Aeromagnetic Anomalies Modeling and Their Tectonic Implications in the Middle Benue Trough, Nigeria

OBI, D. A., MENKITALI, R. C., OKEREKE, C. S.
Department of Geology University of Calabar, P.M.B 1115 Calabar, Cross River State, Nigeria
*dominic_odu@yahoo.com

Abstract

The middle Benue Trough has been studied on a reconnaissance stage, no detail subsurface modeling to reveal basin configuration has been undertaken. Twelve (12) Aeromagnetic maps on a scale of 1:100,000, covering the middle Benue Trough were digitized and processed using computer techniques which include; map merging, polynomial filtering, power spectrum, forward and inverse modeling. Eight (8) profiles were modeled to determine the structure of the basin and the presence of possible intrusives. The results indicate the presence of twenty three (23) intrusives; seven (7) are basaltic while sixteen (16) are rhyolites. The Saki model configuration reveals average sediment thickness ranging between 0.5 – 4.0 km, these represent horst and graben structures. These variations are also revealed in the power spectrum depth estimate, which shows a range between 1.2 – 2.7 km. The Doma and Agana areas have the largest accumulations of sediment thickness (0.5 – 4.0 km) covering about 40 km, other areas have shallow depths (0.5 – 2.0 km), and cover distances between 19.5 – 23.8 km, these later areas are less favorable for hydrocarbon accumulation. The Doma and Agana areas remain the most favorable areas for hydrocarbon exploration based on their thick sediment accumulation. However, these areas reveal the presence of seven (7) intrusives; this may cause high geothermal temperatures that may not be favorable for hydrocarbon accumulation.

Keywords: reconnaissance, forward and inverse modeling, configuration, intrusives

1. Introduction

The area of study is the middle Benue Trough which links the upper and lower Benue Trough. It is delimited by latitude 7°30’N and 9°00’N and longitude 8°00’E and 10°00’E and covers an area of 142,992 sq km (fig. 1). The area forms part of the Benue Trough which is a linear cretaceous sedimentary basin that extends towards the north from the east. It is approximately 1000 km long and 2.5 – 4.5 km thick (Ojoh, 1992, Fairhead and Ofoegbu, 1990, Benkheldil, 1988, Burke, et al 1972, and Obi et al 2008).

Fig 1: Map showing location of the study area (modified from Benkheldil 1982),
The cretaceous rifting of the Benue Trough initiated different cycles of depocenters which were influenced by subsidence and sea level changes as South America drifted away from Africa (Ojoh, 1992, Grant, 1971). The area of study has not been extensively studied geophysically. Although, earlier works (Okereke and Ofegbu, 1989, Murat, 1972, Ofegbu, 1985, Nur, 2000, Osazuwa, et. al. 1981 and Adighije, 1981) highlighted the stratigraphy, tectonics and basin thickness in general. This study is aimed at providing a detail subsurface model of the basin configuration, possible types of intrusives and sediments thickness.

2. Geology

The Benue aulacogen has four main stages that represent the evolutionary trend of this basin (Ojoh, 1992). During these stages of development different sedimentary cycles prevailed. The middle Benue Trough experienced two major types of sedimentation cycles. The first sedimentary cycle deposited shales and limestones (albian - cenomenian) along Wukari and Akwana (fig. 2.0). These sediments lie unconformably on the Precambrian basement rocks (biotite granites, hornblende gneiss). Along Makurdi areas turonian sandstones also overlie the basement directly. The second sedimentary cycles started from the upper coniacian to late maestrichian depositing shales, limestones, sandstones and ironstone around Lafia, Agana and parts of Shendam (fig. 2.0). Other areas around Wamba, Akwanga (Garakili, Waiye), Shendam (Peshiep, Kuragwi) and Lafia (Dudugu), are characterized by undifferentiated granites, migmatites, gneisses and tertiary – recent volcanics.

![Geology map of study area based on map by Geologic Survey Agency of Nigeria (1994)](image)

3. Materials and Methods

Twelve aeromagnetic maps on a scale of 1:100,000 were acquired from the Nigerian Geological Survey Agency, Kaduna. The survey was conducted along E-W profiles with a flight line spacing of 2.0 km and a tie line spacing of 20 km. all the maps were based on data acquired at a normal flight elevation of 0.5126 km above mean sea level. The geomagnetic gradient was removed using the International Geomagnetic Reference Field (IGRF) formula of 1st January, 1974. Also, about fifteen software programs obtained from United States Geological Survey (USGS) potential field version 2.2 were used in this study (Phillip, 1997). A hard copy of the geologic map of Nigeria was obtained from the Nigerian Geological Survey Agency, this map was digitize with the Arc GIS software using the coordinates of the study area to produce the geologic map of the study area (fig.2)

The first step in the data analysis was to digitize the maps at 1.0 km interval to avoid the problem of frequency aliasing. The digitized data was in the x, y, z format where x is the latitude, y the longitude and z the total magnetic field. Batch software program (A2XYZ, DETOUR, GEOCON, P2GRD, and CONTOUR) was used in gridding and contouring the data to obtain the total magnetic field of each of the digitized map. Since all the maps were obtained at the same flight elevation, there was no continuation method applied. Map merging of all the twelve sheets was accomplished using the following software: Addgrd and Gmerge where the individual grid outputs of each sheet was added along rows to produce single grids output for Gmerge to sum gridded outputs and merge them with no interpolation (Phillips, 1997). The output of Gmerge grid file is contoured using another software (PC contour) to produce the total magnetic field intensity map of the study area (fig. 3). The power
spectrum technique and forward and inverse SAKI modeling techniques were used in this study. Details of the theoretical background of these techniques are better explained in Obi et al. 2008, Olagundoye, 2004 and Phillip 1997.

Anomaly separation into regional and residual components was carried out using the polynomial fitting technique software SURFIT (Phillips, 1997) which is a polynomial fitting algorithm to produce the residual maps fig. 4 which was then used for depth estimation and P-depth and SAKI software for modeling. The batched software programs (mfinit, mfdesign) were used in the power spectrum analysis. The residual grid was used as the input to mfinit which is accessed by the mfdesign which produces cut off filters and produces an output file accessed by mffilter to generate the average power spectrum depths of the various layers. Layer one is usually the depth to the sediment thickness. The procedure described above was applied to the residual gridded data; this data was subjected into blocks of 0.5° x 0.5° and 0.25° x 0.25° sizes in overlapping positions to produce over ninety (90) grid cells vis-à-vis ninety depth points. These depth points were then positioned in their actual positions as in the residual map and then contoured to get the power spectrum depth map of the study area (fig. 5).

The forward and inverse modeling was done by using the residual grid of fig. 4.0 where eight (8) profiles were extracted in perpendicular direction to observed magnetic anomalies. The extraction was done by using a software (PROFILEX),, this was then used as an input file to the Pdepth program which does the forward modeling. The modeling parameters include; inclination, declination, total field Azimuth, no of bodies, magnetic susceptibility and assumed depths of placed bodies (table 1). These parameters are used to generate a calculated curve that best fit the observed curve and when the root mean square error (RMS %) is less than 5 % a forward model profile is created prior to the inverse SAKI modeling (table. 2.0). the inverse modeling program (SAKI) utilizes the forward model file from Pdepth and with input parameters same as in forward modeling. A series of mathematical iterations are made and with several iterations the RMS error reduces to a minimal 1% indicating an almost perfect model of the subsurface.

Fig. 3 Composite map of total magnetic field intensity (+25,000nT) contour interval — 20nT
4. Results and Conclusion
Magnetic source depth determination through power spectrum analysis over the middle Benue Trough (fig. 5) indicates a thick pile of sediments (2.5 – 2.7km) around Doma and Agana areas, also the area around Wukari has a thick pile of sediments (2.0 – 2.4km). Other areas around Wamba, Shendam, Akwanga and Akari have less sediment accumulations (1.2 – 1.6km). These areas with less sediment accumulation are
TABLE 1: Magnetic susceptibility of common rocks and ores (SI units)

<table>
<thead>
<tr>
<th>COMMON ROCKS</th>
<th>MAGNETIC SUSCEPTIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slate</td>
<td>0 – 0.002</td>
</tr>
<tr>
<td>Dolerite</td>
<td>0.01 – 0.15</td>
</tr>
<tr>
<td>Greenstone</td>
<td>0.0005 – 0.001</td>
</tr>
<tr>
<td>Basalt</td>
<td>0.001 – 0.1</td>
</tr>
<tr>
<td>Granulite</td>
<td>0.0001 – 0.05</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>0.00025 – 0.01</td>
</tr>
<tr>
<td>Salt</td>
<td>0.0 – 0.001</td>
</tr>
<tr>
<td>Gabbro</td>
<td>0.001 – 0.1</td>
</tr>
<tr>
<td>Limestone</td>
<td>0.0000 – 0.0001</td>
</tr>
<tr>
<td>ORES</td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td>0.001 – 0.0001</td>
</tr>
<tr>
<td>Magnetite</td>
<td>0.1 – 20.0</td>
</tr>
<tr>
<td>Chromite</td>
<td>0.0075 – 1.5</td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>0.001 – 1.0</td>
</tr>
<tr>
<td>Pyrite</td>
<td>0.0001 – 0.005</td>
</tr>
</tbody>
</table>

After John Milson 2003

TABLE 2.0: MODELING STATISTICS

<table>
<thead>
<tr>
<th>Towns</th>
<th>No of Bodies</th>
<th>No of Intrusives</th>
<th>Depth of sediment thickness</th>
<th>Magnetic susceptibility of intrusives</th>
<th>Type of intrusive</th>
<th>Max/Min amplitude of profile nT</th>
<th>Distance of profile (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wamba</td>
<td>14</td>
<td>5</td>
<td>1.0 – 1.2</td>
<td>0.003 0.002 0.003 0.0035 0.002</td>
<td>Gneiss/Rhyolites</td>
<td>68/20</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“ “ “ “ “</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akwanga</td>
<td>8</td>
<td>1</td>
<td>1.5 – 2.3</td>
<td>0.025 0.0025 0.0025 0.0025</td>
<td>Basalt</td>
<td>62/-15</td>
<td>19.2</td>
</tr>
<tr>
<td>Lafia</td>
<td>10</td>
<td>3</td>
<td>0.8 – 1.6</td>
<td>0.0025 0.0025 0.0025 0.0075</td>
<td>Gneiss/Rhyolites</td>
<td>74/21</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“ “ “ “ “</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wukari</td>
<td>11</td>
<td>3</td>
<td>1.0 – 2.2</td>
<td>0.020 0.025 0.0075 0.0095 0.15 0.0085</td>
<td>Basalt Basalt</td>
<td>-62/-166</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gneiss/Rhyolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doma</td>
<td>10</td>
<td>5</td>
<td>0.5 – 2.4</td>
<td>0.0025 0.0075 0.0095 0.15 0.0085</td>
<td>Gneiss/Rhyolites</td>
<td>-30/-85</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“ “ “ “ Basalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agana</td>
<td>9</td>
<td>2</td>
<td>2.2 – 4.0</td>
<td>0.0025 0.0025 0.0025 0.0025</td>
<td>Gneiss/Rhyolites</td>
<td>8.8/-3.3</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“ “</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makurdi</td>
<td>10</td>
<td>2</td>
<td>0.5 – 2.3</td>
<td>0.015 0.025 0.015 0.025</td>
<td>Basalt</td>
<td>-10/-78</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“ “</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwola</td>
<td>10</td>
<td>2</td>
<td>0.5 – 2.2</td>
<td>0.025 0.0045 0.025 0.0045</td>
<td>Basalt Gneiss/Rhyolites</td>
<td>79/-155</td>
<td>22.8</td>
</tr>
</tbody>
</table>

4. RESULTS AND CONCLUSION
Magnetic source depth determination through power spectrum analysis over the middle Benue Trough (fig. 5) indicates a thick pile of sediments (2.5 – 2.7km) around Doma and Agana areas, also the area around Wukari has a thick pile of sediments (2.0 – 2.4km). Other areas around Wamba, Shendam, Akwanga and Akari have less sediment accumulations (1.2 – 1.6km). These areas with less sediment accumulation are not favorable target for hydrocarbon exploration, while those areas with thicker sediment accumulations remain the favorable sites for further hydrocarbon exploration activities.
Fig. 5 Power spectrum depth map of the study area (contoured at 0.2km interval)

Fig. 6 Forward and inverse model interpretation of residual magnetic anomalies along profile A-A’ (Kwola)
Fig. 7 Forward and inverse model interpretation of residual magnetic anomalies along profile B-B' (Akwanga)

Fig. 8 Forward and inverse model interpretation of residual magnetic anomalies along profile C-C' (Wamba)
Fig. 9 Forward and inverse model interpretation of residual magnetic anomalies along profile D-D′ (Lafia)

Fig. 10 Forward and inverse model interpretation of residual magnetic anomalies along profile E-E′ (Doma)
Fig. 11 Forward and inverse model interpretation of residual magnetic anomalies along profile F-F¹ (Agana)

Fig. 12 Forward and inverse model interpretation of residual magnetic anomalies along profile G-G¹ (Makurdi)
Modeling of local anomalies using the SAKI forward and inverse modeling software was performed on eight profiles (A-H) along prominent anomalies. Along each profile the structure and the type of anomaly in the study area was determined.

Profile A-A: this profile is about 22.8km (fig. 6) and runs NW-SE along Kwola. There are two intrusives with susceptibilities value of 0.025 and 0.0045 S.I towards the NW end of the profile with a possible sediment thickness of 2.0 – 2.2 km and extends for a distance of 5km. The areas around the SE cover a distance of about 17.0km and have depths between 0.5 – 1.0km.

Profile B-B: this profile runs in the NW-SE orientation and is 19.2km long (fig. 7). It has only one intrusive with susceptibility value of 0.025 towards the SE end. The sediment thickness (0.5 – 1.5km) covers a distance of about 15km. Towards the SE end sediment thickness of about 2.0km is reached. This area covers only a small distance of about 2.5km.

Profile C-C: this profile runs in the NW-SE orientation and is 23.8km long (fig. 8). The area has five intrusives with susceptibilities of 0.0035, 0.003, 0.002, 0.003 S.I. The sediment thickness is between 0.5 – 1.0km. This area is less attractive for further hydrocarbon exploration.

Profile D-D: this profile runs in the NE-SW orientation and is about 27.0km long (fig. 9). The area has three intrusives with susceptibilities of 0.0025, 0.0025 and 0.0025 S.I. The area has a thin sediment accumulation of about 0.5 – 1.2km. The area is not a good target for hydrocarbon exploration.

Profile E-E: this profile runs in the NW-SE orientation and is 26.0km long (fig. 10). The area has five intrusives with susceptibilities values of 0.0025, 0.0075, 0.015, 0.0095, and 0.0085 S.I. A thick sediment pile covering a distance of about 5km with a depth range of 2.2 – 2.4km is attained. The area has good prospects for accumulation of hydrocarbons but the large number of intrusives may introduce high geothermal temperatures that may hinder hydrocarbon accumulations.

Profile F-F: this profile runs in the NW-SE orientation and is 48.0km long (fig. 11). It has two anomalies with susceptibility value of 0.0025 S.I. The sediment thickness (2.5 – 3.5km) is the highest in the study area. This thick pile of sediment covers a distance of about 10km. The two intrusives are about 15.0km apart and are situated in areas of 2.0 – 2.2km depths, so their effects may be minimal on the sediments which range between 2.5 – 3.5km. This area remains the most prospective area for further hydrocarbon exploration activities.

Profile G-G: this profile runs in the NE-SW orientation and is 27.0km long (fig. 12). The area has two intrusives with susceptibilities values of 0.015 and 0.025 S.I. the profile is characterized by horst and grabens. The sediment thickness range between 1.5 – 2.0km within the grabens and 0.5 – 1.0km within the horst areas. This area is not attractive for further hydrocarbon exploration because of its shallow depth of sedimentary rocks.

Profile H-H: this profile runs in the NW-SE orientation and is 27.0km long (fig. 13). It has three intrusives with susceptibility values of 0.020, 0.025, and 0.0075 S.I. The sediment of 2.0km is extensive for about 10km. Other shallow areas with sediment thickness between 0.5 – 1.0km are at the flanks of the profile. The three intrusives
are sitting directly on the sediment pile (2.0km), also these shallow depth may not support the favorable conditions for hydrocarbon accumulations.

The modeling susceptibility value used indicates that the intrusives were mostly basalts and the extrusives were rhyolites in the study area. This modeling has been done in other areas (Obi, et. al 2007, Olagundoye, 2004, Shemang, 1998, Philip, 1997). In conclusion, basement depth to the source magnetic anomalies has been determined using the power spectrum and the forward and inverse modeling. These techniques identified the areas around Doma towards Agana as potential targets for further hydrocarbon exploration activities, based on their sediment thickness (2.0 – 3.5km). However, modeling of local anomalies revealed the subsurface configuration to be that of horst and graben structures. The twenty three intrusives identified in the study area reveals the tectonic activities that followed the rifting processes during the formation of the Benue Trough. About seven intrusives were found (probably basaltic) within these Doma and Agana areas, this makes the area susceptible to high geothermal temperatures and may cause over-maturity of the sediment producing more gas than oil.

ACKNOWLEDGEMENTS

We acknowledge the generous contribution of the USGS potential field software from Dr. Olutubosun Olagundoye of Elf/Total petroleum Nigeria. This research work is a product of both an Msc and Ph.D thesis from the authors.

REFERENCES

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Recent conferences: http://www.iiste.org/conference/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar