah (Abeokuta, Ibadan, Oshogbo and Ilorin) and 
Coastal (Port-Harcourt, Warri, Benin and Lagos) according to (Olaniran and Summer, 2001) (See Figure 1)..  
The specific humidity (q) for morning and evening times were calculated for each station. 
 
2.2 Meteorology of the Study Area 

Nigeria lies wholly within the tropical zone, there are wide climatic variations in different areas of the country. 
Near the coast, the seasons are not sharply defined. Temperatures rarely exceed 32oC (90oF), but humidity is 
very high and nights are hot. Inland, there are two distinct season: wet season from March to October 
characterized with generally lower temperature, and a dry season from November to February with midday 
temperatures that surpasses 38 oC (100 oF) but relatively cool nights. Nigeria can be divided into four climatic 
zones namely Sahel, Midland, Guinea savannah and Coastal zones (Olaniran and Summer, 2001). 

Sahel region is a tropical hot steppe and certainly represents the best example of a semi-arid area. The 
rainy season last for only three to four months (June-September), the rest of the year is hot and dry with 
temperatures climbing as high as 40 oC (104.0oF). Mid-Land region exhibits a well-marked rainy season and dry 
season with a single peak known as the summer maximum due to its distance from the equator. Temperatures are 
above 38 oC (98.4 oF) throughout the year and an annual rainfall of about 1,500mm (59.1in) with a single rainfall 
maxima in September. Guinea Savannah region is extensive in area and covers most of Western Nigeria to 
central Nigeria beginning from the coastal region.  Coastal region covers the southern part of Nigeria. Its warmth 
and high humidity gives it a strong tendency to ascend and produce copious rainfall, which is a result of the 
condensation of water vapour in the rapid rising air. The temperature is very small compared to other regions of 
the country, it records of maximum 28 oC (82.4 oF) for its hottest month while its lowest temperature is 26 oC 
(78.8 oF) in its coldest month. (www.en.wikipedia.org/wiki/geography_og_nigeria.com; Adeyemi and Ogolo, 
2004; Ogolo and Falodun, 2007). 
 
2.3 Calculation of specific humidity (q) 

Specific humidity is the ratio of water vapour to dry air in a particular mass, and is sometimes referred to as 
humidity ratio. According to Balogun and Adedokun (1989) it can be obtained using Clausius Clapeeyron 
equation given as 

                                                                                                                             (1) 

where:   = 0.6213 = ratio of the molar masses of dry air and water vapour, ρ = atmospheric pressure (1013 hpa) 
and e = water vapour pressure. 
The water vapour pressure e, can be calculated using to (Adediji and Ajewole, 2008) 

                                                                                         (2) 
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where: e = water vapour pressure, RH = relative humidity in % and t = temperature in oC. 
 
2.4  Artificial Neural Network Technique 
From the general system mathematical models and mathematical notations, one very common method used in 
modelling the behaviour of a p-input q-output multivariable plant in the discrete time space is by the family of 
the general mathematical relationship defined by Ljung, (1999) as shown in Neural Network Structure (See 
Figure 2 & 3). The neural network structure is made up of three layer learning network of an input layer, hidden 
layer and an output layer (See Figure 4). The input quantities are fed to the input nodes which in turn pass them 
on to the hidden layer nodes after multiplying by a weight. The hidden layer node is to intervene between the 
external input and network output, add up the weighted input received from each input node, associates it with a 
bias and passes the results on to the nodes of the next hidden layer or the output. The process is through a non-
linear transfer function. This learning process works in small iterative steps, the output is compared to the 
known-good {y(k)} output, and a mean square error signal is calculated. The error value is then propagated 
backwards through the network, and small changes are made to the weights in each layer. The weight changes is 
to reduce the error signal. This cycle is repeated and stopped as soon as the overall error values drops below 
some expected value. The modified Levenberg-Marquardt optimization technique was used in training the 
feedforward back-propagation (FFBP) for (NARMAX) model. This optimization technique is more powerful 
than the conventionally used gradient descent techniques (Cigizoglu and Kisi, 2006).  The weights and biases 
were adjusted based on the modified Levenberg - Marquardt Algorithm (MLMA) (Dennis and Schnabel, 1996). 
Figure 2 shows the system identification structure of ARMAX linear model and the flow chart of the input u(k) 
to output y(k) with delay e(k) (Box and Jenkins, 1989) used in atmospheric science in time series analyses. It is 
usually less complicated than its non-linear counterparts with lower demands regarding computational power, 
and unlike non-linear models, with less parameters to be determined prior to their application. Figure 3 is the 
dynamic system identification. The adjustment of weights (w1 & w2) and biases (θ(k) = [-A1, …, -Ana, B0,…, 
Bnb, C1,…,Cnc]T is done by using input data (nb = m) taken at time instant [nc = delay]. The ANNs are adjusted 
to make the predictions of the network outputs (ŷ(k)) close to the actual outputs (y(k)) (Gupta et al., 2003). 

) Y(k) =                                                      (3) 

where Y(k) = vector of order n of the q outputs at timing instant k responding to the vector input u(k); d = delay, 

e(k) = the noise disturbance vector; [A( ), B( ), C( ), D( ) and F( )] are polynomial matrices. 

The auto-regressive moving average with exogenous input (ARMAX) linear model structure was derived from 
the combination of the three parameters A, B and C which gives (see Figure 3) 
Y(k) A(Z-1) = Z-d B(Z-1 ) U(k) + C(Z-1 ) e(k)                                                                    (4) 
and if D = F = 1 in equation (3), equation (5) gives us the one-step ahead prediction. 
Ŷ(k, θ(k)) = φ(k, θ(k))θ(k)                                                                                               (5) 
The neural network-based auto-regressive moving average with exogenous input (NNARMAX) nonlinear model 
structures was formulated from the linear model (ARMAX) by changing the internal architecture of ARMAX to 
be Feed Forward Dynamic Neural Network (FDNN). The one-step ahead nonlinear predictor is expressed as 
(Ljung, 1999 and Norgarrd et. al., 2000) 

Ŷ(k,θ(k))  = J( , φ(k), θ(k))                                                                                        (6) 

where J( , φ(k), θ(k)) = a nonlinear cost function of its arguments that can be realized by a neural network and 

it is assumed to have a feed forward structure,   = the input-output data pair obtained from prior plant 

operation over period of time as (Ljung, 1999) (see Figure 2). 

 = [U(1), Y(1),…, U(N), Y(N)],                   N = 1,2,….z.                                        (7) 

Where N = number of input output data pair, T = the sampling period of the system z is the total number of 
samples. The validation error is (Ljung, 1999) 
θ(k) = [-A1, …, -Ana, Bo, …, Bnb, C1, … ,Cnc]T                                                            (8) 
The mean square error (MSE) is calculated using the formula below: 

MSE =  (Y – Ŷ)2                                                                                                          (9) 

where N = total number of data, y = actual values and Ŷ = predicted values. The mean squared error gives the 
error value the same dimensionality as the actual and predicted values. 
 
3. RESULTS AND DISCUSSION 

Training and validation results for the NNARMAX and ARMAX models  

Here, one-year-ahead forecast has been carried out using nine years daily specific humidity data. The specific 
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humidity (q) time series forecast were carried out for the morning and the evening times using the neural 
network model Modified Levenberg Marquardt Algorithm (MLMA) i.e. Neural Network –based autoregressive 
moving average with exogenous input (NNARMAX) and the autoregressive moving average with exogenous 
input (ARMAX) model. For each specific humidity forecasted case, the training and validation results and their 
mean square errors were presented, that is, the mean square training error (MSTE) and the mean square 
validation error (MSVE) were calculated and presented in Tables 2 – 5. Figures 6 and 7 show the NNARMAX 
model training and validation results at 09:00 Hour and 15:00 Hour respectively over Lagos. Figures 8 and 9 
show the NNARMAX model training and validation results at 09:00 Hour and 15:00 Hour respectively over 
Ibadan. Figures 10 and 11 show the NNARMAX model training and validation results at 09:00 Hour and 15:00 
Hour respectively over Abuja. Figures 12 and 13 show the NNARMAX model training and validation results at 
09:00 Hour and 15:00 Hour respectively over Kaduna. Figures 14 and 15 show the ARMAX model training and 
validation results at 09:00 Hour and 15:00 Hour respectively over Lagos. Figures 16 and 17 show the ARMAX 
model training and validation results at 09:00 Hour and 15:00 Hour respectively over Ibadan. Figures 18 and 19 
show the ARMAX model training and validation results at 09:00 Hour and 15:00 Hour respectively over Abuja. 
Figures 20 and 21 show the ARMAX model training and validation results at 09:00 Hour and 15:00 Hour 
respectively over Kaduna. 

From Figures 5 (a-d) where comparison between specific humidity at 09:00 Hour and 15:00 Hour was 
done. It was observed that specific humidity q at 09:00 Hour is generally higher than at 15:00 Hour at all the 
stations and regions. This observation may be explained using the austauch phenomenon (i.e. lifting of the 
boundary layer) (Adeyemi, 2004). Late morning local surface heating of the atmosphere (Roger and Richard, 
1982) cause’s environmental lapse rate near the surface to exceed dry adiabatic lapse rate causing conditional 
instability. Air then rises. The adiabatic cooling of the connective rising air allows it to remain warmer and less 
dense than the surrounding air so that it continues to rise through buoyancy. Water vapour is then transported 
upwards resulting in humidity depletion at the bottom level of the atmosphere. 

Also at all the stations and regions, the fact that the network prediction of the training data and the 
validation data of both the NNARMAX and ARMAX models correlate is easily discernible. This is an indication 
that both the trained and the validation networks adequately captures and approximate the system for the two 
models. This fact can also be easily seen in the values of the mean square training error (MSTE) and that of the 
mean square validation error (MSVE) which are generally low. 

Comparing the two techniques the is, NNARMAX and ARMAX models and, at all the stations and 
regions, the NNARMAX model puts up a better performance than the ARMAX model as can be seen in the 
values of the MSTE and MSVE. MSTE and MSVE for NNARMAX being generally lower than those for 
ARMAX at all the stations and regions (See Tables 2 – 5). 
 
4 CONCLUSION 

Time – Series Forecast of specific humidity ‘q’ at sixteen (16) meteorological stations in Nigeria was carried out 
using artificial neural network Modified Marquardt Algorithm (MLMA) and Autoregressive Moving Average 
with Exogenous input (ARMAX). The forecast q values at all the stations show that q is higher in the morning 
hour (i.e. at 09:00 hour) than in the evening hour of 15:00 hour. This has been explained using austauch 
phenomenon, that is, lifting of the boundary layer 9Adeyemi, 2004) causing water vapour to be transported 
upward resulting in its depletion at the bottom level of the atmosphere (Roger and Richard, 1982). Also, at all 
the stations and regions, both NNARMAX and ARMAX gave good prediction of both training and validation 
data. Comparing than using MSTE and MSVE values at all the stations and regions, NNARMAX gave a better 
prediction of q than ARMAX. 
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Table 1:  The geographical locations and samples of specific humidity q (g/kg) data. 

S/N STATIONS LATITUDE  (o N) LONGITUDE (o E) ELEVATION ABOVE 
SEA LEVEL (m) 

USED 
DATA 

1 LAGOS 6.45 3.39 35 3654 
2 BENIN 6.31 5.62 80 3654 
3 WARRI 5.52 5.75 21 3654 
4 PORT HARCOURT 4.78 7.00 468 3654 
5 ABEOUKTA 7.13 3.34 67 3654 
6 IBADAN 7.40 3.92 239 3654 
7 OSOGBO 7.76 4.56 317 3654 
8 ILORIN 8.49 4.55 290 3654 
9 BIDA 9.08 6.00 151 3654 
10 ABUJA 9.06 7.48 536 3654 
11 MINNA 9.61 6.55 299 3654 
12 JOS 9.93 8.88 1208 3654 
13 KADUNA 10.52 7.43 614 3654 
14 KANO 12.00 8.52 479 3654 
15 MAIDUGURI 11.83 13.15 300 3654 
16 SOKOTO 13.06 5.25 265 3654 
 
Table 2:  Training Result for the NNARMAX and ARMAX models at 09:00 Hour for all stations selected. 

S/N STATIONS ARMAX (MSTE) NNARMAX (MSTE) 
1 LAGOS 0.2396 0.0007 
2 BENIN 0.0269 0.0002 
3 WARRI 0.0877 0.0002 
4 PORT HARCOURT 0.0241 0.0008 
5 ABEOKUTA 0.3500 0.0029 
6 IBADAN 0.3478 0.0219 
7 OSOGBO 0.3749 0.0045 
8 ILORIN 0.3501 0.0005 
9 ABUJA 0.3465 0.0021 
10 BIDA 0.3027 0.0006 
11 MINNA 0.2292 0.0008 
12 JOS 0.0168 0.0006 
13 KANO 0.2679 0.0004 
14 KADUNA 0.2944 0.0001 
15 MAIDUGURI 0.1779 0.0001 
16 SOKOTO 0.0430 0.0002 
 

Table 3:  Training Result for the NNARMAX and ARMAX models at 15:00 Hour for all stations selected. 

S/N STATIONS  ARMAX (MSTE) NNARMAX (MSTE) 
1 LAGOS 0.0242 0.0001 
2 BENIN 0.0238 0.0007 
3 WARRI 0.0294 0.0008 
4 PORT HARCOURT 0.0192 0.0017 
5 ABEOKUTA 0.0252 0.0006 
6 IBADAN 0.0154 0.0008 
7 OSOGBO 0.0193 0.0002 
8 ILORIN 0.0218 0.0003 
9 ABUJA 0.0183 0.0011 
10 BIDA 0.0209 0.0003 
11 MINNA 0.2846 0.0019 
12 JOS 0.0158 0.0002 
13 KANO 0.0189 0.0006 
14 KADUNA 0.0859 0.0001 
15 MAIDUGURI 0.0192 0.0003 
16 SOKOTO 0.0250 0.0002 
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Table 4:  Validation Result for the NNARMAX and ARMAX models at 09:00 Hour for all stations 

selected. 

S/N STATIONS ARMAX (MSVE) NNARMAX (MSVE) 
1 LAGOS 0.2492 0.0004 
2 BENIN 0.0219 0.0008 
3 WARRI 2.1055 0.0002 
4 PORT HARCOURT 0.0188 0.0003 
5 ABEOKUTA 0.3986 0.0031 
6 IBADAN 0.4188 0.0001 
7 OSOGBO 0.3648 0.0001 
8 ILORIN 0.2643 0.0009 
9 ABUJA 0.3502 0.0008 
10 BIDA 0.5112 0.0003 
11 MINNA 0.2240 0.0003 
12 JOS 0.0220 0.0004 
13 KANO 0.1969 0.0009 
14 KADUNA 0.3164 0.0003 
15 MAIDUGURI 0.1610 0.0005 
16 SOKOTO 0.0271 0.0007 
 

Table 5:  Validation Result for the NNARMAX and ARMAX Algorithm at 15:00 Hour for all stations 

selected.  
S/N STATIONS  ARMAX (MSVE) NNARMAX (MSVE) 
1 LAGOS 0.0136 0.0003 
2 BENIN 0.0158 0.0001 
3 WARRI 1.0652 0.0001 
4 PORT HARCOURT 0.0253 0.0009 
5 ABEOKUTA 0.0154 0.0002 
6 IBADAN 0.0198 0.0005 
7 OSOGBO 0.0231 0.0001 
8 ILORIN 0.0175 0.0005 
9 ABUJA 0.0205 0.0001 
10 BIDA 0.0249 0.0003 
11 MINNA 0.4106 0.0015 
12 JOS 0.0199 0.0002 
13 KANO 0.0217 0.0003 
14 KADUNA 0.0907 0.0003 
15 MAIDUGURI 0.0221 0.0004 
16 SOKOTO 0.0179 0.0002 
  



Journal of Environment and Earth Science                                                                                                                                        www.iiste.org 

ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) 

Vol.6, No.11, 2016 

 

58 

 
Figure 1:   Map of Nigeria (http://www.climate-zone.com/climate/nigeria). 

 

 
Figure 2: The ARMAX model predictor structure. (www.ni.com) 
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Figure 3:   The NNARMAX series-parallel model identification structure. [Gupta et al., 1999] 

 

 
 

Figure 4:  The structure of the feed-forward back-propagation neural network (FFBP). 
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Figure 5: Distribution of specific humidity over (a) Lagos (b) Ibadan (c) Abuja and (d) Kaduna at 09:00 

Hour and 15:00 Hour respectively.  
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Figure 6:   NNARMAX model training result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Lagos , a Coastal station.  
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Figure 7:   NNARMAX model validation result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Lagos , a Coastal station.  
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Figure 8:   NNARMAX model training result for the specific humidity data at (a) 09:00 Hour (b)  

   15:00 Hour for Ibadan , a Guinea Savannah station.  
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Figure 9:   NNARMAX model validation result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for Ibadan , a Guinea Savannah station.  
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Figure 10:   NNARMAX model training result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Abuja , a Mid-land station. 
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Figure 11:   NNARMAX model validation result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Abuja , a Mid-land station. 
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Figure 12:   NNARMAX model training result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Kaduna , a Sahel station.  
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Figure 13:   NNARMAX model validation result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Kaduna , a Sahel station. 
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 Figure 14:   ARMAX model training result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Lagos , a Coastal station.  
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Figure 15:   ARMAX model validation result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Lagos , a Coastal station. 
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Figure 16:   ARMAX model training result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Ibadan , a Guinea Savannah station. 
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Figure 17:   ARMAX model validation result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Ibadan , a Guinea Savannah station.  
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Figure 18:   ARMAX model training result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Abuja, a Mid-land station. 
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Figure 19:   ARMAX model validation result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Abuja , a Mid-land station.  



Journal of Environment and Earth Science                                                                                                                                        www.iiste.org 

ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) 

Vol.6, No.11, 2016 

 

68 

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

Day

S
p
e
c
if
ic

 H
u
m

id
it
y
 q

 (
g
/k

g
)

(b)

 

 

Training data

ARMAX model

0 500 1000 1500 2000 2500 3000 3500
-0.2

0

0.2

0.4

0.6

Day

S
p
e
c
if
ic

 H
u
m

id
it
y
 q

 (
g
/k

g
)

(a)

 

 

Training data

ARMAX model

(b)
 

Figure 20:   ARMAX model training result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Kaduna , a Sahel station.  
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Figure 21:   ARMAX model validation result for the specific humidity data at (a) 09:00 Hour (b)  

      15:00 Hour for  Kaduna , a Sahel station. 


