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Abstract This paper evaluates the performance of ATM machine in Nigeria banking sector using queue theory model. A few simple queues-models were analysed in terms of steady-state derivation. Theoretical formulations and results (with real-life dataset) were established for queue models with Poisson arrivals and exponential service durations. Derivation and calculation of some performance measure including the average queue length, average waiting time in the queue and in the system, and the probability of encountering the system in certain states such as empty, full having an available server or having to wait a certain time to be served were explored under single and multi-server. FIFO (first in, first out) queue discipline was adopted. 
Keywords: Steady state, waiting-time, queue-discipline, multi-severs, FIFO (first in, first out).  
1. Introduction The need for dynamism in the business environment and growing competition among business firms have forced companies to constantly evolve new ideas in order to succeed and to ensure sustainable relevance (Mian et al., 2012), (Sowunmi et al., 2015). The realization of this fact has made some organizations in Nigeria, especially those interested in attaining and maintaining excellent performance, to pay close attention to training and development, inventions and innovations and so on. In addition, Sowunmi et al. (2015), Haghighi and Mishev (2016) contends that the competition in Nigerian banking sector is getting more intense, partly due to regulatory imperatives of universal banking and also due to customers’ awareness of their rights. Bank customers have become increasingly demanding, as they require high quality, low priced, immediate service delivery and additional improvement of value from their chosen banks (Olaniyi, 2004). Service delivery in banks is personal, customers are either served immediately or join a queue (waiting line) if the system is busy (Odirichukwu et al., 2014). A queue occurs where facilities are limited and cannot satisfy demand made against them at a particular period. However, most customers are not comfortable with waiting or queuing, the danger of keeping them in a queue is that their waiting time may amount to or could become a cost to them (Olaniyi, 2004). According to Elaglam (1978), Yussuff et al. (2016) while it may or may not be actually calculable, there is at least an economic lost attribute to each person while remaining in the queue. A queue for the purpose of this study is the aggregation of customer awaiting a service function; it is an everyday occurrence and results when the number of calling units exceeds the number of available service centre (Olaniyi, 2004). This has become an integral of any service, which refers to the whole time from arrival of inputs to their departure. Nowadays, long queuing that customers usually experienced in branches of many banks in Nigeria is not just a disappointment to Nigerians, but also decelerate the growth and development rate of the country economy. Because of long queue in bank, customers jockey, jostle, balk, disgruntle, renege, fail to meet financial need of their clients, banks overcrowded due to small service capacity, which leads to inadequate ventilation, and consequently facilitate easy spread of communicable diseases. In facts, if long queue is known for a particular bank, the bank in question might lose good number of his customers for the fact that customers would prefer a place where they do not queue (wait) at all or where they wait for lesser period. The common experience in Nigeria is that most banks do not have the facilities and capacities to service the number of customers without much delay (Yusuff, et al., 2015). To rectify these and other associated problems that occur because of long queue in Nigeria banking sector, Automated Teller Machine (ATM) were incorporated to reduce the customers’ queue-length, reduce bankers’ workload and bring economic-balance between the waiting time and service cost. Automated Teller Machine (ATM) is a computerized electronic machine banking outlet, which allows customers to perform several banking operations or transactions such as withdrawing cash, making deposits, paying bills, obtaining bank statements, effect cash transfers and the likes without the aid of a teller or branch representative. John Shepherd-Barron and his team at De La Rue Instruments Ltd. invented this device (ATM). The Automated Teller Machine (ATM) was introduced into Nigeria market in 1989, first installed by National 
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Cash Registers (NCR) for the defunct Society General Bank in 1987, First Bank Plc in 1991 (Adeoti, 2013). Today, there are over three million ATMs worldwide as well as more than 200 different kinds of transaction possible on these highly interconnected terminals (ATM Industry Association (ATMIA) 50th Anniversary Factsheet, 2015). At the time of its invention, the ATM was an unproven device which people didn’t even know they needed, far less would come to rely on (Wurim, 2013), (Ivo and Resing, 2015). It has subsequently revolutionized society and helped bring about the 24/7 self-service culture we know today with its convenient access to financial services beyond banking hours, such as cash withdrawals, balance enquiries and a growing range of value added services (Moutinho and Smith, (2000)). The ATM has come to facilitate banking services by reducing the number of customer awaiting the teller service and put customer in control of their cash for the first time (Adeoti, 2011). Funds transfer can be done through ATM from one account to another at the push of a button, essential information relating to a transaction could be made available thousands of miles away within minutes (Moutinho, 2000), (Odunukwe, 2013), (Odirichukwu et al., 2014). In spite of this great contributions of ATM machine to financial banking sector, dispense error is very small compare to long queue problem at ATM service-point that customers are experiencing in every branches of many banks in Nigeria. Now, it is very crucial to ask the question “does ATM actually solve the problem or serve the purpose of its establishment?” This research is therefore, directed towards examining critically, the extent of waiting and service cost in Nigeria ATM service system. This we do by exploring customers’ arrival rate and services rates of the machine, determine the average waiting time spent on ATM queue and average total time spent in the system. We draw a relationship between increasing the number of channels (ATM machines) or changing the operational system and the effect it has on the average waiting time of the customers and service cost. A major aspect of mathematical theory of probability that deals with this phenomenon of waiting is called queuing theory (Janos Sztrik, 2010). Queuing theory is concerned with the design and planning of service facilities to meet a randomly fluctuating demand for service in order to minimize congestion and maintain economic balance between service cost and waiting cost (Taha (2007), Haastrup (2008)). Therefore, this study is reviewing the applicability of queuing theory in evaluating the performance of Automated Teller Machine (ATM) in Nigerian banking sector.  
2. Methodology The data used for this research was collected at First Bank Plc., University of Ibadan Branch, Ibadan, Nigeria. The services of bank considered were restricted to only customer activities with ATM. The following notations were used: � � number of customers in a system both waiting and in service, �= average number of customer arriving per unit of time, � � average number of customers being served per unit of time, � � number of parallel servers, � � traffic intensity and ��  or ��	
� = probability that there are � � customers in the system at any time t, both waiting and in service. The usual assumptions that the arrivals are independent of each other; services are also independent; and the mean arrival and service rates do not change over time were preserved. Since arrivals and services occur in accordance with a Poisson process, the time intervals between arrivals/services (i.e. the waiting time between successive arrival/service) follow exponential distribution and as such the mean inter-arrival time is represented as �
 and similarly the time intervals between services is �� (Taha (2007), Kothari, (2008), Haastrup, (2008), Haghighi, (2016)).  
2.1 Model I-(M/M/1): (∞/FIFO) Queuing System This study considers one of the simplest queue model (M|M|1): (∞|FIFO). In this model, we have Poisson arrival, Poisson service, exponential inter-arrival/service time, single channel, infinite system capacity and first in first out queue discipline. Let ��	
� be the probability that there are �  customers in the system at time	
, then the difference equation for ��	
� is ��	����� � ��	
� � �	� � ��Δ
��	
� � �Δ����	
� � �Δ
����	
� � 0	Δ
�																				1� when � � 0 ��	����� � ��	
� � ��Δ
��	
� � �Δ��	
� � 0	Δ
�																																																																	2� then lim��→���	
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� � ��	
�Δ
 � �	� � ����	
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�;   and lim��→���	
 � Δ
� � ��	
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 � ����	
� � ���	
� � 0	Δ
� so that we have   
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 ��	
� � ����	
� � ���	
�																																																																																													4� Equations (3) and (4) are known as difference equations in � and 
. The steady state solution for  ��  in the system at an arbitrary point of time is obtained by taking the limit of (3) %&	
 → ∞. If the steady-state exists 	� ( �, as 
 → ∞), then ��	
� → ��	%� 	   
 ��	
� → 0	%&	
 → ∞ *+	� � �, there exists no queue. If 
� , 1, we have an explosive state. Using the steady state condition, that is --� � 0, equations (3) and (4) becomes 0 � �	� � ���� � ����� � �����; 											! 1		%� 																																													5� 0 � ���� � ���																																																																																																															6� From equation (6), �� � 
� ��.  Also from equation (5) ���� � � � �� �� � �� ����, � ! 1																																																			7� Using iterative procedure on equation (7), we obtain the following results �1 � � � �� �� � �� �� � 2��31 �� �4 � � � �� �1 � �� �� � 2��34 �� In general, �� � 2��3� ��																																																																																															8� To give more support to equation (8), by principle of mathematical induction, equation (7) can be re-written as ���� � � � �� 2��3� �6 � �� 2��3��� �� ���� � � � �� 2��3� �6 � 2��3� �� Which gives ���� � 2��3��� ��																																																																												9� Therefore, this result holds for all values of n ∈ Z+. Using the boundary condition∑ ��9�:� � 1, then equation (11) yields 1 � ;2��3�9
�:� �� 																																			1 � �� <2��3� � 2��3� � 2��31 �⋯> 

   1 � �� < ���?@>, sum of geometric series where 
� � � ( 1 		1 � �� A 11 � �B This implies that �� � 1 � �, resulting in the steady state �� � ��	1 � ��; � ( 1	%� 	� ! 0																																															10� Equation (10) is the probability distribution of queue length. 
2.1.1 Characteristics of Model I 
(i) Probability of queue size greater or equal to n p	! n� � 	;PF �;	1 � ρ�ρF	9

F:H
9
F:H  � 	1 � ρ�ρH;ρF�H9

F:H  � 	1 � ρ�ρH ; ρF�H9
F�:H  
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																																																				� 	1 � ρ�ρHIρ� � ρ� � ρ4 �⋯J		using	S9 � a1 � r Q	! �� � 	1 � ���� A 11 � �B � �� 
(ii) Average number of customers in the system IR	��J R	�� � ;��� � ;�	1 � ����9

�:�
9
�:�  � �	1 � ��;�����9

�:�  � �	1 � ��   �;��9
�:�  				� �	1 � ��   � A 11 � �B R	�� � 	�	1 � �� A 1	1 � ��1B Therefore, the average queue length or average number of customers in the system is R	�� � �1 � � � �� � �																																																																												11� 

(iii) Average queue lengthR	S�, where S � � � 1 (that is, number of customers in queue minus customers in service). R	S� � ; S��9
T:� 																																												 � ; 	� � 1���9
���:� 																			 � ;��� �;��																								9

���
9
��� 	 � ;��� � U;�� � ��9

�:� V	9
��� 			 R	S� � �1 � � � I1 � 	1 � ��J															 R	S� � �11 � � � �1�	� � ��																																																																																																			12� 

(iv) Average length of non-empty queue R	S|S , 0� R	S S , 0� � R	S��	S , 0�X 																																												 �	S , 0� � �	� � 1 , 0� � �	� , 1�					 �	S , 0� � �	� , 1� � ;�� � �� � ��9
�:�  Recall that �� � 	1 � ���� �	S , 0� � 1 � 	1 � �� � 	1 � ��� � �1 � 2��31 Therefore, R	S S , 0� � �1�	� � �� Y 2��31X 																																															 R	S S , 0� � �1�	� � �� Z �1�1X 																																														 R	S S , 0� � �� � �																																																																																														13�X  

(v) The Fluctuation (Variance) of queue length is given by [%\	�� � R	�1� � IR	��J1. By algebraic transformations, �1 � �	� � 1� � �⇒ R	�1� � RI�	� � 1�J � R	�� Therefore, 
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RI�	� � 1�J � ;�	� � 1���																																																9
�:�  � ;�	� � 1�	1 � ����9
�:� 								 � 	1 � �^2;�	� � 1�Q��19

�:1  RI�	� � 1�J � 	1 � ���1  1 �1 _ Q11 � �` � 2�1	1 � ��1									 Therefore, [%\	�� � R	�1� � IR	��J1																																																					 � RI�	� � 1�J � R	�� � IR	��J1										 [%\	�� � 2�1	1 � ��1 � �1 � � � A �1 � �B1																														 [%\	�� � ��	� � ��1 																																																																																																							14� 
(vi) Waiting Time Distribution for Model I: Waiting time is mostly a continuous random variable and there is a non-zero probability of delay being zero. Denote time spent in queue by a . Let bc	
�  be the cumulative probability distribution so that from a complex randomness of the Poisson, we have bc	0� � �	d � 0� � �� � 1 � � � �	ef	�g&
fSh\	f�	
ih	&j&
hS	gQf�	%\\kl%m� bc	0� = �	d	 � 	0� 	� 	�0	 � 	1	 � 	�	 � 	� (No customer on the system upon arrival) To find bc	
� for 
 , 0, we suppose there will be � customers in the system upon arrival. For a customer to go into service at time between 0 and
, it means all the customers must have been served at time 
. Therefore,  	b_�		
� 	� 	�I	�	 � 	1�	Customers are served at time t].P [one customer being served in time dt] b�	�� � 	�
����h���	� � 1�! � 
 The waiting time is therefore ψc	
� � �Id q 
J � ;��rψ�	
� � ψc	0��

�
9
��� 																																				 

� ;	1 � ����r 		�
����h���	� � 1�! 	� 
 � 	1 � ���
�

9
�:� 									 

� 	1 � ���r �	h��� ;	�
�����	� � 1�! 	 
 � 	1 � ��9
���

�� 		 
� ��	1 � ��	r h��	��s�� 
 � 	1 � ��																			�

�  
� ��	1 � �� < h��	��s����	1 � ��>�� � 	1 � ��																				 bc	
� � 1 � �tu@	vuw�x ,													
 , 0																																															 Hence, the distribution of waiting time in queue is bc	
� � y 1 � �; 
 � 01 � �h��	��s��; 
 , 0																																																																																		15� (vii) Average waiting time of a customer (in the queue) R	d� � r 
   
9� 		bc	
� 
																																											 � r 
   
 z1 � �h��	��s��{9�  
												 � ��	1 � ��r 
1�� ⋅ h��	��s�� 
	9�  � ��	1 � �� Γ	2�I�	1 � ��J1								 
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R	d� � ��	1 � �� � ��	� � ��																				 (viii) Average waiting time of an arrival that has to wait: Recall that �	d , 0� � 1 � �	d � 0� �
� R	d|d� , 0 � R	d��	d , 0�																				 R	d|d , 0� � ��	� � ��~��� � 1� � � 
(ix) For the busy period distribution, suppose v is the random variable denoting the total time that a customer had to spend in the system including service. This makes the cumulative density function to be b	d|d , 0� � b�	d��	d , 0�																																																		16� Where, b�	d� � --�bc	
� � --� �1 � �h��	��s��� � ��	1 � ����	��s��; and			�	d , 0� � � Therefore, b	d|d , 0� � ��	1 � ����	��s��� 																																																																	 b	d|d , 0� � � 21 � ��3��2��
�3� 																																																																		 b	d|d , 0� � 	� � ��h�	��
�� ,																
 , 0																																																																		17� (x) Average waiting time that a customer spends in the system including service R	l� � r 
b	d|d , 0� 
																	9�  � r 
	� � ��h�	��
�� 
9�  R	l� � 	� � ��r 
9� h�	��
�� 
									 Let . Therefore  R	l� � 	� � ��r �� � � h�� 			  �� � �					9�  R	l� � 1� � �r �h�� � � 1� � � 	Γ	2�9�  R	l� � 1� � �																																																  

2.2 Generalization of Model I-(M/M/C): (∞/FIFO) Queuing System This system deals with queue(s) served by parallel service channels (servers). Here each server has an independently and identically distributed exponential service-time distribution. This is the generalization of the Birth-Death process in the M/M/1 system. In this case, we consider service channels more than 1 (i.e. c). It is a birth-death process in that the arrival is Poisson and the service is exponential. Thus, the mean arrival rate is given by �� � �	∀�. The service rate is ��. This is because there are c channels each dispensing at the rate of	�. If � q � (where customers are less than the number of servers, no queue), so only n of the c servers will be busy making the mean service rate to be nµ. However, if n > c, then queue is formed. Therefore �� � y��; 1 q � ( ���; � ! � 																																																19� Thus, the steady state solution for the probability of � customer at time 
 using values of �� and ��  becomes �� � ����
� ������	� � 1��⋯ 	1�� ; 1 q � ( ���	���	���⋯ 	���	� � 1��	� � 2��⋯ 	1�� ; � ! �  
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�� � ���
��������! ; 1 q � ( ����������� ; � ! � 																																																															 

�� � � �����! ; � ( �				���������! ; � q �	 																																																																		  Using the boundary condition ∑ ��9�:� �  																																						1 � ;�� �;��	9
�:�

���
�:�  

												� ; 1�! �� � 			�� ; 1�����! ����																																																				9
�:�

���
�:�  

1 � U; 1�! �� 	� ��; 1�!	2��3���9
�:�

���
�:� V ��																																				 

�� � �; 1�! 2��3� � 1�! 2��3� 	 11 � ���		���
�:� ���																															 
�� � �;���! 2 ���3� � ���!���

�:� 2 ���3 11 � �����
�� 																																																									20� 

or �� � <	�����! � 	�����! 	1 � ��>�� ; dk
i		� � ��� 																																																					21� Equation (21) is only valid if 
�� ( 1 what this means is that the mean arrival must be less than the mean maximum potential service rate of the system. ��  becomes same as model I of the M/M/1 system if � � 1. 
2.2.1 Characteristics of M/M/C: ∞/FIFO Queuing System The most commonly used measures of performance in a queuing situation are (i) The probability that an arrival has to wait �	� ! �� �	� ! �� �;�� �; 1�! ���� 2��3��9

�:�
9
�:� 						 

�	� ! �� � � ~����	� � 1�! 	�� � ��� ��																		 �	� ! �� � �� ~ ������! ~1 � ���� �� � 	�����! 	1 � �� ��																																																									22�  (ii) Probability that the arrival enters the service without having to wait �	� ( �� �	� ( �� � 1 � �	� ! �� � 1 � �� ~ ������! ~1 � ���� �� � 1 � 	�����! 	1 � ����																		23� (iii) Expected number of customers in queue (��) (average queue length) �� �;	� � ���� � ;�����		+f\	� � � � �																9
�:�

9
�:�  

�� � ;� 1�! ���� 2��39
�:�

� �� � ;� 1�! �� 2��39
�:�

��� ��										 
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�� � 1�! 2��3� ��;�2 ���39
�:�

�																																																					 
�� � 1�! 2��3� 2 ���3 �� �� ~ ����;2 ���39

�:�
�																																			 

�� � �� ~ ��������! �� �� ~ ���� <1 � 2��3 � 2��31 � 2��34 �⋯> 
Using sum to infinity of a geometric series gives �� � �� ~ ��������! �� Z �� ~ ���� � 1~1 � ����� �� � �� ~ ��������! �� Z 1~1 � ����1												 �� � �� ~ ��������! ~1 � ����1 �� � �������! 	1 � ��1 ��																																																	24� (iv) Expected number of customers in the system (Ls) or E(n) is  �� � �� � �� � �� ~ ��������! ~1 � ����1 �� � �� � �������! 	1 � ��1 �� � ��																																25� (v) Expected waiting time (an arrival spent) in the queue R	a�� is R�a�� � 1� �� � 1� ���� �

� ~ ��������! ~1 � ����1 ������ � 	1� < �������! 	1 � ��1 ��>																						26� 
(vi) Expected waiting time (an arrival spent) in the system R	a�� is given by R	a�� � R�a�� � ��	 R	a�� � R�a�� � 1� � 1� ���� �

� ~ ��������! ~1 � ����1 ������ � 1� � 	1� < �������! 	1 � ��1 ��> � 1�														27� (vii) Expected number of busy servers (�)̅ �̅ � ���� �
� ~ ��������! ~1 � ����1 �� � ������ � �� ~ ��������! ~1 � ����1 �� � ��																												28� (viii) Expected number of idle server (�̅�) is number of server minus expected number of busy servers �̅� � � � �̅	                    (29) (ix) Efficiency of (M/M/C) model =  ��t���t	��T�t�	6 	����6Tt��	�t��t-�6��¡	��T�t�	6 	����6Tt��                                                        (30) This multiple-server queue model is pertinent to determine how many servers are actually needed and at what wage/cost in order to maximize financial efficiency.  

3. Results and Discussion 
3.1. Arrivals Duration Analysis We are interested in time intervals between customers’ consecutive arrivals (inter-arrivals). We have distributed data over the inter-arrivals into 10 seconds amplitude classes, starting from 1 to 10 seconds, 11 to 20 seconds and more.   
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Table 1: Inter Arrival Times for Day 1 Inter Arrival Time(sec) Number of customers(fi)  Mid-Point (xi) fixi 1-10 45  5.5 247.5 11-20 30  15.5 465 21-30 20  25.5 510 31-40 10  35.5 710 41-50 12  45.5 546 51-60 9  55.5 499.5 61-70 3  65.5 196.5 71-80 2  75.5 151 81-90 1  85.5 85.5 
Total 132   3056  �̅� � ∑ +¢�¢�¢:�∑ +¢�¢:� � 3056132 � 23.1515 Table 2: Inter Arrival Times for Day 2 Inter Arrival Time(sec) Number of customers (fi)  Mid-Point 	�¢� +¢�¢  1-10 49  5.5 269.5 11-20 24  15.5 372 21-30 20  25.5 510 31-40 15  35.5 532.5 41-50 9  45.5 409.5 51-60 7  55.5 388.5 61-70 4  65.5 262 71-80 2  75.5 151 81-90 2  85.5 171 

Total 132   3066  �̅1 � ∑ +¢�¢�¢:�∑ +¢�¢:� � 3066132 � 23.2272 Table 3: Inter Arrival Times for Day 3 Inter Arrival Time(sec) Number of customers (fi)  Mid-Point (xi) +¢�¢  1-10 50  5.5 275 11-20 29  15.5 449.5 21-30 18  25.5 459 31-40 13  35.5 461.5 41-50 9  45.5 409.5 51-60 7  55.5 388.5 61-70 4  65.5 262 71-80 2  75.5 151 81-90 0  85.5 0 
Total 132   2856  �̅4 � ∑ +¢�¢�¢:�∑ +¢�¢:� � 3126132 � 21.6364 The empirical convoluted weighted average of arrival rate is �̅ � ���̅� � �1�̅1 � �4�̅4�� � �1 � �4 																																																																								 �̅ � 	132 Z 23.1515� � 	132 Z 23.2272� � 	132 Z 21.6364�132 � 132 � 132  �̅ � 22.6717																																																																																																																									 Fitting inter-arrival durations to an exponential law, the mean inter-arrival time (�) is: � � 1�̅ � 122.6716 � 0.04410785	Qh\	&h�f� &																							 
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� � 0.04410785 Z 60 � 2.646471 £ 2.6465	Qh\	Sk�g
h&  
Service Duration Analysis Table 4: Mean Service Durations for Day 1 Inter Service Time(sec) Number of Customers served (fi) Mid-Point 	j¢� +¢j¢  31-60 7 45.5 318.5 61-90 12 75.5 906 91-120 11 105.5 1160.5 121-150 19 135.5 2574.5 151-180 5 165.5 827.5 181-210 6 195.5 1173 211-240 4 225.5 902 241-270 3 255.5 766.5 271-300 2 285.5 571 

Total 69  9199.5  j¤� � ∑ +¢j¢�¢:�∑ +¢�¢:� � 9199.569 � 133.3261 Table 5: Mean Service Durations for Day 2 Inter Service Time(sec) Number of Customers served (fi) Mid-Point 	j¢� +¢j¢  31-60 8 45.5 364 61-90 13 75.5 981.5 91-120 8 105.5 844 121-150 11 135.5 1490.5 151-180 15 165.5 2482.5 181-210 7 195.5 1368.5 211-240 3 225.5 676.5 241-270 2 255.5 511 271-300 1 285.5 285.5 
Total 68  9004 j¤1 � ∑ +¢j¢�¢:�∑ +¢�¢:� � 900.468 � 132.4118 Table 6: Mean Service Durations for Day 3 Inter Service Time(sec) Number of Customers served (fi) Mid-Point 	j¢� +¢j¢  31-60 12 45.5 546 61-90 6 75.5 453 91-120 13 105.5 1371.5 121-150 3 135.5 406.5 151-180 8 165.5 1324 181-210 17 195.5 3323.5 211-240 2 225.5 451 241-270 7 255.5 1788.5 271-300 2 285.5 571 
Total 70  10235  j¤4 � ∑ +¢j¢�¢:�∑ +¢�¢:� � 1023570 � 146.2143 The empirical combined or overall weighted mean service rate is j¤ � ��j¤� � �1j¤1 � �4j¤4�� � �1 � �4 																																																																		 j¤ � 	69 Z 133.3261� � 	68 Z 132.4118� � 	70 Z 146.2143�69 � 68 � 70  j¤ � 137.3841																		  Fitting service durations to an exponential law, the mean service time (�) is: 
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� � 1j¤ � 1137.3841 � 0.007278863		served	customers	per	seconds � � 0.007278863 Z 60 � 0.4367318 £ 0.4367		served	customers	per	minute With � � 2.6465, � � 0.4367  and � � 6 (number of ATM machines), traffic intensity 	�� is � � ��� � 2.64656 Z 0.4367 � 1.010037 £ 1.0100 Since � , 1this implies that, the mean arrival is greater than the mean maximum potential service rate of the system. That is, arrival come at a faster rate than the server can accommodate. The expected queue length increase without limit and a steady state does occur. For steady state condition (� ( 1) to prevail, we increase number of servers. At � � 7, � � 2.64657 Z 0.4367 � 0.8657463 £ 0.8657 which indicates the steady state condition. 
Calculation of Measures of Effectiveness At	� � 7, we have �� � �; ���� 2 ���3� � ���! 	2 ���3� 			 1~1 � ����				���

�:� ���																																																				 
� ª;7��! 2 2.64657 Z 0.43673� � 7«7! 2 2.64657 Z 0.43673« Z 1~1 � 2.64657 Z 0.4367�«��

�:� ¬�� 
� U; 	6.060224���! � 443.674­

�:� V��																																																																	 �� � I255.6391 � 443.674J�� � 0.001429975																																																			 
(i) Probability that an arrival has to wait �	� , �� �	� ! �� � �� ~ ������! ~1 � ���� ��																																																																																								 � 7« ~ 2.64657 Z 0.4367�«7! ~1 � 2.64657 Z 0.4367� Z 0.001429975 �	� , �� � 0.6344427																																																																	 
(ii) Probability that the arrival enters the service without having to wait �	� ( �� �	� ! �� � �� ~ ������! ~1 � ���� ��																																																																																								 � 7« ~ 2.64657 Z 0.4367�«7! ~1 � 2.64657 Z 0.4367� Z 0.001429975														 �	� ( �� � 0.3655573																																																																																	 
(iii) Expected number of customers in queue (��) (average queue length) �� � �� ~ ��������! ~1 � ����1 ��																																																																																																															 � 7« ~ 2.64657 Z 0.4367�«��7! ~1 � 2.64657 Z 0.4367�1 Z 0.001429975														 �� 	� 4.091258																																																																																											  
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(iv) Expected number of customers in the system (��) or E(n) �� �	 �� ~ ��������! ~1 � ����1 �� � ��																																														 
� 7« ~ 2.64657 Z 0.4367�«7! ~1 � 2.64657 Z 0.4367� Z 0.001429975		 � 2.64650.4367					 �� � 4.091258 � 2.64650.4367 � 10.15148																																							 

(v) Expected waiting time (an arrival spent) in queue R	a�� R�a�� � 1� 	���� �
� ~ ��������! ~1 � ����1 ������																																																							 R�a�� � 12.6465 � 7« ~ 2.64657 Z 0.4367�«7! ~1 � 2.64657 Z 0.4367� Z 0.001429975		� R�a�� � 1.545913																																																																						 

(vi) Expected waiting time (an arrival spent) in the system R	a�� R	a�� � 1� 	���� �
� ~ ��������! ~1 � ����1 ������ 					� 1�																																																															 

R�a�� � 12.6465 � 7« ~ 2.64657 Z 0.4367�«7! ~1 � 2.64657 Z 0.4367� Z 0.001429975		� � 10.4367 
R�a�� � 1.545913	 � 10.4367 � 3.835815																																															 

(vii) Expected number of busy servers (�)̅ �̅ � ���� �
� ~ ��������! ~1 � ����1 ������ � �� ~ ��������! ~1 � ����1 �� � �� 

�̅ � 2.64650.4367 � 6.060224																																		 
(viii) Expected number of idle server (�′�  �′ � � � �̅ � 7 � 6.060224 � 0.939776 The traffic intensity, average queue length, waiting time both queuing and in the system, expected number of busy server(s) for different number of servers were given in the table below.   
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Table 7: Average Queue Length and Waiting time in queue and in the system for different number of ATM Machines (servers) c Ρ P(n ≥ c) P(n < c) Lq Ls Wq Ws Remark 1 6.060224 limitless limitless limitless limitless limitless limitless explosive 2 3.030112 limitless limitless limitless limitless limitless limitless explosive 3 2.020075 limitless limitless limitless limitless limitless limitless explosive 4 1.515056 limitless limitless limitless limitless Limitless limitless explosive 5 1.212045 limitless limitless limitless limitless limitless limitless explosive 6 1.010037 limitless limitless limitless limitless limitless limitless explosive 7 0.8657463 0.6344427 0.3655573 4.091259 10.15148 1.545913 3.835815 steady state 8 0.757528 0.3712217 0.6287783 1.159767 7.219991 0.4382266 2.728128 steady state 9 0.6733583 0.2051806 0.7948194 0.4229713 6.483196 0.1598229 2.449724 steady state 10 0.6060224 0.1068387 0.8931613 0.1643409 6.224565 0.06209746 2.351999 steady state 11 0.5509295 0.05232528 0.9476747 0.06419379 6.124418 0.02425611 2.314158 steady state 12 0.5050187 0.02409116 0.9759088 0.02457968 6.084804 0.00928762 2.299189 steady state 13 0.4661711 0.01043162 0.9895684 0.00910951 6.069334 0.0034421 2.293344 steady state 14 0.4328732 0.00425304 0.995747 0.003246242 6.063471 0.00122662 2.291128 steady state 15 0.404015 0.001635431 0.9983646 0.001108649 6.061333 0.00041891 2.29032 steady state  

 Figure 1: The graph of average queue length, average waiting time and probability of an arrival has to wait against number of servers (ATM machines)   
Conclusion The mean arrival rate of customer to the First Bank of Nigeria (UI Branch) and the mean service rate of the machines were found to be 2.6465 ≈ 3 per minute and 0.4367 per minute, respectively. Based on the effective six (6) ATM machines, the traffic intensity was calculated to be 1.010037, which implied that the mean arrival rate was greater than maximum potential service rate of the servers. From table (7), it was discovered that for number of servers (c) less than seven (7) the system was in explosive state, the queue length and the waiting time increased without limit. For number of servers greater than ≥ 7, average queue length and the average waiting time decreases as the number of ATM machines (servers) increases leading to a steady state of the system. Figure 1 also revealed that the expected queue length, expected waiting time, and the probability that an arrival has to wait decreases as the number of ATM machines increases. Since arrival rate could not be controlled, we recommend installation of more functional and effective ATM machines. In addition, more of on-line banking should be encouraged. We also suggest that with the knowledge of probability theory, input and output models and Spectral theory for the differential equations of simple birth and death processes and more robust queuing model(s) can be explored. These will capture other unstable variables such as variation due to day, time of the day, bank location and the likes to reflect the real world situations.  
References Adeoti, J. A. (2011). Automated Teller Machine (ATM) Frauds in Nigeria: The Way Out. Journal of Social Sciences, 27(1): 53-58. 



Journal of Economics and Sustainable Development                                                                                                                        www.iiste.org ISSN 2222-1700 (Paper) ISSN 2222-2855 (Online) Vol.9, No.10, 2018  

144 

Adeoti, O. (2013). Working of Automated Teller Machine (ATM). Available at http://www.techs24x7.com/blog/ working-of-automated-tellermachine-atm/ ATMIA 50th Anniversary Factsheet (2018). ATM Industry Association, Retrieved from www.atmia.com, on 5th March, 2018. Elaglam, D. W. (2006). “Introduction to Waiting Line Models” Haastrup, V. A. (2008). Progressive Operational Research Techniques for Millenium Analysts & Managers, Volume 1, 3rd edition, KHAO publishers, ISBN: 978-978-48931-8-3. Haghighi, A. M. and Mishev, D. P. (2016). Delayed and Network queues, John Wiley & Sons, Inc., Hoboken, New Jersey, ISBN: 9781119022138 (cloth). Hamdy A. Taha (2007). Operations Research: An Introduction, 8th Edition, Pearson Education, Inc., ISBN: 0-13-188923. Ivo Adan and Resing Jacues (2015). Queuing Systems, Department of Mathematics and Computing Science, Eindhoven University of Technology, Netherlands. J´anos Sztrik (2010). Queueing Theory and its Applications: A Personal View, Proceedings of the 8 th International Conference on Applied Informatics Eger, Hungary, January 2730, 2010. Vol. 1., pp. 930. Kothari, C. R. (2008). An Introduction to Operational Research, Third Revised and Enlarged Edition, Vikas Publishing House PVT LTD, ISBN: 0-7069-8567-2. Medhi, J. (2003). Stochastic Models in Queuing Theory, 2nd edition, Academic Press, An imprint of Elsevier Science, LCN: 2002110814, ISBN: 0-12-487462-2. Meyer, W. J. (2004). Concepts of Mathematical Modelling, Dover Publications, Inc., New York, ISBN: 0-486-43515-6. Mian, S. N., Rahee, S. and Muhammad I. A. (2012). Impact of Global Financial Crisis on Banks Financial Performance in Pakistan, American Journal of Scientific Research, ISSN 2301-2005, Issue 78, pp. 101-110, available at http://www.eurojournals.com/ajsr.htm Moutinho, L. and Smith, A. (2000). Modelling bank customer satisfaction through mediation of attitudes toward human and automated banking, The International Journal of Bank Marketing, 18(3): 124. Odirichukwu, J. C., Tonye, L. and Odii, J. N. (2014). Banking Queue System in Nigeria, Computing, Information Systems, Development Informatics & Allied Research Journal, ISBN 978-2257-44-7 (Print), ISSN 2167-1710 (online), Vol. 5, No. 1, pp. 95-106, www.cisdijournal.net. Odunukwe, A. D. (2013). Application of Queuing Models to Customers Management in the Banking System: A Case Study of United Bank for Africa, Okpara Avenue Branch Enugu, Department of Mathematics and Statistics, Faculty of Natural Sciences, Caritas University Enugu. Olaniyi, T. A. (2004). An Appraisal of Cost of Queuing in Nigerian Banking Sector: A case study of First Bank of Nigeria Plc. Ilorin, Journal of Business & Social Sciences, Volume 9, Issue 1 &2, pp. 139-145. Sowunmi, S. O., Eleyowo, I. O., Salako, M. A. and Oketokun, F. O. (2015). Human Resource Development as a Correlate of Performance of the Banking Industry in Ogun State, Nigeria, Journal of Economics and International Finance, Vol. 7(5), pp. 112-126, DOI: 10.5897 /JEIF2015.0656, ISSN: 2141-6672, http://www.academicjournals.org/JEIF. Wurim, B. P. (2013). Discriminant Analysis and the Prediction of Corporate Bankruptcy in the Banking Sector of Nigeria, International Journal of Finance and Accounting, 2(6), pp. 319-325, DOI: 10.5923 /j.ijfa. 20130206.04 Yusuff, S. A., Babalola, O. A. and Ramoni, T. A. (2015). Analysis of Expected, Actual Waiting Time and Service Delivery: Evidence from Nigeria Banking Industry, The International Journal of Humanities & Social Studies, (ISSN 2321-9203), www.theijhss.com, Volume 3, issue 1, pp. 398-402.   


