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Abstract 

In order to improve water quality and restore impaired watersheds, managers need to make decisions using data 

that are readily available. Due to limited resources as a result of the cost implications of data, modelling 

approach is considered. The Universal Soil Loss Equation (USLE) is a Geographic Information System 

(GIS)-based methodology commonly used to estimate sediment yield. The model is appropriate for predicting 

soil erosion if data and methodical processes involve GIS. However it is not be considered as a final and true 

depiction to predict erosion. A good understanding of the watershed is needed to validate the model outputs. The 

model implementation is relatively cheap, cost effective and easy. Existing data and freely available information 

in the public domain are used for computations.  For this study the total sediment in the watershed showed a 

48.5% and 60 % difference when the results were compared with the studies of Levine et al., 1993 and 

UNITAR, 2009. The results may not be devoid of uncertainties and errors due to data sources and 

implementation of the model parameters. 
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1. INTRODUCTION 

The understanding and management of water quality issues ensuing from non- point source pollution involves 

information and strength of the sources of pollution and the transport of the pollutants from the source to the 

destination (Novotny and Chester, 1989). Non-point pollution constitutes one of the major dangers to surface and 

underground sources of drinking water on earth (Corwin et al., 1997).  These non-point source pollutants are 

mainly impurities from surface and underground soil and water bodies which are dispersed naturally and difficult 

to trace to a particular location hence not easy to estimate (Yoon, 1996; Chowdary et al., 2001). Non- point 

source pollution results from the transportation of natural and man- made pollutants from sources to destination 

such as streams, coastal water bodies, rivers and wetlands (Hubbarb, 2007). These non-point source pollutants 

include sediments, fertilizers, pesticides, herbicides, spilled oil, poisonous chemicals, pharmaceutical waste and 

salt (Corwin et al., 1997; Hubbarb, 2007; EPA, 2013).  

The US Environmental Protection Agency categorised non-point pollution sources as urban runoff, 

construction, river bank erosion, individual sewage dumping and hydrological modification (Corbitt, 1990). The 

enormity of the problem arising from the diffused sources of the non-point pollution results in its estimation by 

simulation method using distributed models.  Geographical Information System provides a tool to manipulate, 

manage, analyse relationships and spatially model processes. This tools help in reducing and locating sources of 

non-point pollution (Welch et al., 1999; Chowdary et al., 2001; Eisakhani et al., 2009).  This project will aim to 

model sediment load delivery in water shed only with a view.  Sediments yield are commonly estimated with the 

use of “universal soil equation” (USLE) (Levine et al., 1993; Chowdary et al., 2001). Levine et al., 1993 

suggested that a water quality model is developed for quantifying non-point source pollution loads and relates 

statistical modelling of sediment transport with the spatial arrangement of the parameters influencing the model.  

 

2. NON-POINT SOURCE POLLUTION AND SEDIMENT TRANSPORT MODELS 

Sediments are loosely packed tiny particles of sand and silt deposit contributing to non-point source pollution 

due to their ability to be transported over long distances by water or wind thereby causing harm to humans and 

marine life when deposited in water bodies (Williams et al, 2003). The process of developing an effective 

erosion management design requires the identification of erosion prone areas (Lim et al., 2005). This is carried 

out in many places of the world using models (Lim et al., 2005). These models are “Universal Soil Loss 

Equation (USLE) (Wischmeier and Smith, 1978), Water Erosion Prediction Project (WEPP) (Flanagan and 

Nearing, 1995), Chemical Runoff and Erosion from Agricultural Management Systems (CREAMS) (Knisel, 

1980), European Soil Erosion Model (EUROSEM) (Wischmeier and Smith, 1978; Flanagan and Nearing, 1995; 

Arnold et al., 1998; Morgan et al., 1998)”. The USLE has been widely used and accepted regardless of their 

characteristic uncertainties (Reckhow, 1979; LaBaugh and Winter, 1984; Kinnell, 2001). The USLE is 

developed to evaluate the average yearly soil loss in areas having identified crop controlling practice and 

rangeland (Renard et al., 1997). The processes involved in modelling of non-point source pollution include 

sediment detachment calculation, overland flow delivery process, stream network delineation, total flow path 



Journal of Environment and Earth Science                                                                                                                                        www.iiste.org 

ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) 

Vol.5, No.13, 2015 

 

40 

delivery ratio and annual sediment loading (Levine et al., 1993; Kinnell, 2001). The detachment and 

mobilization of sediments are caused by rainfall. Rainfall’s impact on the ground detaches sediments and 

nutrients which are then mobilised and washed away depending on the energy of overland flow (Levine et al., 

1993). The USLE is used to calculate erosion within grid cells when the watershed has been demarcated as a 

sequence of grids (Wischmeier and Smith, 1978). USLE model results from features that influence soil loss 

through sediment transport like soil type, climate vegetation cover, landscape (Lufafaa et al., 2002). The USLE 

estimates the possible annual sediment load (Wischmeier and Smith, 1978) and on a time series (Knisel, 1988). 

The study aims to implement a spatial model for watershed management in Timber Creek, Cooke County, Texas, 

USA. 

 

3. METHODOLOGY AND DATA 

The area of study is the Timber Creek watershed, in Cooke county of Texas, USA. The area covers different 

landscape made up of shallow, stony clay loam that influences the growth of oak, juniper and shrubs (Emerson, 

2012). 

Soil data containing different soil types within a watershed collected by National Soil Conservation 

Service with each soil type having attributes of permeability and soil erodibility. Land use data composed of 7 

land use types within the watershed compiled in raster format from the Centre for Remote Sensing and Land Use 

Analysis.  This was derived by classifying 1986 Multispectral scanner image. A Digital Elevation Model (DEM) 

of the watershed got from USGS. The DEM was created from digitized 1:24,000 scale 7.5 minute quadrangle 

colour map. 

 

3.1 THE MODEL 

3.1.1 SEDIMENT DETACHMENT  

This step involves modelling the total sediment load. It was calculated using the USLE defined as A= 

R*K*L*S*C*P. 

ArcGIS 10.1 tools were used to build the model using spatial analyst tools (slope, flow length, flow direction. 

The first step involved incorporating the slope and DEM.  

The slope was then reclassified to get the slope length (in meters). This was done to reclassify the slope into 3 

classes and assigning new values to it. 

0.5 show slopes > 4%  

0.4 show slopes = 4% 

0.3 show slopes < 4% 

The reclassify tool in ArcMap is did not support the use of float values therefore, the reclass values were 

multiplied by 10. The flow direction tool was introduced to aid in estimating the slope length; this was followed 

by the flow length tool. Both the flow length and flow direction were given appropriate output names and saved. 

The reclassified slope, flow length parameters were then used to generate the slope length using the Raster 

calculator tool in ArcMap. The slope length equation used in is given below: 

L = (I / 22)
x
 (Schwab et al., 1981): 

Where; l = length of flow (meters), X = slope factor. Here the reclassified slope that was earlier multiplied due to 

the reclassify tool not supporting float values was divided by 10 to return the values back to float. The raster 

calculator tool was again useful in estimating the Slope Steepness Factor (S). Using the formula shown below; 

S= (0.43 + 0.30s + 0.043s
2
) / 6.574 (Schwab et al., 1981).  Where s = percent slope 

The final part of stage one was to estimate the total annual sediment detached using the USLE. USLE is defined 

as A= R * K * L * S * C * P 

R = Rainfall (R equals 616 tons per hectare for this watershed. 1 hectare = 10,000m
2 

. To convert hectare to 

square meters (616 / 10,000) =0.0616 tons per m
2
. The Cell resolution is 21.21212121 by 21.21212121, the area 

of each cell is 449.954086m
2
.  

Thus, the rainfall per cell = 0.0616 × 449.954086 (27.171717 tons/cell/year). 

K = Soil Erodability factor (lookup_K), L = Slope Length factor (Slopelength). 

S = Slope Steepness factor (Slopesteepp), C = Cover and Management factor (CL), P = Support Practice factor 

(conservation practice). The P-factor used is for low range slopes (between 2 and 7%). Since Way Roberts 

watershed average slope is <2%; hence, P = 0.2 for the entire Timber Creek watershed (Levine et al 1993).  

3.1.2 OVERLAND DELIVERY PROCESS 

This stage shows the effect of surface conditions such as soil permeability, slope and vegetation cover on the 

transportation of sediments and nutrients as they are being moved to a river channel (Levine et al., 1993). This 

was achieved by generating another slope (degree) and a raster calculator was also introduced to the model.  The 

next step involved estimating the Delivery Ratio; this was done by subtracting the trapping efficiency from 1 in 

the raster calculator. 
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3.1.3 STREAM NETWORK DELINEATION 

This stage involved delineating the streams in the watershed and allocating a delivery ratio of one to the cell in 

the streams.  This was achieved using the flow accumulation tool to delineate permanent streams form temporary 

streams. Levine et al., 1993 posited that if the threshold of contributing cells is fifteen and above, they are 

considered as permanent streams but those that have threshold of 14 and below are temporary streams. The flow 

accumulation tool was introduced to the model at this stage. A conditional tool was added to the model and the 

condition was expressed as “Value <15 to satisfy for the delineation of temporary streams (<15) from permanent 

streams (>=15). A second conditional tool was introduced to the model to assign the temporary and permanent 

streams.  This was done to allow the temporary streams continue in the stream network and the permanent 

streams (cells >= 15) merging to delivery ratio to produce the total delivery ratio of permanent streams in the 

watershed only. 

3.1.4 TOTAL FLOW PATH DELIVERY RATIO 

This stage was achieved using the raster calculator to determine the total flow path delivery ratio using the 

equation, [Cell delivery ratio] * [Flow accumulation] / (watershed maximum flow accumulation).  

3.1.5 TOTAL ANNUAL SEDIMENT LOADINGS       

Again the raster calculator was introduced to calculate the total annual sediment load conveyed to the watershed. 

The final stage was to calculate the total annual load in the whole watershed (tonnes/watershed/year). The 

watershed was initially digitized and saved as a shapefile and a zonal statistics tool was introduced to the model. 

 

4. RESULTS AND DISCUSSION  
The Rainfall runoff factor, R is obtained from yearly rainfall dataset of the watershed. It is also known as the 

erosivity index and is equal to 616 tons per hectare for this watershed by the US Soil Conservation Service. The 

Cover and Management factor, C shows influence of crop controlling practice related to land use and land cover 

types and conservation processes (Levine et al., 1993; Renard et al., 1997; Fua et al., 2004). The US Soil 

Conservation Technical Document gives the C values and their associated land use type ranging from barren 

land, developed, pasture, rangeland, pasture, water and forest. The soil erodibility factor, K is derived from the 

local county soil survey tables. It is an empirical index that illustrates the proneness of soil to erosion influenced 

via some inherent soil characteristics like organic matter, structure and permeability (Fua et al., 2004). The 

support practice factor, P defines the link between erosion mitigation measures like contour planting, terracing 

and strip cropping. The P factor value is dependent on the average slope steepness in the watershed (Levine et 

al., 1993). The Slope Length factor (L) and the Slope Steepness factor (S) is dependent on slope of the 

topography and the sediment transport within a network of cells depend on overflow upslope, slope length factor 

(Kinnell, 2010).The predominant flow direction in the image is towards the Northern part of the study. The flow 

direction values as shown in the image map ranges from 1 to 128. Flow length signifies the distance in which 

water and pollutants are conveyed through a cell. The flow length out of a cell is equivalent to the cell resolution 

in the image for horizontal and vertical flows (UNITAR, 2009). Flow accumulation can be used to estimate the 

number of cells flowing into any one cell, centred on each cell’s direction of flow. The flow accumulation ranges 

from 0 (low) to 249471 (high) in the map above. The total annual sediment loss map shows that the sediment 

loss is more at the North West portion of the watershed and the total annual sediment detached is 87.755 

tons/cell/year which is abysmally low for a watershed compared to estimates of 1032.86 tons/cell/year from 

Levine et al., 1993. Some errors resulting from uncertainties must have contributed to this. This is discussed 

extensively in the report stating the Likely reasons for this low value. 

Exact figures were not stated in Levine et al., 1993 report detailing if they were for a cell or the total 

for the whole Timber Creek’s water shed.  Kinnell, 2010 observed from results obtained using data collected 

during field experiments based on US natural precipitation and concluded that the USLE was aimed at 

estimating soil losses. The main advantage of the USLE is the availability of data and its solid empirical 

background (Levine et al., 1993). The Revised Universal Soil Loss Equation (RUSLE) has been modified 

detailing how the 6 parameters of USLE are estimated and its application in crop management practice (Kinnell, 

2010).  The RUSLE model provides a method used in modelling one dimensional hill slope devoid of deposition 

because of variations in slope gradient (Kinnell, 2010. The advantage of using a RUSLE model is that its data 

requirements are not difficult or unachievable, it is simple to fathom, apply and most importantly its ability to be 

integrated in a GIS (Milward and Mersey, 1999). Levine et al., 1993 referred to this stage of the model as 

“representing the influence of surface conditions such as soil permeability, slope and vegetation density on the 

transport of sediments and nutrients during movement towards a stream channel. The values here range between 

0.00477076 (low): 1 (high). The widely used methods of delineating contributing streams depend on soil 

properties, vegetation and relief (Levine et al., 1993). The cell delivery ratio doesn’t distinguish cells within and 

outside the stream (Levine et al., 1993).  Different densities of network produce different model output because 

of change in the single cell delivery ratios and the entire flow path delivery ratios. The process of changing the 

density enables the models to be run repeatedly and the output compared with observed sediment and nutrient 
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loads and finally selecting a drainage density network suitable for the model. Levine et al., 1993 applied this 

method to adjust the model. The stream network image above shows the number of cells that flows into a cell 

depending on the direction of flow in each cell. The values will tend to increase from higher elevations in the 

watershed to the streams. A threshold was applied to delineate the stream network resulting in permanent and 

temporary streams with the temporary stream a result of storm activity, hence the lower the threshold the higher 

the network density (UNITAR, 2009). The coloured line shows the stream network and the watershed outlet is in 

the southern part of the map. 

This constitutes the portion of the delivery load that is carried to the watershed channel while the 

delivery ratio is the load likely to be conveyed to the ensuing cell along the flow path. The model assumes that 

all sediments conveyed do not get to the watershed therefore the portion that gets to the watershed (Total flow 

path delivery ratio) is estimated. The values for the total flow delivery ratio range from 0 (low) to 0.999958 

(high). There is an observable difference between the estimates of Levine et al 1993, UNITAR, 2009 and the 

new model estimate each having estimates of 1444.03 tons/year, 1417.408 tons/year and 566.748 tons/year 

respectively with a percentage difference of 60.8% for Levine et al., 1993 and 60% for UNITAR, 2009 (see table 

2). However the strength of the model depends on the comparative spatial variations instead of the exact value 

got (Hoyos, 2005). The erosivity index for rainfall was given as 616tons/ hectare while the model used cells 

instead this could be a source of error. Levine et al., 1993 gave the size of the watershed as 10215.20 hectares. 

The estimates of the total load were observed to be low as compared with Levine et al., 1993 and UNITAR, 2009 

estimates; this may be due to the fact that the initial potential load, (A) from the Universal Soil Loss Equation 

was low as well. Previous research followed when designing the delivery model contained high loads of organic 

matter that can be conveyed freely than sediment, this entails that that model isn’t suitable for inorganic matter 

transport that make up most sediments in a watershed. 

Levine et al., 1993 also attributed the model’s poor performance based on assumption that 100% 

stream transport is likely impossible for sediment transport. It normally takes one hundred (100) years for a 

stream to cleanse its entire sediment (Schumm, 1972). However the quantity of sediment moving in a stream at a 

particular period of the year is equivalent to the quantity distributed to the stream from neighbouring streams in 

order to maintain a balance between the sediment distribution and network of deposition and transportation. The 

USLE has been the extensively used and misrepresented prediction estimator developed to envisage long-term 

average yearly soil loss. This has been done in some geographical locations efficiently and not properly at other 

locations. 

There are some uncertainties associated with the model which may give a conflicting estimate of 

model final outputs. This may not be limited to issues of bad pixel in the DEM leading to it being corrected (pre-

processing of the DEM), software functionalities used, model limitations and the dataset used (the data used had 

a low spatial resolution which significantly affects soil loss estimates) (Levine et al 1993; School, 2000). Their 

joint influence on the model output would be multiplicative (Hoyos, 2005). A National Research Council 

Ground water Vulnerability Assessment, (1993) stated that uncertainties associated with modelling non- point 

source modelling are normally derived from; Model related errors (uncertainty arising from insufficient or 

imperfect implementation of the model processes), data related errors arising from errors during data input, even 

if model is correct (Logue and Green, 1990) and parameter error. Parameter errors have two likely implications. 

Most models needing calibration have parameter errors arising from model parameters that are inter-related and 

vague. While parameter error in models having physically related parameters arise from the failure in 

representing distributions for inadequate number of point estimations. Burrough and McDonnell (1998) stated 

that it is possible to enumerate these uncertainties using analytical method or a Monte Carlo model. Practically it 

is challenging to crudely estimate the errors related to all the individual factors in the USLE (Van der Knijff et 

al., 2000). Similarly some individual factors are inter-related hence this may cause a great effect on the model 

outputs. 

The accuracy of any meaningful estimate can be influenced by the capability of the model to give a 

justification for the effect of the physical parameters initiating the final result and the precision in determining 

the factors (Kinnell, 2010). The USLE model requires a great effort to achieve correct parameters to run 

(Kinnell, 2010). The USLE as mentioned earlier are used in watershed modelling to observe influence of land 

use on water quality. They do this by extrapolating data obtained at larger areas than originally designed field 

sized areas. Therefore the USLE is not entirely suitable for modelling the delivery of sediment. Other models 

such as the Water Erosion Prediction Project (WEPP), CREAMS, ANSWERS, AGNPS, Soil and Water 

Assessment Tool (SWAT), European Soil Erosion Model (EUROSEM) and the RUSLE are better suited 

(Wischmeier and Smith, 1978; Levine et al., 1993; Morgan et al., 1998). 

 

CONCLUSION 

The USLE model is appropriate for envisaging erosion if data and methodical processes encompass GIS. 

However it is not be considered as a final and true depiction to predict erosion (Nyhan and Lane, 1986). 
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Therefore, the USLE model will possibly be incorporated to model the time-based and spatial distinction in soil 

erosion in several watersheds in the future and there is advantage in improving the ability of the model in doing 

this (Kinnell, 2001). Finally results of the model show consequences for water management. Pollutants 

contributing areas which are areas of high flow delivery ratio can be easily identified due to the spatial character 

of the model (UNITAR, 1996,2001,2005,2007 and 2009). 
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Table 1: Total annual potential sediment load calculated  

 Total Sediment 

(Kg/year) 

Total sediment 

(Tons/cell/year) 

Observed 

Estimated 

937000
 

6230000 

1032.86 

6867.39 

New Estimate 79609.99 87.755 

 

Table 4: Total Annual Sediment in the Watershed 

 Total 

Sediment 

(Kg/year) 

Total 

sediment 

(Tons/year) 

Percentage difference 

(Levine et al., 

1993) 

Observed 

Estimated 

 

 

9.37 x 10
5 

1.31 x 10
6
 

 

 

1032.87 

1444.03 

 

 

28.5 % 

UNITAR, 2009 

Estimate 

1.286 x 10
6
 1417.408 With Levine et al., 1993 estimated value (1444.03 tons/year) 

1.83 % 

New 

Estimate 

5.66748 X 

10
5 

 

566.748 

 

With Levine et al 1993, Observed  

45 %, estimated 60.8 %. With UNITAR, 2009 

estimated(1417.408 tons/year) = 60 % 
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Figure 1: Showing the Timber Creek Watershed with its boundary in blue colour. Source (EPA, 2013). 
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Figure 2: Digital Elevation Model (DEM) of Timber Creek watershed. 
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Figure 3: Corrected Digital Elevation Model (DEM) of Timber Creek watershed. 
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Figure 4: Land Use map of Timber Creek watershed. 

 



Journal of Environment and Earth Science                                                                                                                                        www.iiste.org 

ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) 

Vol.5, No.13, 2015 

 

49 

 

Figure 5:  Map showing the different soil types in Timber Creek watershed. 

 
Figure 6: Methodological flow chart (After Levine et al., 1993) 
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Figure 7: Spatial distribution of Cover Management (C Factor) in Timber   Creek watershed. 
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Figure 8: Spatial distribution of Soil Erodability factor in Timber Creek Watershed. 
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Figure 9: Spatial distribution of Conservation Practice in Timber Creek Watershed 
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Figure 10: Slope steepness in Timber Creek Watershed 
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Figure 11: Slope Length map of Timber Creek watershed. 
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Figure 12: Flow Direction map of Timber Creek watershed. 
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Figure 13: Flow Length map of Timber Creek watershed. 
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Figure 14: Flow Accumulation map of Timber Creek watershed. 
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Figure 15: Slope Angle (degree) map of Timber Creek watershed. 
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Figure 16: Total Annual Sediment Detached (A) map in Timber Creek watershed. 
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Figure 17: Total Suspended Sediment map of Timber Creek watershed. 
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Figure 18: Delivery ratio map of Timber Creek watershed. 
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Figure 19: Stream Network map of Timber Creek watershed. 
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Figure 20: Total Delivery ratio map of Timber Creek watershed. 
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Figure 21: Total Flow Path Delivery Ratio map of Timber Creek watershed. 
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Figure 22: Total Annual Sediment Load map of Timber Creek watershed. 
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Figure 23: Total Annual Sediment Load in the watershed in Timber Creek. 
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Figure 24: Bad pixel in the DEM before it was corrected. 
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