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Abstract 
This study examines the impact of adoption of improved maize technology package (including improved maize 
varieties, fertilizer of any kind as well as row planting) on maize yield growth of Ethiopia at national level. In so 
doing, a balanced panel data set covering two time periods was used and propensity score matching in combination 
with a difference-in-differences estimator was employed to better match control and project units on preprogram 
observable characteristics and to control for certain types of unobserved variables which can be assumed to remain 
fixed over a shorter time series. It is found that that adoption of improved maize technology package had positive 
and significant impact on maize yield growth of Ethiopia at national level. Therefore, this study recommends to 
widely scale-up the efficient use of improved maize varieties in combination with other complementary inputs and 
agronomic practices to all maize producing farm households which obviously calls for embracing the enormous 
diversity of the production systems as well as a well-coordinated, effective as well as efficient effort of all of the 
relevant stakeholders of the agricultural sector of the country including farmers supported with a major 
recommitment to effective overall management of so many facets of the economic environment. 
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1. Introduction 
Roughly 80 percent of Africa’s poor live in rural areas, and even those who do not will depend heavily on 
increasing agricultural productivity to lift them out of poverty (Haggblade, 2004). Accordingly, seventy percent 
of all Africans— and nearly 90 percent of the poor—work primarily in agriculture. As consumers, all of Africa’s 
poor—both urban and rural—count heavily on the efficiency of the continent’s farmers. Farm productivity and 
production costs largely determine the prices of basic food stuffs, which account for 60–70 percent of total 
consumption expenditures by low-income groups (Haggblade, 2004). The Sub-Saharan Africa agriculture involves 
diverse crops and livestock but productivity is particularly important for cereals and starchy roots, which provide 
two-thirds of the total energy intake for the population (three-quarters for the poor) (AGRA, 2013 citing Diao, 
Thurlow, Benin, & Fan, 2012). According to the Africa Human Development Report 2012 (United Nations 
Development Programme [UNDP], 2012), more than 75% of cereals and almost all root crops come from domestic 
agriculture and not imports (AGRA, 2013). 

Many of the rural poor worldwide are smallholder farmers, and in most of South and South East Asia, and in 
much of sub-Saharan Africa, agriculture is dominated by smallholders (Jama and Pizarro, 2008 citing Birthal et 
al. 2005 and Kydd, J. et al. 2002). In strategic terms, smallholder farming is generally viewed as indispensable to 
development as a whole (Jama and Pizarro, 2008). One common answer for the question why smallholders remain 
poor is that despite being relatively efficient users of resources, they remain poor because most poor countries 
provide them with only limited technical and economic opportunities to which they can respond and this is 
particularly the case in Africa, the only region in the world where per capita agricultural productivity has remained 
stagnant over the past 40 years (Jama and Pizarro, 2008 citing Sanchez, P.A. et al. 2005). 

Until recently agricultural growth had resulted from an expansion of the area under crops or grazing rather 
than higher yields. However, demographic pressures have largely exhausted available land and in many areas, 
average farm sizes are falling, with typically areas of 2–5 ha dominating (Adekunle et al., 2012). At the same time, 
land quality has fallen. Data on nutrient balances over the past 30 years suggest that African soils have sustained 
annual net losses of nitrogen, phosphorus, and potassium on the order of 22, 2.5, and 15 kilograms per hectare 
respectively and this soil mining may contribute from one-third to as much as 80 percent of farm output in some 
locations (Haggblade, 2004). The lack of sufficient infrastructure, including rural access roads, irrigation, and land 
management capabilities, has resulted in the small amount of land available not being used at full potential. This 
problem is amplified by the common lack of capital and available funds to finance additional capital acquisition 
and insufficient financing continues to manifest in several ways, often equating to lack of dependable farm inputs 
such as high-yielding varieties of seeds, appropriate fertilizers, or cheap credit (AGRA, 2013 citing FAO, 2009). 

Fortunately, African and donor governments have come to realize that they have marginalized agriculture for 
too long (Haggblade, 2004). Accordingly, through the consultative process of the New Partnership for Africa’s 
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Development (NEPAD), the African heads of state have identified agriculture as a priority sector for stimulating 
economic growth and poverty reduction in Africa. Domestically, NEPAD aims to facilitate policies, strategies, 
and partnerships that will enhance the performance of agriculture in Africa. Internationally, it will continue to 
lobby for a more level playing field for African smallholders in international markets while promoting sub-regional 
cooperation and market development. Only sustained high-level political support will result in the policy 
incentives and long-term financial support to agricultural institutions that will, together, prove necessary for 
accelerating Africa’s agricultural growth (Haggblade, 2004). 

Some exciting efforts of African farmers and researchers in the past decade or so have significantly raised 
agricultural productivity in certain countries and for certain products (Haggblade, 2004). Notably, Ethiopia has 
more than doubled its domestic grain production (from 8 million metric tons in 2000 to 15.6 million metric tons 
in 2010) and is now Sub-Saharan Africa’s second largest grain producer behind Nigeria (AGRA, 2013 citing 
USDA, 2012). Today, after widespread adoption by both commercial farmers and small holders, farmers now plant 
58 percent of all maize area in East and Southern Africa to new high-yielding varieties, which on average out yield 
traditional varieties by 40–50 percent even without fertilizer (Haggblade, 2004). Despite the obvious challenges 
facing Sub-Saharan African countries with respect to agricultural productivity, recent successes recorded in Kenya, 
Malawi, Zambia, Uganda, Tanzania, Ethiopia, Mali, Burkina Faso, among other countries, have shown it is 
possible to achieve sustained agricultural growth in Sub-Saharan Africa (AGRA, 2013) 

Given that Africa must grow faster than the rest of the world just to keep up with its increasing population, it 
remains true that the many individual successes achieved over the past half century have simply not been sufficient 
in number or scale (Haggblade, 2004). Due to the wide variety of local contexts in the African continent, a 
pluriform approach that specifically addresses the diversity is likely to work more effectively in increasing 
agricultural performance (Bindraban et al., 2009). Yield gap for most crops could be reduced by appropriate use 
of improved crop varieties; recommended application levels of appropriate fertilizers; and adequate management 
of nutrients, water, pests, and diseases (AGRA, 2013). Even if, in rare circumstances, smallholder farmers access 
irrigation, financing, technology, and adequate inputs, the lack of market access often lead to production failures. 
Market access problems persist in many areas, often resulting in many farmers not being able to sell their produce 
and hence resorting to subsistence production for their livelihoods (AGRA, 2013). 

Though inadequate in scale and scope to outrun Africa’s daunting demographics, these successes offer 
potentially important lessons for replicating and scaling up successful efforts more frequently in the future 
(Haggblade, 2004). Accordingly, drawing lessons from past success requires identifying a range of successful and 
less successful episodes and then studying and comparing them. With a wider range of institutional options now 
available, more evaluation is needed of what works well in what contexts (World Bank, 2007). In response to this 
need, the objective of this study is to identify the impact of adoption of improved maize technology package 
(including improved maize varieties, fertilizer of any kind as well as row planting) on maize yield of Ethiopia at 
national level. 
 
2. Materials and Methods 
2.1 Analytical Framework for Evaluation 
The IFAD impact evaluation guidelines define impact as the “the attainment of development goals of the project 
or program, or rather the contributions to their attainment.” The ADB guidelines state the same point as follows: 
“project impact evaluation establishes whether the intervention had a welfare effect on individuals, households, 
and communities, and whether this effect can be attributed to the concerned intervention”. Assessing the impact 
of any intervention requires making an inference about the outcomes that would have been observed for program 
participants had they not participated (Smith and Todd, 2001). The evaluation problem can be regarded as a 
missing-data problem since, at a moment in time, each person is either in the program under consideration or not, 
but not both (Blundell and Dias, 2000). Accordingly, if we could observe the outcome variable for those in the 
program had they not participated, there would be no evaluation problem. Thus constructing the counterfactual is 
the central issue that evaluation methods address (Blundell and Dias, 2000). 

Each of the evaluation methods in empirical economics that fall into five broad and related categories provides 
an alternative approach to constructing the counterfactual (Blundell and Dias, 2000). The methods utilized by 
researchers to circumvent this missing data problem are classified into two groups: selection on observables 
estimators and selection on unobservable estimators (Millimet and Tchernis, 2009). According to them, the 
distinction lies in whether a method consistently estimates the causal effect of the treatment in the presence of 
unobservable attributes of subjects that are correlated with both treatment assignment and the outcome of interest 
conditional on the set of observable variables. 

Assuming a lack of such un-observables in which treatment assignment is said to be independent of potential 
outcomes conditional on the set of covariates X, one approach called the matching method aims to select sufficient 
observable factors that any two individuals with the same values of these factors will display no systematic 
differences in their reactions to the policy reform (Blundell and Dias, 2000; Millimet and Tchernis, 2009). 
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Consequently, if each individual undergoing the reform can be matched with an individual with the same matching 
variables who has not undergone the reform, the impact of the reform on individuals of that type can be measured 
(Blundell and Dias, 2000). To solve the dimensionality problem that is likely to arise if X is a lengthy vector, 
Rosenbaum and Rubin (1983) propose using the propensity score, P(Xi) = Pr(Ti = 1|Xi), instead of X as the 
conditioning variable (Millimet and Tchernis, 2009). Accordingly, however, if the conditional independence 
assumption (CIA) fails to hold, then consistent estimation of the causal effect requires a selection on un-
observables estimation technique.  

In fact, in the case of self-selection, it is usually reasonable to think that unobserved variables (like ability, 
intelligence, motivation, risk aversion) may critically determine the participation model (Heinrich et al., 2010). 
Accordingly, under the assumption that unobserved variables are time-invariant (that is, their value does not 
change with time), the effect can be cancelled out by taking the difference in outcomes before and after the program. 
This method is often labelled ‘difference-in-differences’ since it is usually implemented by comparing the 
difference in average behavior before and after the reform for the eligible group with the before and after contrast 
for the comparison group (Blundell and Dias, 2000). The simplest setting is one where outcomes are observed for 
units observed in one of two groups, in one of two time periods and only units in one of the two groups, in the 
second time period, are exposed to a treatment (Imbens and Wooldridge, 2009). Accordingly, there are no units 
exposed to the treatment in the first period, and units from the control group are never observed to be exposed to 
the treatment. This double differencing removes biases in second period comparisons between the treatment and 
control group that could be the result from permanent differences between those groups, as well as biases from 
comparisons over time in the treatment group that could be the result of time trends unrelated to the treatment 
(Imbens and Wooldridge, 2009). Unlike propensity score matching (PSM) alone, the difference-in-differences 
(DiD) estimator allows for unobserved heterogeneity that may lead to selection bias (Khandker et al., 2010). 
Accordingly, however, it assumes that this unobserved heterogeneity is time invariant. If time-varying un-
observables are found to impact individual performance differences, then selection bias is not fully eliminated by 
differencing (Grilli L.). Even though DiD is unbiased only if the potential source of selection bias is additive and 
time invariant, one can conceive of several cases where unobserved characteristics of a population may indeed 
change over time—stemming, for example, from changes in preferences or norms over a longer time series 
(Khandker et al., 2010). A second drawback occurs if macro-level effects have a differential impact on treated and 
non-treated groups as one underlying assumption of the estimator is that treated and non-treated groups react 
similarly to shocks over time. This is true when the two groups differ for certain characteristics such that they react 
differently to common macro-level shocks (Grilli L.). 

Even though all evaluation methods have risks for bias, the risk can sometimes be reduced by using a 
combination of methods since we can often off set the limitations of a single method and thus increase the 
robustness of the estimated counterfactual by combining methods (Gertler P.J. et al., 2011). In this regard, 
propensity score matching (PSM) can be combined with difference-in-differences (DiD) methods to better match 
control and project units on preprogram characteristics provided that rich data on control and treatment areas exist 
(Khandker et al., 2010). Although simple PSM cannot account for unobserved characteristics that might explain 
why a group chooses to enroll in a program and that might also affect outcomes, matching combined with 
difference-in-differences known as matched difference-in-differences or the Conditional Differences in 
Differences (CDiD) approach at least takes care of any unobserved characteristics that are constant across time 
between the two groups (Gertler P.J. et al., 2011). On the other hand, application of the CDiD estimator would 
help to overcome the second drawback of the DiD estimator mentioned above (Grilli L.). As to Blundell and Dias 
2000, a non-parametric propensity score approach to matching that combines this method with difference-in-
differences has the potential to improve the quality of non-experimental evaluation results significantly. Moreover, 
several design replications in labor economics have argued that pre-processing the data with matching, followed 
by a difference-in-difference estimator, performs better than a cross-sectional matching approach (Ferraro and 
Miranda, 2017 citing Heckman et al. 1997; Heckman, Ichimura, and Todd 1998; Smith and Todd 2005). 
 
2.2 Data and Variables    
The study used a balanced panel data of maize producers obtained from the second wave of the Ethiopia 
Socioeconomic Survey (ESS) 2013-2014 and the third wave of the Ethiopia Socioeconomic Survey (ESS) 2015-
2016. The Ethiopian Socioeconomic Survey (ESS) is a collaborative long-term project between the Central 
Statistics Agency of Ethiopia (CSA) and the World Bank Living Standards Measurement Study-Integrated Surveys 
on Agriculture (LSMS-ISA) team to collect panel data. The project responds to the data needs of the country, given 
the dependence of a high percentage of households in agriculture activities in the country. The ESS collects 
information on household agricultural activities along with other information on the households like human capital, 
other economic activities, access to services and resources. The ability to follow the same households over time 
makes the ESS a new and powerful tool for studying and understanding the role of agriculture in household welfare 
over time as it allows analyses of how households add to their human and physical capital, how education affects 
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earnings, and the role of government policies and programs on poverty, inter alia. The ESS is the first panel survey 
to be carried out by the CSA that links a multi-topic household questionnaire with detailed data on agriculture. 
ESS uses a nationally representative sample of over 5,000 households living in rural and urban areas. The urban 
areas include both small and large towns. The sample is a two-stage probability sample. The first stage of sampling 
entailed selecting primary sampling units, which are a sample of the CSA enumeration areas (EAs). The second 
stage of sampling was the selection of households to be interviewed in each EA. A total of 433 EAs were selected 
based on probability proportional to size of the total EAs in each region out of which 290 were rural, 43 were small 
town EAs from ESS1, and 100 were EAs from major urban areas. In order to ensure sufficient sample size in the 
most populous regions (Amhara, Oromiya, SNNP, and Tigray) and Addis Ababa, quotas were set for the number 
of EAs in each region. The sample is not representative for each of the small regions including Afar, Benshangul 
Gumuz, Dire Dawa, Gambella, Harari, and Somalie regions. However, estimates can be produced for a 
combination of all smaller regions as one “other region” category. 
During wave 3, 1255 households were re-interviewed yielding a response rate of 85 percent. Attrition in urban 
areas is 15% due to consent refusal and inability to trace the whereabouts of sample households. 
Yield stands for the yield of maize per unit of land cropped measured in quintals per hectare. 
LnYield stands for the natural logarithmic transformation of Yield.  
HHAGE stands for the age of a household head in years. 
HHSEX is a dummy variable indicating the sex of a household head where HHSEX = 1 if the head is male and 0 
if otherwise. 
HHEDU is a dummy variable indicating whether a household head is literate where HHEDU = 1 if the head is 
literate/able to read and write in any language / and 0 if otherwise. 
HHRELIGION is a dummy variable indicating the main religion of a household head. 
FAMILY_SIZE stands for size of a household. 
CREDIT is a dummy variable indicating household's access to credit where CREDIT = 1 if anyone in the 
household  has borrowed greater than 150 birr from someone outside the household or from an institution for 
business or farming purposes over the past 12 months and 0 if otherwise. 
LANDHOLDING_SIZE stands for size of the land holding of a household measured in meter squared. 
OVERALLPLOTOWN is a dummy variable indicating household's plot ownership where OVERALLPLOTOWN 
= 1 if the household has some plot under its ownership (acquired through inheritance or local leaders' grant) and 0 
if otherwise. 
AVERPLOTSLOPE stands for the average plot slope of a household' overall plot measured in percent. 
OVERALLFERTILEPLOT is a dummy variable indicating household's overall plot soil quality where 
OVERALLFERTILEPLOT = 1 if the household has some plot with fair or good soil quality and 0 if otherwise.  
DSTNEARMKT stands for distance to the nearest market from residence measured in kilometer. 
DSTMAJROAD stands for distance to the nearest major road from residence measured in kilometer. 
DSTNEARPOPCENTER stands for distance to the nearest population center with more than 20,000 people from 
residence measured in kilometer. 
OXEN stands for the total number of oxen owned by a household. 
HHTLU stands for the total livestock units currently owned and kept by a household. 
EXCONTACT is a dummy variable indicating whether a household had participated in the extension program 
where EXCONTACT = 1 if the household had participated in the extension program and 0 if otherwise. 
NONAGRIBUSIN is a dummy variable indicating whether a household owned a non-agriculture business or 
provided a non-agricultural service from home over the past 12 months where NONAGRIBUSIN = 1 if the 
household has owned a non-agriculture business or provided a non-agricultural service from home over the past 
12 months and 0 if otherwise. 
COMIRRIGSCH is a dummy variable indicating presence of an irrigation scheme in the community in which a 
household reside where COMIRRIGSCH = 1 if the community in which a household reside has an irrigation 
scheme and 0 if otherwise. 
AMTOFRAIN is a dummy variable indicating the amount of rain received in the last season. 
 
3. Results and Discussions  
3.1 Descriptive Statistics 
Various variables that were included in the propensity score matching model that describe the major observed 
characteristics of the sample respondents are presented in table 1. 
 
3.2 Propensity Scores Estimation using Probit Model  
Propensity scores for late adopters and non-adopters of fertilizer were estimated using a probit model to compare 
the treatment group with the control group. In this regard, only those variables that significantly affect probability 
of fertilizer adoption were used in estimating the propensity scores. The check for ‘overlap condition’ across the 
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treatment and control groups was done and the result as indicated on figure 1 showed that the overlap condition is 
satisfied as there is substantial overlap in the distribution of the propensity scores of both late adopters and non-
adopters. Each observation’s propensity scores are calculated using a probit model. The propensity score for late 
adopters ranges between 0.0143852 and 0.7082498 while it ranges between 0.0090033 and 0.6258883 for non-
adopters. And the region of common support for the distribution of estimated propensity scores of late adopters 
and non-adopters ranges between 0.0143852 and 0.70824977. When matching techniques are employed, 
observations whose propensity score lies outside this range were discarded. 
       
3.3 Assessing Matching Quality 
Ensuring good balance between treated and control group is the most important step in using any propensity score 
method. The before and after matching covariate balancing tests presented on table 2 suggested that the proposed 
specification of the propensity score is fairly successful in balancing the distribution of covariates between the two 
groups as indicated by decreasing pseudo R2, decreasing mean standardized bias, the insignificant p-values of the 
likelihood ratio test and satisfied interval value of Rubin’s R (ratio of treated to (matched) non-treated variances 
of the propensity score index) after matching.  
 
3.4 Average Treatment Effect on the Treated 
The ATT, calculated with the differences in differences (DiD) estimator and different matching algorithms (nearest 
neighbor matching one and five (NN=1 and NN=5) as well as Epanechnikov kernel matching with two band widths 
(BW=0.03 and BW=0.06), i.e.), are shown in table 3.  Adoption of improved variety with fertilizer and row 
planting has some positive effects. During the period of investigation it increased yield growth of maize by 54-
64%. These results are quite different from the simple comparison of yield growth in table 1, confirming that there 
is significant negative selection bias. That means, farmers with lower than average yield growth are more likely to 
adopt improved variety with fertilizer and row planting. Hence, a simple comparison between late adopters and 
non-adopters underestimates its treatment effect. This selection bias is controlled for by the PSM and DiD 
methodology. Moreover, all of the estimates in table 3 are significant, underlining the robustness of the results. 
 
4. Conclusion and Recommendation 
This study is undertaken to identify the impact of adoption of improved maize technology package (including 
improved maize varieties, fertilizer of any kind as well as row planting) on maize yield growth of Ethiopia at 
national level. Unlike most previous impact studies of different improved agricultural technologies and practices, 
it used panel data covering two time periods. This allowed propensity score matching (PSM) to be combined with 
a difference-in-differences (DiD) estimator to better match control and project units on preprogram observable 
characteristics and to control for certain types of unobserved variables which can be assumed to remain fixed over 
a shorter time series. The study also employed and compared various matching algorithms to ensure robustness of 
the impact estimates. The estimation results show that adoption of improved maize technology package (including 
improved maize varieties, fertilizer of any kind as well as row planting) had positive and significant impact on 
maize yield growth of Ethiopia at national level. Therefore, this study recommends to widely scale-up the efficient 
use of improved maize varieties in combination with other complementary inputs and agronomic practices-
appropriate and affordable fertilizer and labor-saving row planting techniques-to all maize producing farm 
households which obviously calls for embracing the enormous diversity of the production systems as well as a 
well-coordinated, effective as well as efficient effort of all of the relevant stakeholders of the agricultural sector of 
the country including farmers supported with a major recommitment to effective overall management of so many 
facets of the economic environment.  
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Figure 1: Distribution of propensity scores of late adopters and non-adopters 

 
Table 1: Descriptive statistics of important variables used in the probit model-Propensity score matching 

(2013-2014) 

Variables Unit 

Late Adopters 
of Improved 
Technology 

Package 
Mean(se) 

Non-Adopters of 
Improved 

Technology 
Package  
Mean(se) 

Aggregate 
Mean(se) 

t-stat. 

Outcome variable      
Yield # 680.51(666.27) 40.38(14.57) 135.61(99.80) -2.30** 
LnYield % 2.59(0.26) 2.66(0.0742) 2.65(0.0736) 0.36 
Variables that affect 
probability of adoption 

 
    

HHAGE # 44.11(2.14) 45.54(1) 45.34(0.91) 0.54 
HHSEX  (Male=1) 1=Yes 1.167(0.063) 1.147(0.024) 1.149(0.022) -0.31 
HHEDU (Read & 
write=1) 

1=yes 
1.44(0.0840) 1.68(0.0313) 1.65(0.0297) 2.80*** 

HHRELIGION 1=Or-
thodox 

0.25(0.0732) 0.311(0.0309) 0.303(0.0285) 0.74 

HHRELIGION 1=Pro-
testant 

0.389(0.082) 0.236(0.028) 0.257(0.027) -1.96** 

HHRELIGION 1=Mus-
lem 

0.28(0.076) 0.41(0.033) 0.39(0.030) 1.55* 

FAMILY_SIZE # 5.97(0.307) 5.66(0.162) 5.70(0.146) -0.74 
CREDIT 1=yes 0.111(0.053) 0.102(0.020) 0.103(0.019) -0.16 
LANDHOLDING_SIZE Sq.m 21745.8(2456.3) 18959.9(1180.2) 19388.5(1067.8) -0.94 
OVERALLPLOT-OWN  1=yes 0.972(0.028) 0.92(0.018) 0.927(0.016) -1.12 
AVERPLOTSLO-PE % 14.14(0.96) 12.69(0.71) 12.89(0.62) -0.80 
OVERALLFER-
TILEPLOT 

1=yes 
0.857(0.060) 0.849(0.024) 0.85(0.022) -0.13 

DSTNEARMKT km 70.1(7) 92.6(4.4) 86.5(3.9) 1.97** 
DSTMAJROAD km 16.16(1.97) 16.26(1.19) 16.25(1.06) 0.03 
DSTNEARPOP-
CENTER 

km 
43.6(4.4) 49.3(2.05) 48.5(1.9) 1.04 

OXEN # 1.09(0.198) 1.05(0.083) 1.06(0.077) -0.14 
HHTLU # 2.85(0.31) 3.37(0.23) 3.29(0.198) 0.92 

0
1

2
3

0 .2 .4 .6 .8
Estimated propensity score

IV, Fert. & Rowpt Late Adopter IV, Fert. & Rowpt Non-adopter

Kernel density of PPS by treatment status
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Variables Unit 

Late Adopters 
of Improved 
Technology 

Package 
Mean(se) 

Non-Adopters of 
Improved 

Technology 
Package  
Mean(se) 

Aggregate 
Mean(se) 

t-stat. 

EXCONTACT 1=yes 0.56(0.0840) 0.21(0.0272) 0.26(0.0271) -4.58*** 
NONAGRIBUSIN 1=yes 1.97(0.0278) 1.89(0.0210) 1.9(0.0186) -1.55* 
COMIRRIGSCH 1=yes 1.333(0.0710) 1.464(0.0334) 1.45(0.0309) 1.47* 
AMTOFRAIN 1=Too  

Much 
0.417(0.083) 0.249(0.029) 0.272(0.028) -2.11** 

AMTOFRAIN 1=Right 
Amount 

0.583(0.083) 0.551(0.033) 0.556(0.031) -0.36 

AMTOFRAIN 1=Too  
little 

0(0) 0.196(0.027) 0.169(0.023) 2.95*** 

***, **, * indicate significance at 1 percent, 5 percent and 10 percent level respectively. 
Source: Own computation, 2020  
 

Table 2:  Propensity score matching quality test 
Sample Ps R2 LR chi2 p>chi2 Meanbias Medbias R %Var 

Unmatched 0.156 30.35 0.000 42.8 33.3 1.43* 25 
Matched    0.150 14.95 0.060 20.6 20.1 1.20 0 

* if B>25%, R outside [0.5; 2] 
 

Table 3: Average treatment effect on the treated (ATT) of fertilizer (2013-2014 and 2015-2016) 
 

Outcome Variable 
 

Matching Algorithm 
 

ATT (Std. Err.) 

LnYield 

Nearest Neighbor (NN=1) 0.635**(0.379) 
Nearest Neighbor (NN=5) 0.535*(0.341) 
Kernel (BW=0.03) 0.620*(0.390) 
Kernel (BW=0.06) 0.553*(0.374) 

**, * indicate significance at 5 percent and 10 percent level respectively and bootstrapped standard errors are based 
on 100 replications. 
Source: Own computation, 2020 
 
REFERENCES 
Abate T. , Shiferaw B., Menkir A. , Wegary D. , Kebede Y., Tesfaye K., Kassie M., Bogale G., Tadesse B. and 

Keno T. (2015). Factors That Transformed Maize Productivity in Ethiopia. Food Sec. (2015) 7:965–981. 
Abegaz G. (2011). Cereal Productivity in Ethiopia: An Analysis Based on ERHS Data. Ethiopian Journal of 

Economics, Volume XX No. 2. 
Adekunle A.A., Ellis-Jones J., Ajibefun I., Nyikal R.A., Bangali S., Fatunbi O. and Ange A. (2012). Agricultural 

Innovation in Sub-Saharan Africa: Experiences from Multiple-Stakeholder Approaches. Forum for 
Agricultural Research in Africa (FARA), Accra, Ghana. 

AGRA. (2013). Africa Agriculture Status Report: Focus on Staple Crops. Nairobi, Kenya: Alliance for a 
Green Revolution in Africa (AGRA). 

Ayele G., Bekele M. and Zekeria S. (2006). Productivity and Efficiency of Agricultural Extension Package in 
Ethiopia. Ethiopian Development Research Institute (EDRI), Research Report 5. 

Bekabil, U.T. (2014). Review of Challenges and Prospects of Agricultural Production and Productivity in Ethiopia. 
Journal of Natural Sciences Research, Vol.4, No.18. 

Bindraban P., Bulte E., Giller K., Meinke H., Mol A., Oort P., Oosterveer P., Keulen H. and Wollni M. (2009). 
Beyond Competition: Pathways for Africa's Agricultural Development. Plant Research International B.V., 
Wageningen, Report 242. 

Blundell R. and Dias M.C. (2000). Evaluation Methods for Non Experimental Data, Fiscal Studies, Vol. 21, No. 
4, pp. 427–468. 

Central Statistics Agency of Ethiopia (CSA). Ethiopia Socioeconomic Survey 2013-2014, Ref. 
ETH_2013_ESS_v02_M. Dataset downloaded from 
https://microdata.worldbank.org/index.php/catalog/2247/download/41577 on 9/17/2019. 

Central Statistical Agency of Ethiopia (CSA). Ethiopia Socioeconomic Survey, Wave 3 (ESS3) 2015-2016. Public 
Use Dataset. Ref: ETH_2015_ESS_v02_M. Downloaded from 



Journal of Economics and Sustainable Development                                                                                                                        www.iiste.org 

ISSN 2222-1700 (Paper) ISSN 2222-2855 (Online)  

Vol.11, No.23, 2020 

 

8 

https://microdata.worldbank.org/index.php/catalog/2783/download/41756 on 9/17/2019. 
CSA. (2015). Major results of the 2007 GDP estimates. Central Statistical Agency (CSA), Addis Ababa, Ethiopia. 
Daniel F. (2018). Impact of Improved Wheat Varieties Adoption on Productivity: Ethiopia. LAP LAMBERT 

Academic Publishing, Beau Bassin. ISBN: 978-613-7-42438-4. 
Daniel F. and Belay B. (2018). Impact of Improved Wheat Varieties & Information's Adoption on Productivity in 

Ethiopia. GRIN Publishing, Munich. ISBN: 9783668808096. 
Dorosh P.A. and Rashid S. (2012). Food and Agriculture in Ethiopia: Progress and Policy Challenges, University 

of Pennsylvania Press, Philadelphia, Pennsylvania 19104-4112. 
Endale K. (2011). Fertilizer Consumption and Agricultural Productivity in Ethiopia. Ethiopian Development 

Research Institute (EDRI), Working Paper 003. 
Ferraro P.J. and Miranda J.J. (2017). Panel Data Designs and Estimators as Substitutes for Randomized Controlled 

Trials in the Evaluation of Public Programs. Journal of the Association of Environmental and Resource 
Economists, Vol. 4, No. 1, pp. 281-317. 

Gebre-Selassie A. and Bekele T. A Review of Ethiopian Agriculture: Roles, Policy and Small-scale Farming 
Systems. Global Growing Casebook. 

Gebru A. (2006). The Determinants of Modern Agricultural Inputs Adoption and Their Productivity in Ethiopia 
(The Case of Amhara and Tigray Regions). A Thesis Submitted to the School of Graduate Studies of Addis 
Ababa University in Partial Fulfillment of the Requirements for the Degree of Master of Science in 
Economics (Economic Policy Analysis). 

Gertler P.J., Martinez S., Premand P., Rawlings L.B. and Vermeersch C.M. J. (2011). Impact Evaluation in Practice. 
The International Bank for Reconstruction and Development /The World Bank. 

González V., Ibarrarán P., Maffioli A. and Rozo S. (2009). The Impact of Technology Adoption on Agricultural 
Productivity: The Case of the Dominican Republic. Inter-American Development Bank. Office of Evaluation 
and Oversight Working Paper: OVE/WP05/09. 

Grilli L. and Murtinu S. Econometric Evaluation of Public Policies for Science and Innovation: A Brief Guide to 
Practice. Politecnico di Milano, Department of Management, Economics and Industrial Engineering. 

Haggblade S. (2004). Building on Successes in African Agriculture. International Food Policy Research Institute 
Focus 12. 

Haregewoin T., Belay B., Bezabeh E., Kelemu K., Hailu D. and Daniel F. (2018). Impact of Improved Wheat 
Variety on Productivity in Oromia Regional State, Ethiopia. Greener Journal of Agricultural Sciences, Vol. 
8(4), pp. 074 – 081. 

Heinrich C., Maffioli A. and Vázquez G. (2010). A Primer for Applying Propensity-Score Matching. Impact-
Evaluation Guidelines Technical Notes No. IDB-TN-161, Inter-American Development Bank (IDB). 

Imbens G.M. and Wooldridge J.M. (2009). Recent developments in the econometrics of program evaluation. 
Journal of Economic Literature 47, no. 1: 5-86. 

Jaleta, M., Kassie, M. and Marenya, P. (2015). Impact of Improved Maize Variety Adoption on Household Food 
Security in Ethiopia: An Endogenous Switching Regression Approach. International Conference of 
Agricultural Economists. 

Jama B. and Pizarro G. (2008). Agriculture in Africa: Strategies to Improve and Sustain Smallholder Production 
Systems, Ann. N.Y. Acad. Sci. 1136: 218–232 

Kelemu K. (2017). Determinants of Farmers Access to Information about Improved Wheat Varieties: Case of 
Farmers in Major Wheat Growing Regions of Ethiopia. International Journal of Research in Agricultural 
Sciences, Volume 4, Issue 1, ISSN (Online): 2348 – 3997. 

Khandker S.R., Koolwal G.B. and Samad H.A. (2010). Handbook on Impact Evaluation-Quantitative Methods 
and Practices. The International Bank for Reconstruction and Development /The World Bank. 

Kikulwe E.M., Kabunga N.S. and Qaim M. (2012). Impact of tissue culture banana technology in Kenya: A 
difference-in-difference estimation approach. Discussion Papers No. 117, Courant Research Centre, Georg-
August-Universität Göttingen, Germany. 

Lechner M. (2010). The Estimation of Causal Effects by Difference-in-Difference Methods. Discussion Paper No. 
2010-28, Department of Economics, University of St. Gallen. 

Matsumoto T. and Yamano T. (2010). The Impacts of Fertilizer Credit on Crop Production and Income in Ethiopia. 
National Graduate Institute for Policy Studies (GRIPS) Policy Research Center Discussion Paper 10-23, 
GRIPS, Tokyo. 

Millimet D. L. and Tchernis R. (2009). Estimation of Treatment Effects without an Exclusion Restriction: with an 
Application to the Analysis of the School Breakfast Program. National Bureau of Economic Research (NBER) 
Working Paper 15539. 

MoFED. (2003). Rural Development Policy and Strategies. Economic Policy and Planning, Ministry of Finance 
and Economic Development, Addis Ababa. 

Smith J. (2004). Evaluating Local Economic Development Policies: Theory and Practice. 



Journal of Economics and Sustainable Development                                                                                                                        www.iiste.org 

ISSN 2222-1700 (Paper) ISSN 2222-2855 (Online)  

Vol.11, No.23, 2020 

 

9 

Smith J.A. and Todd P.E. (2001). Reconciling Conflicting Evidence on the Performance of Propensity-Score 
Matching Methods. The American Economic Review, Vol. 91, No. 2, pp. 112–118. 

White H., Sinha S. and Flanagan A. A Review of the State of Impact Evaluation. Independent Evaluation Group, 
World Bank. 

World Bank. (2007). World Development Report 2008: Agriculture for Development. The International 
Bank for Reconstruction and Development/The World Bank. 

 
 
 
  
  


