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Abstract 

Principal component analysis (PCA) and multiple linear regressions were applied on the surface water 

quality data with the aim of identifying the pollution sources and their contribution toward water quality 

variation. Surface water samples were collected from four different sampling points along Jakara River. 

Fifteen physico-chemical water quality parameters were selected for analysis: dissolved oxygen (DO), 

biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), pH, 

conductivity, salinity, temperature, nitrogen in the form of ammonia (NH3), turbidity, dissolved solids (DS), 

total solids (TS), nitrates (NO3), chloride (Cl) and phosphates (PO4
3-). PCA was used to investigate the 

origin of each water quality parameters and yielded five varimax factors with 83.1% total variance and in 

addition PCA identified five latent pollution sources namely: ionic, erosion, domestic, dilution effect and 

agricultural run-off. Multiple linear regressions identified the contribution of each variable with significant 

value (r 0.970, R2 0.942, p < 0.01). 
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1. Introduction 

With the growth of human populations, commercial and industrial activities, surface water has received 

large amount of pollutants from variety of sources (Satheeshkumar, and Anisa, 2011). The quality of surface 

water provides significant information about the available resources for supporting life in the ecosystem 

(Manikannan et al. 2011). The physical, chemical and biological compositions of surface water is controlled 

by many factors such as natural (precipitation, geology of the watershed, climate and topography) and 

anthropogenic (domestic, industrial activities and agricultural run-off). Increasing surface water pollution 

causes not only deterioration of water quality, but also threatens human health, balance of aquatic 

ecosystem, economic development and social prosperity (Milovanovic, 2007). It is imperative to prevent 

and control the surface water pollution and to have reliable information on its quality for effective 

management (Sing et al. 2005). Characterization of the spatial variation and source apportionment of water 
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quality parameters can provide an improved understanding of the environmental condition and help policy 

makers to establish priorities for sustainable water management (Huang et al. 2010). One of the major 

challenges in surface water quality assessment is identifying the sources of pollutants and the contribution 

of the parameters/variables in explaining water quality variation. An ever increasing literature on the use of 

principal component analysis (PCA) in identifying pollution sources and multiple linear regressions in 

estimating the contribution of parameters/variables suggest that the techniques are useful in revealing the 

latent pollution sources and it is practical in various types of data (Praveena et al. 2011). PCA provides 

information on the most meaningful variables that bring surface water quality variation and allowed the 

identification of a reduced number of latent factors/sources of pollution while multiple linear regressions 

examine the relationship between single depended variables and a set of independed variables to best 

represent relationship in a population. 

 

Several researchers used PCA to identify water quality sources apportionment. For example: Shrestha and 

Kazama, (2007); Huang et al. (2010); and Juahir et al. (2011) studied spatial variability of surface water 

quality and sources apportionment and classified the studied water bodies into High pollution site (HP), 

Moderate pollution site (MP) and Low pollution site (LP). PCA revealed that the pollution levels in the 

three zones were mainly influenced by natural sources (temperature and river discharge) and anthropogenic 

sources (industrial, municipal and agricultural run-off). Onojake et al. (2011) in their studies, they 

discovered that Rivers in Delta State of Nigeria were heavily polluted as a result of industrial discharge and 

municipal waste (anthropogenic source of pollution). They used PCA to identify the latent factors that 

explain the chemistry of the surface water in which PCA yielded three PC’s with more than 82% variance. 

Equally, Hai et al. (2009) studied Taihu lake region in China and discovered that, the surface water in the 

region is progressively susceptible to anthropogenic pollution, three PC’s yielded correspond to urban 

residential subsistence, livestock farming and farmlands run-off. Similarly, recent study conducted by 

Koklu et al. (2010) revealed that, multiple regressions analysis identified important and effective 

parameters that contributed to the water quality variation in Melen River system, Turkey. 

This study aims at evaluating the surface water pollution sources through PCA and estimating the 

contribution of the significant parameters towards water quality variation using multiple linear regressions 

model. 

 

2. Materials and Methods 

 

2.1 Study Area 

Jakara Basin is located in the northwestern Nigeria and lies in the center of Kano city, the most populous 

city in the whole of Nigeria with over five million people. The region has rapid population growth and 

industrial development with increase the mass of sewage discharge (Mustapha and Aris, 2011; Mustapha 

and Nabegu, 2011). Jakara Basin is located on longitude 8° 31´ E to 8° 45´ and latitude 12°10´ N and 12° 

13´ N. The basin is about 30km2 with north-west, south-west orientation sprawling about 0.33°. Jakara 
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River receives many inputs both anthropogenic and natural in origin that may cause deterioration of the 

river water quality. The River runs through Kano city for a length of about 13.5 km. Approximately 27.2 

km downstream of Jakara River, a dam has been constructed to supply the rural populace with portable 

water, and to aid irrigation agricultural activities. Jakara dam is the fifth largest of the 22 dams in Kano 

state, having a total storage capacity of 651,900,000 m3 and a surface area of 16,590,000 m2 (Mustapha and 

Aris, 2011) 

 

2.2 Sampling and Analytical Procedures 

The sampling network and strategy were designed to cover wide range of determinant at the key sites, 

which reasonably represent the surface water quality in the area. Sampling was carried out every day from 

31st July to 30th September, 2011 at four different sampling locations along Jakara River. Grab samples 

were collected at 30cm below the water level using a water sampler and acid washed container to avoid 

unpredicted changes. The samples were immediately transported to the laboratory under low temperature 

conditions in ice-boxes and stored in the laboratory at 4° C until analysis. 

All samples were analyzed for fifteen physiochemical parameters namely: dissolved oxygen (DO), five-day 

biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), pH, 

conductivity, salinity, temperature, nitrogen in the form of ammonia (NH3), turbidity, dissolved solids (DS), 

total solids (TS), nitrates (NO3), chloride (Cl) and phosphates (PO4
3-). Water temperature, DO, pH, 

conductivity, turbidity, TS, DS, SS and NH3 of the water samples were detected using multi-parameters 

monitoring instrument (YSI incorporated, Yellow Spring Ohio, USA). BOD5 determination of the water 

samples was carried out using the standard method (APHA, 1998). The dissolved oxygen content was 

determined before and after the incubation. Sample incubation was for 5 days at 20°C in BOD bottle and 

BOD5 was calculated after the incubation period. COD was determined after oxidation of organic matter in 

strong tetraoxosulphate VI acid medium by K2Cr2O7 at 148° C with blank titrations. Cl was determined 

using 100 mg/l of the water sample which was measured into 250 mg/L conical flask and pH was adjusted 

with 1 M NaOH. 1 ml/g of K2Cr2O4 indicator was then added and titrated with AgNO3 solution. A blank 

titration was carried out using distilled water. Cl mg/L was then calculated. NO3 and PO4
3- were determined 

using calorimetric method (APHA, 1998). 

 

2.3 Principal Component Analysis (PCA) 

PCA is one of the best multivariate statistical techniques for extracting linear relationships among a set of 

variables (Simeonov et al. 2003). PCA is a pattern recognition tool that attempt to explain the variance of a 

large data set of inter-correlated variables with a smaller set of variables. PCA provides information on the 

significant parameters with minimum loss of original information (Singh et al. 2004). The PC’s can be 

expressed using the equation below: 

aimxmjjxaijxaiZij +++= .....2211                                        (1) 

Where Z is the component score, a is the component loading, x is the measured value of a variable, i is the 

component number, j is the sample number, and m is the total number of variables. 
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2.4 Multiple Linear Regressions 

Multiple linear regressions is a statistical tool for understanding between an outcome variable and several 

predictors (independent variables) that best represent the relationship in a population (Koklu et al. 2010). 

The technique is used for both predictive and explanatory purposes within experimental and non-

experimental designed. Multiple linear regressions can be expressed using the equation below: 

εββββο ++⋅⋅⋅⋅⋅+++= mXmXXY 2211                                      (2) 

Where Y represent the dependent variable, XmX ⋅⋅⋅⋅1  represent the several independent variables 

mββο ⋅⋅⋅⋅ represent the regression coefficient and ε  represent the random error. 

3.  Results and Discussion 

 

3.1 Descriptive Statistics 

Table 1 present range, minimum, maximum, mean, standard deviation and variance of the parameters under 

study. It is clear that, SS, DS, TS, Cl and conductivity are the dominant parameters with high mean 

concentration of 115.90 mg/L, 104.66 mg L, 105.56 mg/L, 566.88 mg/L and 178.71 mg/L respectively. This 

showed that, these variables have common source of origin. The mean value of pH ranged from 6.27 to 7.99 

mg/L which the average value of 7.99 mg/L which is slightly above neutral level. The concentration of DO, 

BOD5, COD ranged from 0.53 to 6.98; 1.00 to 33.00; 20.00 to 154 mg/L which an average value of 2.99, 

5.41, and 49.41 mg/L respectively.  The order of abundance is COD > BOD5 > DO, showing less 

anthropogenic pressure on the surface water. 

 

3.2 Surface water pollution sources apportionment using principal component analysis 

The main purpose of PCA is to reduce the contribution of less significant variables to simplify even more of 

the data structure coming from PCA. This can be achieved by rotating the axis defined by PCA, according 

to well established rules; the new PCs are now called varifactor (VFs). The measure of sampling adequacy 

obtained by the Kaiser-Meyer-Olkin method (KMO) was 0.687, indicating that the degree of inter-

correlation among the variables and the appropriateness of PCA analysis was valid. Similarly, the Bartlett 

test of sphericity was significant (p < 0.01), confirming that, the variables are not orthogonal, but 

correlated. To reduce the overlap of original variables over each PC, a varimax rotation was conducted 

(Zhang et al. 2011). 

Table 2 summarizes the PCA result after rotation, including the loadings, eigen values, the amount of 

variance explained by each VF and the cumulative variance. The results may be complemented by the 

examination of the loadings of the five retained components. VF1 explained 37.9% of total variance, had 

strong positive loading on salinity, TS, DS, conductivity and Cl and a moderate negative loading on NH3. 

This factor group is highly and positively contributed by the variables related to natural factors (erosion) 

and refers to as ionic pollution factor group. The existence of lots of ions and their compound led to high 

loading of these variables (Zhang et al. 2011). VF2 had strong positive loading of SS and turbidity and 

explained 17.5% of total variance. High concentration of suspended solids will increase turbidity level, 

besides, the significant positive correlation between SS and turbidity which indicates common source 

between the parameters. The association of these variables may have occurred as a result of run-off around 
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the basin, which may increased the levels of SS and TS. 

VF3 had strong loading on BOD5 and COD and explained 12.1% of the total variance. The values of these 

parameters were generally higher, since they measure oxygen demand by both biodegradable and non-

biodegradable pollutants. The high value obtained could suggest that a large amount of the product was lost 

to the waste stream. VF4 has strong loading on temperature and DO, explaining 8.5% of the total variance. 

This factor may be explained by the higher DO value as a result of increase in water volume in the river 

(Kamble and Vijay, 2011). 

VF5 had strong loading on NO3 and PO4
3-, and explained 7.1% of the total variance. The higher value of 

nutrients in this factor could have been due to surface run-off from the surrounding farmlands that might 

have brought ionic substances such as NO3 and PO4
3- from fertilizer (Boyacioglu and Boyacioglu, 2008). 

 

3.3 Surface water quality prediction using multiple linear regressions model 

To find out the best predictor of water quality variation in the Jakara Basin, a stepwise multiple linear 

regressions model was used. Before interpreting the result, classical assumptions of linear regressions was 

checked: An inspection of normal p-p plot of regression standardized residuals revealed that all the 

observed values fall roughly along the straight line indicating that the residuals are from normally 

distributed population. Moreover, the scatter plot (standardized predicted values against observed values) 

indicated that, the relationship between the dependent variable and the predictors is linear and the residuals 

variances are equal or constant. 

The water quality variation in the wet season was explained by five predictor variables namely: DO, BOD5, 

SS, TS and Cl. The R-square of 0.94.2 revealed that 94.2% of the variation of water quality was explained 

by the mentioned five predictors. The estimate of coefficient of the model is presented in table 3. The Beta 

coefficient among the parameters calibrated by stepwise regressions analysis, TS makes the strongest 

unique contribution in water quality variation (0.668). The Beta value for DO (0.547) was the second 

highest, followed by Cl (0.545), BOD5 (-0.491) and the least contributor was SS with -0.292. 

The ANOVA table showed that the F-statistics (F = 112.697) was very large and the corresponding p value 

is highly significant (p = 0.0001) or lower than the alpha value (0.01). This indicated that, the slope of the 

estimated linear regression model is not equal to zero, confirming that, there is linear relationship between 

the predictors of the models.  

 

4. Conclusion 

 In this study, principal component analysis (PCA) and multiple regression models were used to evaluate 

Jakara River water quality data sets. PCA yielded five PCs with 83.1% total variance correspond to five 

pollution sources namely: ionic, erosion run-off, domestic, dilution and agricultural run-off sources. 

Multiple linear regression supported PCA result and identified the contribution of each variable with 

significant values r =0.970, R2 0.942. These statistical tools provide more objective interpretation of surface 

water quality variables. From the analysis, it is clear that DO, BOD5, SS, TS, DS, Cl, salinity and 

conductivity were found to be the most abundance parameters responsible for water pollution in Jakara 

River. Therefore, there is need to properly manage wastes in the city and monitor human activities, in order 

to ensure minimal negative effects on the rivers. 
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Table 1. Descriptive statistics of the parameters under study 

Parameters Range Min Max Mean SD Variance 

DO 6.45 0.53 6.98 2.99 1.59 2.54 

BOD 32.00 1.00 33.00 5.41 6.30 39.70 

COD 134.00 20.00 154.00 49.41 24.09 580.35 

SS 974.00 7.00 981.00 115.90 198.03 392.64 

pH 1.72 6.27 7.99 7.14 0.34 0.12 

NH3 9.74 0.15 9.89 3.53 2.02 4.07 

Temperature 5.17 27.21 32.38 29.53 1.07 1.14 

Conductivity 408.00 309.00 412.00 178.71 115.66 134.00 

Salinity 25.33 0.14 25.47 10.27 6.87 47.22 

Tur. 842.20 7.80 850.00 108.65 192.11 369.72 

DS 242.00 169.00 244.00 104.66 674.80 455.00 

TS 241.00 348.00 244.00 105.56 672.86 452.00 

NO3 11.00 10.00 21.00 14.73 2.83 8.00 
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Cl 155.00 40.00 156.00 566.88 366.10 134.00 

PO4
3- 24.00 15.00 39.00 28.32 5.52 30.47 

 

Table 2. Rotated component matrix 

Parameters VF1 VF2 VF3 VF4 VF5 

Salinity 0.970 -0.036 -0.111 0.141 -0.058 

TS 0.968 -0.055 -0.135 0.157 -0.031 

DS 0.966 -0.083 -0.133 0.161 -0.029 

Conductivity 0.962 -0.032 -0.111 0.176 -0.071 

Cl 0.951 -0.114 -0.098 0.095 0.001 

NH3 -0.533 -0.368 0.351 0.291 -0.042 

SS -0.064 0.971 -0.028 -0.125 -0.086 

Turbidity -0.128 0.966 -0.029 -0.135 -0.004 

COD -0.189 0.015 0.909 -0.004 -0.028 

BOD5 -0.21 -0.086 0.871 0.056 -0.079 

Temperature 0.219 -0.017 0.309 0.801 -0.016 

DO 0.288 -0.136 0.075 0.637 -0.005 

pH 0.001 -0.146 -0.249 0.630 -0.054 

NO3 -0.075 -0.060 -0.037 0.079 0.884 

PO4
3- -0.020 -0.013 -0.058 -0.188 0.846 

Eigen Value 5.7 2.6 1.8 1.3 1.1 

Variance (%) 37.9 17.5 12.1 8.5 7.1 

*CV (%) 37.9 55.4 67.5 76 83.1 

*CV = Cumulative variance 

Table 3. Estimates of coefficients of the multiple linear model 

Beta 

Unstandardized Std. Error 

Beta 

standardized 

Coeffient coefficient t-value p-value 

(Constant) 40.689 7.211 5.642 0.000 

DO  23.952 2.058 0.547 11.639 0.000 

BOD5 -17.866 1.654 -0.491 -10.805 0.000 

SS  -5.825 0.953 -0.292 -6.11 0.000 

TS 16.979 5.225 0.668 3.25 0.003 

Cl -10.995 4.078 -0.545 -2.696 0.011 

 Note: R = 0.970; R2 = 0.942; Adj. R2 = 0.933 
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