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Abstract 

The objective of this study was to forecast and analyse the demand for petroleum products in Ghana using 
annual data from 2000-2010. It focused on studying the feasibility forecast using nested conditional mean 
(ARMA) and conditional variance (GARCH, GJR, EGARCH) family of models under such volatile market 
conditions. A regression based forecast filtering simulation was proposed and studied for any improvements in 
the forecast results.  
Keywords: time Series models, regression model, forecast filtering, petroleum products, stationarity of time 
Series data.  
 
1. Introduction 

The demand for petroleum has increased in the last decade all over the world including the United 
States, Middle Eastern nations, and other Asian nations, which has contributed in the high prices. The demand 
for petroleum products in India has been increasing at a rate higher than the increase of domestic availability 
(Banapurmath, et. al., 2011). At the same time, there is continuous pressure on emission control through 
periodically tightened regulations particularly in metropolitan cities. Over the period 1980-2008, the price of 
crude oil had fluctuated significantly, with a  mean, minimum and maximum values of $ 32.31 (bbl), $ 12.72 
(bbl) and $ 140 (bbl) respectively(WAMA(2008). The above statistics, in addition to a standard deviation of 
17.08 over the sample period show that the prices of crude have always been characterized with severe 
instability. Monthly fluctuations have in fact been more severe than these annual trends, with the price of crude 
oil reaching $140 (bbl) in July 2008. Such instability in the prices of crude oil is bound to cause macroeconomic 
distortions, especially in net-oil importing countries, like some ECOWAS countries (WAMA, 2008). 

Ghana’s demand for crude oil and refined petroleum products has also been growing over the past 
decade, and, the country’s demand for oil increased dramatically surprising many energy analysts. This growth 
has been driven by socio-economic and technical factors that have influenced each category of final energy use. 
These changing petroleum requirements are closely related to its high rates of growth in economic output and 
personal incomes. The growth in incomes and the accompanying changes in petroleum demand are themselves 
driven by an ongoing population shift from rural to urban areas. That growing urban population is demanding 
new vehicles and new roads, raising the demand for energy in the transportation sector. The growth in output in 
the industrial sector is driving the high demand for petrochemical feed stocks, including naphtha-based 
petrochemicals, which are similar in composition to motor gasoline. Fluid catalytic cracking of heavy ends to 
high-value liquid fuels is a common unit operation in oil refineries (Khan, et al., 2011). In this process, the heavy 
feedstock that contains sulfur is cracked to light products 

At the core of the development of every nation is petroleum. Currently, petroleum is among the most 
important natural resources. Every nation uses petroleum products such as gasoline, jet fuel, liquefied petroleum 
gas and diesel to run cars, trucks, aircraft and other vehicles.  There is therefore the need to build stocks to meet 
the seasonal demands. In the long term, blending non-petroleum additives into petroleum products such as 
ethanol or other oxygenating agents into gasoline will be necessary to reduce crude oil demand. Efficient 
refining capacity is a requirement to meet the demand of the nations. The past few years have witnessed an 
increased impetus toward renewable energy to replace fossil fuels that has been driven both by environmental 
and national security concerns (Hensel, 2011). 

Many researchers analyzing the demand for petroleum products have looked at the aggregate 
consumption of petroleum. Sa'ad(2009), used annual time series data for the period 1973 to 2007 in two 
econometric techniques namely the structural time series model (STSM) and unrestricted error correction model 
(UECM) to estimate demand for petroleum products. The results from both models revealed that the demand for 
petroleum products is price inelastic. The robust optimization methodology is applied to deal with uncertainties 
in the prices of saleable products, operating costs, product demand, and product yield in the context of refinery 
operational planning (Leiras, et al , 2010 and  Munim, et al.,2010 
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MATERIALS AND  METHOD 
Conditional mean models were used to forecast mean while the conditional variance models were used 

for forecasting variance or volatility in the demand for oil. In this study, the nesting of these two models was 
used first to forecast the conditional mean and then the conditional variance was estimated to get the value of 
forecast demands for oil(Shrivastava, 2009). After analysis of  data for quarter 1 (Q1r) and quarter 2 (Q2r), 
ARMA(2,2) models had been found most appropriate for forecasting mean, hence ARMA(2,2) and 
(GARCH(1,1)/GJR(1,1) /EGARCH(1,1))  were used for forecasting oil demand for 2012 and 2013. 

The conditional mean and variance models have been viewed from a linear filtering perspective, and 
then the application of the iterated conditional expectations to the recursive equations was conducted, one 
forecast period at a time (Dhar, et. al. , 2009). For example for forecasting demand for the second quarter (Q2), 
demand data were taken of quarter 1 (Q1) and forecast using above defined method has been done. Using 
observed quarter 2(Q2) demand as dependent variable and (ARMA/GARCH) forecast as independent variable 
regression model was obtained. Calculation of quarter 3 demand (Q3r) using observed data of Q2 was obtained 
using nested models and the regression model obtained in the previous step was used to filter quarter 3 (Q3) 
demand forecast. 

Conditional variance models (Shrivastava, 2009), unlike the traditional or extreme value estimators, 
incorporate time varying characteristics of second moment/volatility explicitly. The following models fall into 
the category of conditional volatility models(Hull, 2006): 

i. ARCH (m) Model (Auto Regressive Conditional Heteroscedasticity) 
ii. EWMA Model (Exponentially Weighted Moving Average Model) 

iii. GARCH(a,b)Model(Generalized Autoregressive Conditional Heteroscedasticity). 
iv. EGARCH Model.  

The stationarity was tested using ADF test with and without drift and trend, the AR(p) was determined 
using PACF and MA(q) was determined using ACF. The number of lagged terms to be included in the model 
was identified based on the minimum value of AIC and SBC criteria. The ARMA model was tested for ARCH 
effects using the ARCH LM test and the measures of performance were calculated for the static and dynamic 
forecasts made for the out-sample period. The in-sample data constituting 80% was used for estimating the 
coefficients of the parameters and 20% the out-of- sample data was forecasted.  

The forecasted results from random walk model, ARMA, ARMA-GARCH, ARMA-EGARCH models 
using static and dynamic forecasting were compared based on the predictive power using the three forecasting 
accuracy measures: Root Mean Square Error, Mean Absolute Error and Thiel Inequality Coefficient. Theil’s U 
statistic was rescaled and decomposed into 3 proportions of inequality – bias, variance and covariance – such 
that bias + variance + covariance = 1 and these measures were also calculated. 

1.1. Autoregressive Moving Average( ARMA )Models 

The Autoregressive Moving Average (ARMA) Models have been used by many researcher for 

forecasting(Shrivastava, et, al. , 2010; Abu and Behrooz, 2011) . Given a time series of data tZ
, the ARMA 

model is a tool for understanding and, perhaps, predicting future values in this series. The model consists of two 
parts, an autoregressive (AR) part and  a  moving average (MA) part. The model is usually then referred to as the 
ARMA (a, b) model where “a” is the order of the autoregressive part and “b” is the order of the moving average 
part. The notation ARMA (a, b) refers to the model with “a” autoregressive terms and “b” moving-average 

terms. This model contains the AR(a) and MA(b) models. A time series tZ
 follows an ARMA (1, 1) model if it 

satisfies 
∑∑
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 } is a white noise series. The above equation 
implies that the forecast value is depended on the past value and previous shocks. 

The notation MA(b) which refers to the moving average model of order b is written as 
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where the bαα ,...,1  are the parameters of the model, µ is the expectation of Zt 

(often assumed to equal to 0), and the btt −ωω ,...,
are again, white noise error terms.    

The Autoregressive Moving Average model(ARMA) is a method which can be used when the time 
series variable is related to past values of itself. By regressing Zt on some combination of its past values, we are 
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able to derive a forecasting equation. We expect the autoregressive technique to perform reasonably well for a 
time series that: 

1. Is not extremely volatile and does not contain extreme amounts of random            movement. 
2. Requires “q” short-term or medium- term forecast, that is less than two years 

The fact that the autoregressive procedure does not perform well on a time series is not a serious 
disadvantage. Practically all forecasting techniques perform poorly in this situation. Suppose we want to predict 

the values of Zt using the previous observation, we use the expanded equation: 22110 −− ++= ttt ZbZbbZ
, 

where t takes the values = 3, 4, 5, …. The values 0b
, 1b

, and 2b
are the least squares regression estimates 

obtained from any multiple linear regression. There are two predictor variables here, the lagged variables, 1−tZ
 

and 2−tZ
. The above equation is a second order autoregressive equation because it uses the two lagged terms. In 

general, the ath– order autoregressive equation is given as :

^

22110 ... atattt ZbZbZbbZ −−− ++++=
, and 

,...2,1 ++= aat
 

The assumption underlying the ARMA model is that the future value of a variable is a linear function of 
past observations and random errors. In this model it is possible to find an adequate description of data set. This 
method consists of four steps:   

1. Model identification, 
2. Parameter estimation,  
3. Diagnostic checking and  
4. Forecasting.  
In the identification step, it can be seen that a model generated from an ARMA process may contain some 

autocorrelation properties, so there will be some potential models that can fit the data set but the best fitted 
model is selected according to AIC information criteria. Stationarity is a necessary condition in building an 
ARMA model used for forecasting, so data transformation is often required to make the time series to be 
stationary. In this study, the unit root test, known as the Dickey and Fuller test (Shrivastava, et, al., 2010; 
Gujarati, 2006; Abu and Behrooz, 2011 ), is used to test the stationarity of the time series.  

Based on the result obtained, the data set is stationary at first difference even with the existence of 
structural break. Once a tentative model is obtained, estimation of the model parameters is applicable. The 
parameters are estimated such that an overall measure of errors is minimized. The third step is diagnostic 
checking for model adequacy. Autocorrelation and also serial correlation of the residuals are used to test the 
goodness of fit of the tentatively obtained model to the original data. When the final model is approved then it 
will be used for prediction of future values of the oil demand. 

1.2. The ARCH/GARCH Models 

The first model that provides a systematic framework for volatility modeling is the ARCH model of Engle 

(Gujarati, 2006). The basic idea of the ARCH model is that the shock 
αt  of an asset return is serially 

uncorrected but dependent; also the dependence of 
αt  can be described by a simple quadratic function of its 

lagged values. Specifically, an ARCH (m) model assumes that t t ta σ ε=
 ,    

2 2 2

0 1 1 .....t t m t ma aσ α α α− −= + + +
 (Gujarati, 2006), where 

{ }tε
is a sequence of independent and identically 

distributed (i.i.d.) random variables with mean zero and variance 1, 0 0α >
and 

0
i

α ≥
 for 0i > . The 

coefficient i
α

 must satisfy some regularity condition to ensure that the unconditional variance of t
a

is finite. In 

practices, t
ε

is often assumed to follow the standard normal or a standardized student t distribution or a 
generalized error distribution. 

GARCH models are used as a successful treatment to the financial data which often demonstrate time-
persistence, volatility clustering and deviation from the normal distribution. Among the earliest models is Engel 
(1982) linear ARCH model, which captures the time varying 
feature of the conditional variance. Bollerslev (1986) develops Generalized ARCH (GARCH) model, allowing 
for persistency of the conditional variance and more efficient testing. Engle and 
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Bollerslev (1986) invent the Integrated GARCH (IGARCH) model that provides consistent estimation under the 
unit root condition. Engle, Lilien, and Robins (1987) design the ARCH-in- 
Mean (ARCH-M) model to allow for time varying conditional mean. Nelson’s (1990a & b) Exponential 
GARCH (EGARCH) model allows asymmetric effects and negative coefficients in 
the conditional variance function.  

The leveraged GARCH (LGARCH) model documented in Glosten, Jagannathan and Runkle (1993) 
takes into account the asymmetric effects of shocks from different directions. Since their introduction by Engle 
(1982), Autoregressive Conditional Heteroskedastic (ARCH) models and their extension by Bollerslev (1986) to 
generalised ARCH (GARCH) processes, GARCH models have been used widely by practitioners. At a first 
glance, their structure may seem simple, but their mathematical treatment has turned out to be quite complex. 
Although the ARCH is simple, it often requires many parameters to adequately describe the volatility process of 
an asset return some alternative models must be sought. Shrivastava, et al. (2010) and Hull(2006) proposed a 
useful extension known as the generalized ARCH (GARCH) model. An important feature of GARCH-type 

models is that the unconditional volatility σ  depends on the entire sample, while the conditional volatilities tσ

are determined by model parameters and recent return observations. 

Let 
( )t tε ∈ℤ

be a sequence of independent and identically distributed (i.i.d.) random variables, and 

let 
){1, 2,3,...,p ∈ =ℕ

 and
}{0

o
p ∈ = ∪ℕ ℕ

. Further, let 0 0α >
, 1 1,..., 0

p
α α − ≥

, 
0

p
α >

, 

1 1,..., 0
q

β β − ≥
 and 

0
q

β >
 be non-negative parameters. A GARCH(p, q) process 

( )tX t ∈ℤ
 with volatility 

process is
( )t tσ ∈ℤ

 is then a solution to the equations:  

t t tX σ ε=
,  t ∈ℤ                           (1) 

2 2 2

1 1

1 1

p q

t t i t j t

i j

Xσ α α β σ− −
= =

= + +∑ ∑
,  t ∈ℤ                                                                                      (2) 

 where the process 
( )t tσ ∈ℤ

 is non-negative. The sequence 
( )t tε ∈ℤ

 is referred to as the driving noise 
sequence. GARCH (p, 0) processes are called ARCH (p) processes. The case of a GARCH (0, q) process is 
excluded since in that case, the volatility equation (2) decouples from the observed process and the driving noise 
sequence. 

It is a desirable property that tσ
 should depend only on the past innovations

( )t h hε − ∈ℕ
, that is, it 

is measurable with respect to σ  algebra generated by 
( )t h hε − ∈ℕ

. If this condition holds, we shall call the 

GARCH (p, q) process causal. Then 
( )tX

is measurable with respect to σ  algebra 0( : )t h hσ ε − ∈ℕ
, 

generated by 0( )t h hε − ∈ℕ
. Also, tσ

 is    independent of 0( )t h hε + ∈ℕ
, and tX

 is independent of 

( : )t h hσ ε + ∈ℕ
, for fixed t. The requirement that all the coefficients 

1,..., pα α
 and 1,..., qβ β

 are non-

negative ensures that 
2σ is non-negative, so that tσ

can indeed be defined as the square root of
2σ .  

Equation(1) is the mean equation and is specified as an AR(p) process. Equation (2) is the conditional 
variance equation and it is specified as the GARCH(1, 1) process. Conditional variance models (Shrivastava, 
2009), unlike the traditional or extreme value estimators, incorporate time varying characteristics of second 
moment/volatility explicitly. By successively substituting for the lagged conditional variance into equation(2), 
the following expression is obtained: 

20
1 111

t i t ii
h

α
α β ε

β

∞

− −=
= +

−
∑

            (3) 
An ordinary sample variance would give each of the past squares an equal weight rather than declining 

weights. Thus the GARCH variance is like a sample variance but it emphasizes the most recent observations. 

Since t
h

is the one period ahead forecast variance based on past data, it is called the conditional variance. The 
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squared residual is given by:  
2

t t tv hε= −
                        (4) 

 Equation (4) is by definition unpredictable based on the past. Substituting equation (4) into equation(2) 
yields an alternative expression as follows: 

2 2

1 1 1( )t t t tv vε ω α β ε β− −= + + + −
                        (5) 

From the structure of the model, it is seen that large past squared shocks 
{ }2

1

m

t i
i

a − =   imply a large 

conditional variance 
2

t
σ

 for the innovation t
a

. Consequently, t
a

tends to assume a large value (in modulus). 
This means that, under the ARCH framework, large shock tend to be followed by another shock; because a large 
variance does not necessarily produce a large realization. It only says that the probability of obtaining a large 
variate is greater than that of a smaller variance. To understand the ARCH models, it pays to carefully study 
ARCH (I) model  

t t ta σ ε=
  ,  

2 2

0 1 1,t taσ α α −= +
 where 0 0α >

 and
0

I
α ≥

. The unconditional mean of t
a

remains zero 
because         

( ) ( ) ( )1/ 0
t t t t t

E a E E a F E Eσ ε−= = =                                                   (6) 
The conditional variance if at  can be obtained as  

( ) ( ) ( ) ( ) ( )2 2 2 2

1 0 1 1 0 1 1var / .t t t t t ta E a E E a F E a E aα α α α− − −
 = = = + = +   

Because t
a

  is a stationary process with 
( )2

1 0
t

E a − = ( ) ( ) ( )2

1 1var var
t t t

a a E a− −= =
. Therefore, we have 

( ) ( )0 1var vart ta aα α= +
 and 

( ) 0

1

var .
1

t
a

α

α
=

−
Since the variance of t

a
must be positive, we require

10 1α≤ ≤
. In some applications, we need higher order moments of t

a
to exist and, hence, 1α

must also satisfy 

some additional constraints. For instance, to satisfy its tail behavior, we require that the fourth moment of t
a

is 
finite. Under the normality assumption, we have 

 
( ) ( ) ( )

2 2
4 2 2

1 1 0 1 1/ 3 / 3t t t t tE a F E a F aα α− − −
 = = +  (Brockwell and Davis, 1996). 

Therefore , 
( ) ( ) ( ) ( )

2
4 4 2 2 2 2 4

1 0 1 1 0 0 1 1 1 1/ 3 3 2t t t t t tE a E E a F E a E a aα α α α α α− − − −
 = = + = + +    

If t
a

is fourth – order stationary with  

                             
( )4

4 t
m E a=

, then we have  

                             
( )2

4 0 0 1 1 43 2 var
t

m a mα α α α = + +   

                                    

2 21
0 1 4

1

3 1 2 3
1

m
α

α α
α

 
= + + 

−   
Consequently  

                              

( )

( ) ( )

2

0 1

4 2

1 1

3 1
.

1 1 3
m

α α

α α

+
=

− −
  

This result has two important implications: since the fourth moment of t
a

is positive, we see that 1α

must also satisfy the condition 
3

11 3 0;α− >
 that is, 

2

1
10

3
α≤ ≤

; and the unconditional Kurtosis of t
a

is 
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( )
( )

( )

( ) ( )
( )

24 2 2
0 1 1 1

2 2 2 32
0 11 1

1 1 1
3 3

1 31 1 3var

t

t

E a

a

α α α α

α αα α
>

+ − −
= × =

−− −                                                                 (7) 

Thus, the excess of t
a

is positive and the tail distribution of t
a

is heavier than that of a normal 

distribution. In other words, the shock t
a

of a conditional Gaussian ARCH (I) model is more likely than 
Gaussian white noise series to produce “outcome”. This is in agreement with the empirical finding that “outliers” 
appear more often in asset returns than that implied by an iid sequence of normal random variates. These 
properties continue to hold for general ARCH models, but the formula becomes more complicated for higher 
order ARCH models.   

The condition 
0

i
α ≥

 in 
2 2 2

0 1 1 ....
t t m t m

a aσ α α α− −= + + +
can be related. It is a condition to ensure 

that the conditional variance 
2

t
σ

is positive for all t. The model has some weakness: it assume that positive and 
negative shocks have the same effects on volatility because it depends on the square of the previous shocks. In 
practices it is well known that price of a financial asset responds differently to positive and negative shocks. 

             The ARCH model is rather restrictive. For instance, 
2

1α
of an ARCH (I) model must be in the interval 

10
3

 
  if the series has a finite fourth moment. The constraint becomes complicated for higher order ARCH 
models. In limits, the ability of ARCH models with Gaussian innovations is to capture excess kurtosis. The 
ARCH model does not provide any new insight for understanding the sources of variation of a financial time 
series. It merely provides a mechanical way to describe the behavior of the conditional variation. It gives no 
indications of what causes such behavior to occur. ARCH models are likely to over predict the volatility because 
they respond slowly to large isolated shocks to the return series(Brockwell and Davis, 1996). 

1.3. The EGARCH Model 

This model is used to allow for symmetric effects between positive and negative asset returns. An EGARCH 
(m, s) model can be written as (Dhar, et. Al. , 2009).   
 

t t ta σ ε=
 ,     

( ) ( )
1

2 1 1
0 1

1

1 ...

1 ....

s

s

t tm

m

B B
In g

B B

β β
σ α ε

α α

−
−

−

+ + +
=

−
                                                          (8) 

wher 0α
 is a constant, B is the back-shift (or lag) operator such that

( ) ( )1t tBg gε ε −=
and  

11 ...B s Bβ β −+ + +
 are polynomials with zeros outside the unit circle and have no common factors. By outside 

the unit circle, we mean that absolute values of the zeros are greater than 1. Here, it is understood that
0iα =

 for 

i > m  and 
0

j
β =

for j > s. The latter constraint on αi and βi implies that the unconditional variance αt is finite, 

whereas its conditional variance 
2

t
σ

evolves over time, and tε
is often assumed to be a standard normal 

standardized student-t distribution or generalized error distribution: 

2 2 2

0 1

1 1

m m

t i t j t j

i i

σ α α α β σ− −
= =

= + +∑ ∑
                      (9) 

reduces to a pure ARCH (m) model if S=0. 
The αi and βi are referred to as ARCH and GARCH parameters respectively. The unconditional mean of 

2( )
t

In σ
is 0α

. It uses logged conditional variance to relax the positiveness constraint of model coefficients. The 

use of 
( )tg ε

enables the model to respond asymmetrically to the positive and negative lagged values of αt . The 

model is nonlinear if 0θ ≠ .  Since negative shocks tend to have larger impacts, we expect θ  to be negative.  
For higher order EGARCH model, the nonlinearity becomes much more complicated. This model can be used to 
obtain multistep ahead volatility forecasts. 
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1.4.  Fitting the Parameters of the Model 
Once a model is selected and data are collected, it is the job of the researcher to estimate the parameters 

of the Model. These are values that best fit the historical data. It is hypothesized that the resulting model will 
provide a prediction of the future observation. It is also hypothesized that all values in a given sample are equal.  

The time series model includes one or more parameters. We identify the estimated values with a hat. 

For instance, the estimated value of 
β

 is denoted
.β
⌢

The procedure also provide estimates of the standard 

deviation of the noise, εσ
.   

1.5. Forecasting from The Model 
The main purpose of modeling a time series is to make forecasts which are then used directly for making 

decisions. In this analysis, we let the current time be T, and assume that the demand for periods 1 through T are 

known. We now want to forecast the demand for the period (T+
ς

). The unknown demand is the random 

variable X(T+
ς

)., and its realization is 
x

(T+
ς

).. Our forecast for the realization is T
x ς+

. 

1.6. Measuring the Accuracy of the Model 

The forecast error is the difference between the realization and the forecast. Thus  

eς
=  

x
(T+

ς
)...- 

T
x ς+ .                         (10) 

Assuming the model is correct, then we have  

 
ςe

= 
[ ]E XT Txες ς ς+ −+ +

                                    (11) 
We investigate the probability distribution of the error by computing its mean and variance. One 

desirable characteristics of the forecast T
x ς+  is that it is unbiased. For an unbiased estimate, the expected value 

of the forecast is the same as the expected value of the time series. Because tε
 is assumed to have a mean of 

zero,  an unbiased forecast implies 
][ ςεE

. The fact that the noise in independent from one period to the next 

period means that the variance of the error is:  
[ ] { [ ] } [ ]t T T TVar Var E X x Varς ς ςε ε+ + += − +

 and 
2)()( 22 σςσςσ

ε
+=

E .       (12) 
2.  

3. DATA ANALYSIS AND RESULTS 

3.1. Data and method of analysis 

The data for the study was obtained from Tema Oil refinery. The AFC and the PACF of the time series 
are shown in Figure 1. The PACF shows a single spike at the first lag and the ACF shows a tapering pattern. The 

positive, geometrically decaying pattern of the AFC, coupled with single significant coefficient 11φ  strongly 
suggest an AR(1){=ARMA(1,0)} process.  

The time series plot(Figure 2) of the standardized residuals mostly indicates that there is no trend in the 
residuals, no outliers, and in general, no changing variance across time. The ACF of the residuals shows no 
significant autocorrelations, an indication of a good result. The Q-Q plot is a normal probability plot.  It doesn’t 
look too bad, so the assumption of normally distributed residuals looks okay. The bottom plot gives p-values for 
the Ljung-Box-Pierce statistics for each lag up to 20.  These statistics consider the accumulated residual 
autocorrelation from lag 1 up to and including the lag on the horizontal axis.  The dashed blue line is at 0.05.  All 
p-values are above it indicating that this is a good result 

The time series data ranged from January 2000 until December 2012. The coefficient of variation (V) was 
used to measure the index of instability of the time series data. The coefficient of variation (V) is defined as: 

V
Y

σ
=

           (13) 
where σ is the standard deviation and 

1

1 n

t

t

Y Y
n =

= ∑
                        (14) 

is the mean of petroleum prices changes. 
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A completely stable data has V = 1, but unstable data are characterized by a V>1 (Telesca et al., 2008). 
Regression analysis was used to test whether trends and seasonal factors exist in the time series data. The 
existence of linear trend factors was tested through this regression equation: 

0 1Y Tβ β ε= + +
, 

( )20,WNε σ∼

        (15) 
Stationarity is tested using unit root test. The stochastic time series of interest is Zt. Taking the first 

difference we have the following: 
µ+++=∆ −1321 tt ZAAAZ

where tZ∆
is the first difference, t is the trend 

variable taking on the values from 1, 2, 3, …, n. and Zt-1 is the one period lagged value  of the variable Z. The 
null hypothesis is that A3, the coefficient of Zt-1 is zero. That is to say that the underlying time series is 
nonstationary. This is called the unit root hypothesis. We proceed to show that a3, the estimated value of A3 is 
zero.  The unit root test is used since we have already assumed that the time series is nonstationary.  The tau test 
whose critical values are tabulated by the creators on the basis on Monte Carlo simulation are used(Gujarati, 
2006 ). The rule for testing the hypothesis is that if the computed t(tau) value of the estimated A3 is greater (in 
absolute value) than the critical Dickey Fuller(DF) tau values, we reject the root hypothesis, that is, we conclude 
that the said time series is stationary. On the other hand, if the computed tau value is smaller (in absolute values) 
than the critical DF tau values, we do not reject the unit hypothesis. In that case, the time series is nonstationary. 

Data in Table 1 describe the nested ARMA(2,2) and GARCH(1,1) models. The forecasts have closest 
mean with respect to observed mean while EGARCH(1,1) model has shown maximum correlation with the 
observed Q2 returns. In all these cases Q1 returns data is used to calculate GARCH family model’s parameters.   

3.2. Empirical Results 
Eight model selection criteria as suggested by Ramanathan (2002) were used to choose the best 

forecasting models among ARIMA and GARCH models, while the best time series methods for forecasting 
demand for petroleum products was chosen based on the values of four criteria, namely RMSE, MAE, MAPE 
and U-statistics (Table 2). Finally, the selected model was used to perform short-term forecasting for the next 
twelve months for demand for petroleum products starting from January 2013 until December 2013. 

The results showed that the coefficient of variation (V) of the time series data was 1.312 (V>1). 
Because the V value was closed to 1, it was concluded that the time series data was stable (Telesca et al., 2008). 
The results of the regression analysis had shown that positive linear trend factor existed in the time series data 
but seasonal factor was not. Referring to the Augmented Dickey-Fuller tests results, the time series data of the 
study was not stationary. But after the first order of differencing was carried out, the time series data became 
stationary. 

 The double exponential smoothing method was used as the regression result had shown that positive 
linear trend factor exists in the time series data. Double exponential smoothing models consisted with two 
parameters which were symbolized as α for the mean and β for the trend. The best model of the double 
exponential smoothing was selected based on the lowest value of MSE (Mean Square Error) from the 
combination of α and β with condition 0<α, β<1. 

The result showed that the combination α = 0.9 and β = 0.1 was the best forecasting model of double 
exponential smoothing method (Table 3). The double exponential smoothing model was written in equation 

form, from Table 4, as  
4764.2345 *( 32.3465)T kF a bh h+ = + = + −

 
All models which fulfilled the criteria of p+q≤5 have been considered and compared in this study. 

There were twenty ARIMA (p, d, q) models which fulfilled the criteria(Table 5). The parameters of the models 
were estimated with the least square method. Parameters which were not significant at 5% confidence level were 
dropped from the model. Using the eight model selection criteria suggested by Ramanathan (2002), the ARIMA 
(3, 1, 2) model was selected as the best model among the other ARIMA models. However, the parameters of AR 
(1) and MA (1) were found not significant and thus dropped from the model. 

Identification and estimation of GARCH (p, q) models in this study were done by following the four 
steps that were ARCH effect checking, estimation, model checking and forecasting. Four GARCH (p,q) models 
were selected and compared, namely GARCH (1, 1), GARCH (1, 2), GARCH (2, 1) and GARCH (2, 2). Using 
the eight model selection criteria suggested by Ramanathan (2002), the GARCH (1, 1) model was selected as the 
best model among the other three GARCH models(Table 6). ARCH effect which was tested by using a 
regression analysis existed in the ARIMA (3, 1, 2) model. What this meant was that the ARIMA (3, 1, 2) model 
could be mixed with the best GARCH model (i.e., GARCH(1, 1)). Four model selection criteria were used to 
select the best forecasting model from the four different types of time series methods. Based on the results of the 
ex-post forecasting (starting from January until December 2013), the ARIMA (3, 1, 2)/GARCH (1, 1) model was 
the best short-term forecasting model for the demand for petroleum products (Table 9). 

A linear relationship between Q2r and GARCH family forecast for different combinations was also 
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obtained. R-sq values in table of models gave the percentage of variations which the regression was able to 
explain. It was clear that relationship (7) best explains the variations in the actual returns and forecasted returns, 
while relationship (5) was the second best in explaining the variations while relationship (3) was the third best in 
Table 8. 

To determine whether there is significant difference for the mean demand and the standard deviation 
values of the observed and predicted data for each month, a z-test (for means) and F-test (for standard 
deviations) were applied (Haan, 1977; Devore and Peck, 1993). Since monthly mean values from observed and 
predicted data is between z-critical table values (± 1.96 for 2 tailed at the 5% significance level), the data support 
the claim that there is no difference between the mean values of observed and predicted data. Similarly, monthly 
standard deviation values from observed and predicted data were smaller than F- critical table values at the 5% 
significance level. Furthermore, these results show that the predicted data preserve the basic statistical properties 
of the observed series.  

The coefficient of correlation (R), which measures the strength of the association between 2 variables, 
and the significance level (Rsig) related to the R of regression shows that there is a statistically significant linear 
relationship between the observed and predicted data. On the other hand, the coefficient of determination (R-
square), which is interpreted as the proportionate reduction of total  variation associated with the use of the 
predictor variable (the observed data in this study), and adjusted R-square measure, which presents the sample 
response of the population for each regression, were close to one. In addition, the results (F-value and FSig) 
concerning tests applied for determining whether the estimated regression functions adequately fit the data 
emphasize that the association between the observed and predicted monthly data sequences is linear. Based on 
these results, it is concluded that the selected best ARIMA model for each station can make accurate estimates. 
 

CONCLUSION 

Seven multiple regression relationships for different combination of nested ARMA / GARCH were 
used to filter their Q3 demand forecast. Filtered result analysis shows improvements in the correlation coefficient 
of the forecast demands and observed Q3 demands. Correlation coefficient is positive in some simulations, 
which were always negative with GARCH family model’s forecast. Regression filtered results follow market 
trend better, while other descriptive parameters like variance, skewness and kurtosis become more comparable to 
actual Q3 demand. Therefore the proposed simulation framework under given observations to some extent has 
improved nested conditional mean and variance models forecast of Q3 forecast for petroleum products under 
such market conditions of 2013. However, it is not generally possible to get a definite relationship between 
observed and forecasted result. 

This study also investigated four different types of univariate time series methods, namely exponential 
smoothing, ARIMA, GARCH and the mixed ARIMA/GARCH. The results showed that the mixed 
ARIMA/GARCH model outperformed the exponential smoothing, ARIMA and GARCH for forecasting the 
demand for petroleum products. 
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Tables 

Table 1: Descriptive Statistics of ARMA/GARCH forecast and Regression filtered forecast 

 

  

Variables  Mean StDev  Variance Minimum  Maximum  Range  Skewness  Kurtosis 

Q3r -0.0049 0.0398 0.0016 -0.1160 0.0790 0.1950 -0.0600 -0.0500 

Q3g2211f  -0.0067 0.0178 0.0003 -0.0056 0.0065 0.0121 1.0100 5.7100 

Q3j2211f 0.0088 0.0707 0.0050 -0.0088 0.0110 0.0198 0.0400 -1.5100 

Q3e2211f -0.0072 0.0141 0.0002 0.0637 -0.0358 -0.0996 0.1111 -0.0767 

Q3g2211rf -0.0010 0.0283 0.0008 0.1173 -0.0698 -0.1872 0.0044 -0.8067 

Q3j2211rf 0.0001 0.0566 0.0032 0.1709 -0.1038 -0.2748 0.0122 -1.5367 

Q3e2211rf -0.0112 0.1131 0.0128 0.2245 -0.1378 -0.3624 0.0005 -2.2667 

Q3gjrf 0.0201 0.2262 0.0512 0.2781 -0.1718 -0.4500 0.0013 -2.9967 

Q3jerf  -0.0313 0.4524 0.2047 0.3317 -0.2058 -0.5376 0.0134 -3.7267 
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Table 2: Criteria for Assessing Forecast Accuracy 

Criteria   Formula 

Double 
Exponential 
Smoothing  ARIMA(3, 1, )  GARCH(1, 1) 

 ARIMA(3, 1, 2) 
/ GARCH(1, 1) 

 RSME  

ESS

N  414.4506 193  .3087 158.8801 155.5007 

 MAE  1

1 n

t t

t

Y Y
n =

−∑
⌢

 392.6509 1348.9835 122.8083 126.7645 

 MAPE  1

1
100%

n
t t

t t

Y Y

n Y=

−
×∑
⌢

 6.8052 2.8309 2.4178 2.5528 

 U- Statistics  

2 2

1 1

1 1n n

t t

RSME

Y Y
n n= =

+∑ ∑
⌢

 0.0237 0.0192 0.0161 0.0157 

 

Table 3: Error Sum of Square (ESS) according to α and β values 

β
 

α  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 19345 81246 46341 31941 24941 21943 121426 31244 451427 

0.2 18311 78242 47398 34742 23946 20846 110478 30142 410672 

0.3 14567 61965 35943 33943 22647 20143 101495 30245 401421 

0.4 13425 56349 26332 22946 21548 20959 100433 30456 400231 

0.5 12833 45247 22344 21948 21041 22932 221409 32537 421502 

 

Table 4: Output of the double exponential smoothing model 

Parameters Values 

α  0.9800 

β
 0.1000 

Sum of squared residuals 187364 

Root mean squared error 234.3465 

Mean 4764.2345 

Trend -32.3465 

 

 

Table 5: Estimation of ARIMA (3, 1, 2) 

 Variables  Coefficient  Standard error  Z-statistic  p-value 

 Constant  19.2319  28.2345  0.6934  0.4562 

AR(2)  -0.7843  0.0453  -18.4653  0.0001* 

AR(3)  0.1287  0.0321  2.8675  0.0023* 

MA(2)  0.9128  0.0234  20.3465  0.0002* 

MA(3)  0.3465  0.0458  28.9874  0.0134* 

*significant at 0.005 level 
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Table 6: Estimation of GARCH (1, 1) 

 Variables 

Mean Equation 

 Coefficient  Standard error  Z-statistic  p-value 

 Constant  2.2319  18.2345  0.1934  0.8502 

 Conditional Variance Equation 

Constant  5452.87  3214.03  2.8642  0.0123* 
2

1εk −    0.3128  0.1026  2.3465  0.0302* 

 
2

1kσ −   0.6487  0.0858   8.9814  0.0134* 

*significant at 0.005 level 
Table 7: Estimation of ARIMA (3, 1, 2)/GARCH (1, 1) 

 Variables  Coefficient  Standard error  Z-statistic  p-value 

ARIMA(3, 1, 2) 

 Constant  12.2337  18.2311  0.6341  0.5568 

AR(2)  -0.7423  0.0403  -18.4639  0.0021* 

AR(3)  0.2384  0.0125  3.4672  0.0053* 

MA(2)  0.8023  0.0336  30.5462  0.0042* 

MA(3)  0.2662  0.0151  27.3873  0.0104* 

GARCH(1, 1) 

 Constant 4405.3452 2345.0987 2.4986 0.8373 
2

1εk −  0.3254 0.0975 2.4863 0.0034* 
2

1kσ −  0.7654 0.1203 7.9073 0.0002* 

*significant at 0.005 level 
 

 

 

 

 

 

  

Table 10: Regression Statistics with Q2r on LHS and Q2g2211f, Q2e2211f on RHS 

Relationship Regression order K Q2g2211f Q2j2211f Q2e2211f p- value R-Sq R-Sq(adj.) 

1 1 -0.001 0.07 0 0 0.0264 0% 0% 

2 1 0.007 0 3.23 0 0.0262 1.50% 0% 

3 1 0.010 0 0 3.01 0.0257 4.90% 3.40% 

4 2 0.008 0.45 3.41 0 0.0263 1.60% 0% 

5 2 0.003 0 -17.6 0 0.0251 10.60% 7.70% 

6 2 0.010 0.34 3.04 2.06 0.0259 5.0% 1.80% 

7 3 0.008 -0.89 -17.7 11.3 0.0349 11.20% 7.60% 
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Figure 1: AFC and PACF Plots 

 

Figure 2: Time Series  Plots of Residuals 
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