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Abstract 
This study examines the regional disparity in the impact of adoption of fertilizer (organic, inorganic or both) on 
yield growth using 953 sample farm households in five major maize growing administrative regions of Ethiopia. 
Propensity score matching (PSM) technique was employed since it is an increasingly utilized standard approach 
for evaluating impacts using observational data. It is found that adoption of fertilizer doesn't have homogenous 
positive and significant impact on yield growth in all of the administrative regions considered. Thus, the study 
recommends that the agricultural research and extension system of the country should further consider the various 
differences that exist among different regions and areas of the country so as to generate and disseminate suitable 
improved agricultural technologies and information.  
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1. Introduction 
As it is well known, agriculture is the mainstay of the Ethiopian economy. The sector constitutes over 47% of the 
gross domestic product (GDP), accounts for about 75% of the labor force and earns over 90% of the foreign 
exchange (Dorosh and Rashid, 2012; Welteji, 2018 citing Alemu et al., 2010). According to the national accounts, 
the agricultural sector consists of crop, livestock, fishery and forestry sub-sectors (Bekabil, 2018). As to Welteji 
2018, crop production on average makes up 60% of the sector’s outputs, whereas livestock accounts for 27% and 
other areas contribute 13% of the total agricultural value added. On the other hand, cereals dominate Ethiopian 
crop production (Dorosh and Rashid, 2012). Accordingly citing CSA 1998, CSA 2001, CSA 2003 and CSA 2007 
data, it accounts for roughly 60 percent of rural employment, about 73 percent of total cultivated land, more than 
40 percent of a typical household’s food expenditure, and more than 60 percent of total calorie intake. Moreover, 
cereals’ contribution to agricultural value-added is 65 percent, which translates to about 30 percent of gross 
domestic product (GDP) (Dorosh and Rashid, 2012). Thus, a closer look at what is happening in cereal production 
has an important welfare and policy implication in Ethiopia (Abegaz, 2011). 

According to Kelemu 2017 citing FAO 2014, maize is the first most important food in the country in terms 
of caloric intake. According to Jaleta et al. 2015 citing CSA 2014b, on average, 76% of maize produced is 
consumed at home and no other cereal crop produced reaches to this level in terms of retention for home 
consumption. At present, as a sub-Saharan country, Ethiopia has the fifth largest area devoted to maize but is 
second, only to South Africa, in yield and third, after South Africa and Nigeria, in production (Abate et al., 2015). 
In Ethiopia, maize ranks first in volume of production and second in total allocation to production area. Maize is 
the second most widely cultivated crop in Ethiopia and is grown under diverse agro-ecologies and socioeconomic 
conditions typically under rain-fed production (Abate et al., 2015). It is adapted to and grown in diverse agro-
ecologies starting from mid-lowlands to highlands of the country except in both extreme lowlands and highlands 
(Jaleta et al., 2015). Moreover, according to Abate et al. 2015 citing CSA 2011–13 data, more than 9 million 
households, more than for any other crop, grow maize in Ethiopia. Accordingly, the annual rate of growth for the 
number of households cultivating maize grew at 3.5 % each year between 2004 and 2013, compared to 3.0 % for 
sorghum, 3.1 % for teff, 2.1 % for wheat, and 1.8 % for barley. Largely because of the increasing demand driven 
by population growth and competitiveness of the crop, maize area in Ethiopia doubled during the past two decades 
from 1 to 2 million hectares and the growth in the proportion of maize area was higher than all other major cereals 
over the last three decades (Abate et al., 2015 citing Rosegrant et al., 2001). 

The Ethiopian agricultural sector is dominated by small-scale farmers who practice rain-fed mixed farming 
by employing traditional technology, adopting a low-input and low-output production system (Welteji, 2018 citing 
Gebreselassie and Bekele, 2010). Accordingly, the land tilled by the Ethiopian small-scale farmer accounts for 95% 
of the total area under agricultural use, and these farmers are responsible for more than 90% of the total agricultural 
output. Furthermore, most smallholder farms are located in the moisture-reliable cereal-based highlands, which 
accounts for 59 percent of all farm area (Dorosh and Rashid, 2012). 

With respect to all these facts, it is not questionable that accelerated and sustained growth in the country’s 
agriculture in general and in the crop sub-sector in particular with special emphasis to the small-scale farmers will 
greatly help to achieve the various goals of the country (Gebru, 2006; MoFED, 2003; Gebre-Selassie & Bekele). 
Although a majority of production increases in the past occurred due to increases in the area cultivated, area and 
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yield increases each accounted for about half of production growth in the 2000s and we thus see an initial start of 
increasing intensification (Bekabil, 2018; Dorosh and Rashid, 2012). Accordingly, with little suitable uncultivated 
land available for expansion of crop cultivation apart from pasture land, especially in the highlands, production 
gains in terms of yield increases are critical to meet agricultural growth goals. 

In this connection, the current use of improved inputs is relatively low, suggesting that there is substantial 
scope for raising productivity through the increasing adoption of improved seeds and both chemical and organic 
fertilizers, at least in the rainfall-sufficient ecologies (and on irrigated  farms) (Bekabil, 2018; Dorosh and Rashid, 
2012). In this regard, as a strategic food security crop, since 1970s, international and national research centers 
exerted collaborative efforts in improving the genetic potential of maize and its adaptability to different agro-
ecologies in the country (Jaleta et al., 2015).  Accordingly citing MoA 2012, about 60 improved maize varieties 
have been released or registered in the country since the 1970s through this integrated effort. Given soil erosion 
due to deforestation, overgrazing, and cultivation of slopes not suited to agriculture together with the farming 
practice that do not include conservation measures is one of the major agricultural problems in the highlands of 
Ethiopia, there is a high government interest to expand the use of fertilizer that is considered by Ethiopian policy 
makers as a strategic input to increase cereals production (Bekabil, 2018 citing Abay, 2011). 

Maize inputs in Ethiopia include mainly improved seed and fertilizers (Abate et al., 2015). However, 
according to Jaleta et al. 2015 citing Feleke and Zegeye 2006, Tura et al. 2010 as well as Kassa et al. 2013, the 
level of improved maize variety adoption by smallholder farmers is still low although a large number of maize 
varieties have been released. In this regard, Abate et al. 2015 using an unpublished data from Ministry of 
Agriculture mentioned that the share of total modern varieties used in Oromia region during 2010–12 was 49% of 
the total; Amhara and South Nations Nationalities and People regions accounted for 33 and 18%, respectively, 
with Benishangul-Gumuz and Tigray regions both receiving less than 1% each. They also estimated based on CSA 
data for 2004 to 2013 that about 23% of the total mineral fertilizer in Ethiopia is applied to maize. Accordingly, 
an average of 69% of all maize grown in 2013 in Ethiopia received some amount of mineral fertilizer application, 
compared to 56 % in 2004. However, numerous farmers (as many as half in some regions) have consistently 
reported late delivery of fertilizer in recent years (Dorosh and Rashid, 2012). Accordingly, moreover, unlike 
neighboring countries such as Kenya, Ethiopia does not offer fertilizer in smaller packages that could be used by 
smallholders or in different formulations needed for different types of agro-climates, soils, and crops. 

Even though crop productivity and production remained low and variable in the 90s for the most part, there 
have been clear signs of change over the past decade (Abate et al., 2015).  Accordingly, national maize yields have 
doubled from about 1.50 MT/ha during the early 1990s to 3.23 MT/ha in 2013. On average, maize area and 
productivity increased by 4.0 and 6.3% per annum, respectively, during the 10 years between 2004 and 2013. 
Similarly, the annual rate of growth for production during the same period was 10.5% and it is interesting to see 
that the increases in maize production in Ethiopia resulted more from increases in productivity rather than area 
expansion (Abate et al., 2015). However, the contribution of agriculture to food security both through its direct 
impact on food production and indirect effect on farm incomes has failed to recover even after the economic 
reforms of the 1990s (Bekabil, 2018 citing Samuel, 2003). Accordingly, despite some short-lived successes in 
some areas and years, the impact of the country’s new development strategy that is commonly known as 
Agricultural Development–Led Industrialization (ADLI) and its main instrument, PADETES (Participatory 
Demonstration and Training Extension System) was too little to affect per capita agricultural production or 
productivity at national level or in a sustainable manner. These all obviously calls for a further and a better growth 
in agricultural productivity as well as quality with minimum adverse impact on the environment mainly through 
the supply, duplication and diffusion of continuously improving as well as location specific technology and 
information. 

Holistic and appropriate evaluation of the efforts and corresponding results as well as reasons/strengths and 
weaknesses/ of the past few decades in general and of the past recent years in particular is necessary in order to 
create a more fertile ground for the fast achievement of the aforementioned goal. In this regard, the role of historical 
data collected by different agencies like CSA as well as of different socio-economic studies carried out to provide 
vital policy and related recommendations is indispensable. Studies that assess the contribution of improved crop 
management practices information and technologies like improved crop varieties for the productivity growth of 
such important and widely cultivated cereals like maize in Ethiopia in the past recent years are among studies that 
can be cited in relation to this. However, studies carried out in the country on this issue are not only few but also 
restricted to piece meal or location specific approach. Besides, most studies were biased towards those locations 
that had high/better suitability and/or preference for the production of the specific crop considered. As a result, a 
nationally or regionally representative data could not be collected for the studies and the conclusions drawn so far 
would have low probability of influencing national and regional policies. Thus, the objective of this study is to 
identify the regional disparity in the impact of adoption of fertilizer (organic, inorganic or both) on maize 
productivity per unit of land cropped among five administrative regions of Ethiopia (namely Oromia, Amhara, 
South Nations, Nationalities & People, Tigray and Benishangul-Gumuz) which are also known to be the major 
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maize producing regions in the country. 
 
2. Materials and Methods 
2.1 Analytical Framework for Evaluation 
An impact evaluation provides information about the impacts produced by an intervention which might be a small 
project, a large program, a collection of activities, or a policy. Many development agencies use the definition 
of impacts provided by the Organization for Economic Co-operation and Development – Development Assistance 
Committee: “positive and negative, primary and secondary long-term effects produced by a development 
intervention, directly or indirectly, intended or unintended.” (OECD-DAC 2010). If an impact evaluation fails to 
systematically undertake causal attribution, there is a greater risk that the evaluation will produce incorrect findings 
and lead to incorrect decisions. Causal attribution is defined by OECD-DAC as: “Ascription of a causal link 
between observed (or expected to be observed) changes and a specific intervention.” (OECD_DAC 2010). This 
definition does not require that changes are produced solely or wholly by the intervention under investigation. In 
other words, it takes into consideration that other causes may also have been involved, for example, other 
interventions in the area of interest or certain contextual factors (often referred to as ‘external factors’). 

Inference about the impact of a treatment on the outcome of an individual involves speculation about how 
this individual would have performed had (s)he not received the treatment and the standard framework in 
evaluation analysis to formalize this problem is the potential outcome approach or Roy–Rubin model (Caliendo 
and Kopeinig, 2008 citing Roy, 1951 and Rubin, 1974). Accordingly, in the case of a binary treatment, the 
treatment indicator Di equals one if individual i receives treatment and zero otherwise. The potential outcomes are 
then defined as Yi(Di) for each individual i, where i = 1, ..., N and N denotes the total population. The treatment 
effect for an individual i can be written as 
 τi =Yi(1)−Yi(0) 

The fundamental evaluation problem arises because only one of the potential outcomes is observed for each 
individual i where the unobserved outcome is called the counterfactual outcome, that is, what would have 
happened to participants in absence of treatment (Caliendo and Kopeinig, 2008; Heinrich et al., 2010). Hence, 
estimating the individual treatment effect τi is not possible and one has to concentrate on (population) average 
treatment effects. 

Of fundamental interest in all evaluation efforts is whether a particular intervention, as designed, is effective 
in accomplishing its primary objectives (Heinrich et al., 2010). According to Caliendo and Kopeinig 2008, among 
the two parameters which are most frequently estimated in the literature, the first one is the population average 
treatment effect (ATE), which is simply the difference of the expected outcomes after participation and 
nonparticipation: 
 τATE = E(τ)= E[Y(1)−Y(0)]  

This estimate, however, might not be of relevance to policy makers because it includes the effect on persons 
for whom the intervention was never intended (Caliendo and Kopeinig, 2008 citing Heckman, 1997). Therefore, 
the most prominent evaluation parameter is the so-called average treatment effect on the treated (ATT) given by  
τATT = E(τ|D =1)= E[Y(1)|D =1]− E[Y(0)|D =1], 

which focuses explicitly on the effects on those for whom the intervention is actually intended (Caliendo and 
Kopeinig, 2008). Accordingly, the expected value of ATT is defined as the difference between expected outcome 
values with and without treatment for those who actually participated in treatment. 

As the counterfactual outcome is never observed, it has to be estimated using statistical methods. In this 
regard, taking the mean outcome of nonparticipants as an approximation is not advisable, since participants and 
nonparticipants usually differ even in the absence of treatment and this problem is known as selection bias 
(Caliendo and Kopeinig, 2008). 

The matching approach is one possible solution to the selection problem (Caliendo and Kopeinig, 2008). 
Accordingly, it originated from the statistical literature and shows a close link to the experimental context. Its basic 
idea is to find in a large group of nonparticipants those individuals who are similar to the participants in all relevant 
pretreatment characteristics X. That being done, differences in outcomes of this well selected and thus adequate 
control group and of participants can be attributed to the intervention. 

Since conditioning on all relevant covariates is limited in the case of a high dimensional vector X (‘curse of 
dimensionality’), Rosenbaum and Rubin (1983b) as to Caliendo and Kopeinig 2008 suggest the use of so-called 
balancing scores b(X), i.e. functions of the relevant observed covariates X such that the conditional distribution of 
X given b(X) is independent of assignment into treatment. One possible balancing score in this regard is the 
propensity score. According to Olmos 2015, propensity scores are defined as the conditional probability of 
assigning a unit to a particular treatment condition (i.e., likelihood of receiving treatment), given a set of observed 
covariates. Matching procedures based on this balancing score are known as propensity score matching (PSM). 

Such matching estimator as PSM will not, however, necessarily work in all circumstances (Caliendo and 
Kopeinig, 2008; Heinrich et al., 2010). Accordingly, some identifying assumptions have to be met to produce valid 
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impact estimates: 
Assumption 1 (Conditional Independence Assumption or CIA): there is a set X of covariates, observable to 

the researcher, such that after controlling for these covariates, the potential outcomes are independent of the 
treatment status: 
 (Y1, Y0) ⊥ D | X 
This property is also known as un-confoundedness or selection on observables.  
Assumption 2 (Common Support Condition): for each value of X, there is a positive probability of being both 
treated and untreated: 
0< P(D = 1| X) < 1   
The second requirement is also known as overlap condition, because it ensures that there is sufficient overlap in 
the characteristics of the treated and untreated units to find adequate matches (or a common support). When these 
two assumptions are satisfied, the treatment assignment is said to be strongly ignorable (Rosenbaum & Rubin, 
1983). 
In fact, when the parameter of interest is the ATT, the CIA assumption can be relaxed to: Y0⊥D|X since we need 
only to construct the counterfactual for the treated individuals. 
Given that CIA holds and assuming additionally that there is overlap between both groups, the PSM estimator for 
ATT can be written in general as 
 τPSM

ATT = EP(X)|D=1{E[Y(1)|D =1, P(X)]− E[Y(0)|D =0, P(X)]}      
To put it in words, the PSM estimator is simply the mean difference in outcomes over the common support, 
appropriately weighted by the propensity score distribution of participants (Caliendo and Kopeinig, 2008). 

In PSM, the procedure for estimating the impact of an intervention can be divided into three straightforward 
steps: (1) Estimate the propensity score, (2) Choose a matching algorithm that will use the estimated propensity 
scores to match untreated units to treated units as well as (3) Estimate the impact of the intervention with the 
matched sample and calculate standard errors (Heinrich et al., 2010). 

For a binary treatment variable, there is no strong advantage to using the logit vs. probit model to estimate 
the propensity score, although both are typically preferred to a linear probability model (Heinrich et al., 2010). 
According to them, it is critical that a flexible functional form which allows capturing possible nonlinearities of 
the participation model be used and that all relevant covariates that relate to treatment status and outcomes are 
included in this model (to account for differences between treated and untreated units). Hence, economic theory, 
a sound knowledge of previous empirical findings and also information about the institutional settings should 
guide the researcher in building up the model (Caliendo and Kopeinig, 2008). Accordingly, it should also be clear 
that only variables that are unaffected by participation (or the anticipation of it) should be included in the model 
and to ensure this, variables should either be fixed over time or measured before participation. In the latter case, it 
must be guaranteed that the variable has not been influenced by the anticipation of participation. According to 
them, Heckman et al. (1999) also point out that the data for participants and nonparticipants should stem from the 
same sources (e.g. the same questionnaire). The better and more informative the data are, the easier it is to credibly 
justify the CIA and the matching procedure.  

In choosing between different matching algorithms, the primary factors that should be considered are: (1) 
Matching with or without replacement, (2) How to assess for the closeness of the match, (3) Whether and how to 
weight cases in the analysis and (4) Number of comparison units matched to each treatment unit (Heinrich et al., 
2010). According to them, in nearest neighbor matching which is among the commonly employed matching 
algorithms, an individual from the comparison group is chosen as a match for a treated individual in terms of the 
closest propensity score. On the other hand, Kernel matching is a nonparametric matching estimator that compares 
the outcome of each treated person to a weighted average of the outcomes of all the untreated persons, with the 
highest weight being placed on those with scores closest to the treated individual. Unfortunately, there is no clear 
rule for determining which algorithm is more appropriate in each context. However, a key issue that should be 
considered is that the selection of the matching algorithm implies a bias/efficiency trade-off (Heinrich et al., 2010). 
Pragmatically, it seems sensible to try a number of approaches. Should they give similar results, the choice may 
be unimportant. Should results differ, further investigation may be needed in order to reveal more about the source 
of the disparity (Caliendo and Kopeinig, 2008 citing Bryson et al., 2002). 

As with any experimental or nonexperimental method used in impact evaluation, it is important to check the 
key assumptions that are made in the estimation and verify that the model specification is appropriate and that the 
results do not suffer from bias. Unfortunately, the conditional independence assumption is not directly testable but 
still requires justification like those mentioned before (Heinrich et al., 2010). According to them, checking the 
overlap or region of common support between treatment and comparison groups can be done with relatively 
straightforward strategies and one obvious approach is through visual inspection of the propensity score 
distributions for both the treatment and comparison groups. Simple histograms or density-distribution plots of 
propensity scores for the two groups, along with a comparison of the minimum and maximum propensity score 
values in each distribution, can typically give the researcher a good, initial reading of the extent to which there is 



Journal of Economics and Sustainable Development                                                                                                                        www.iiste.org 

ISSN 2222-1700 (Paper) ISSN 2222-2855 (Online)  

Vol.11, No.19, 2020 

 

48 

overlap in the propensity scores of the treatment and comparison units (Heinrich et al., 2010). 
Since we do not condition on all covariates but on the propensity score, it has to be checked if the matching 

procedure is able to balance the distribution of the relevant variables in both the control and treatment group 
(assessing the matching quality, i.e.). There are several procedures to do so and the basic idea of all is to compare 
the situation before and after matching and check if there remain any differences after conditioning on the 
propensity score (Caliendo and Kopeinig, 2008). As to them, Sianesi (2004) suggests to re-estimate the propensity 
score on the matched sample and compare the pseudo-R2s before and after matching. After matching there should 
be no systematic differences in the distribution of covariates between both groups and therefore the pseudo-R2 
(which indicates how well the regressors X explain the participation probability) should be fairly low. Furthermore, 
one can also perform a likelihood ratio test on the joint significance of all regressors in the probit or logit model. 
The test should not be rejected before, and should be rejected after, matching (Caliendo and Kopeinig, 2008). 
 
2.2 Data and Variables    
The data utilized for this study is acquired from the third wave of the Ethiopia Socioeconomic Survey (ESS) 2015-
2016. The Ethiopian Socioeconomic Survey (ESS) is a collaborative long-term project between the Central 
Statistics Agency of Ethiopia (CSA) and the World Bank Living Standards Measurement Study-Integrated Surveys 
on Agriculture (LSMS-ISA) team to collect panel data. The project responds to the data needs of the country, given 
the dependence of a high percentage of households in agriculture activities in the country. The ESS collects 
information on household agricultural activities along with other information on the households like human capital, 
other economic activities, access to services and resources. The ability to follow the same households over time 
makes the ESS a new and powerful tool for studying and understanding the role of agriculture in household welfare 
over time as it allows analyses of how households add to their human and physical capital, how education affects 
earnings, and the role of government policies and programs on poverty, inter alia. ESS uses a nationally 
representative sample of over 5,000 households living in rural and urban areas. The urban areas include both small 
and large towns. The sample is a two-stage probability sample. The first stage of sampling entailed selecting 
primary sampling units, which are a sample of the CSA enumeration areas (EAs). The second stage of sampling 
was the selection of households to be interviewed in each EA. A total of 433 EAs were selected based on 
probability proportional to size of the total EAs in each region out of which 290 were rural, 43 were small town 
EAs from ESS1, and 100 were EAs from major urban areas. In order to ensure sufficient sample size in the most 
populous regions (Amhara, Oromiya, SNNP, and Tigray) and Addis Ababa, quotas were set for the number of 
EAs in each region. The sample is not representative for each of the small regions including Afar, Benishangul-
Gumuz, Dire Dawa, Gambella, Harari, and Somali regions. However, estimates can be produced for a combination 
of all smaller regions as one “other region” category. During wave 3, 1255 households were re-interviewed 
yielding a response rate of 85 percent. Attrition in urban areas is 15% due to consent refusal and inability to trace 
the whereabouts of sample households. 
Yield stands for the yield of maize per unit of land cropped measured in quintals per hectare. 
LnYield stands for the natural logarithmic transformation of Yield.  
HHAGE stands for the age of a household head in years. 
HHSEX is a dummy variable indicating the sex of a household head where HHSEX = 1 if the head is male and 0 
if otherwise. 
HHEDU is a dummy variable indicating whether a household head is literate where HHEDU = 1 if the head is 
literate/able to read and write in any language / and 0 if otherwise. 
HHRELIGION is a dummy variable indicating the main religion of a household head. 
FAMILY_SIZE stands for size of a household. 
CREDIT is a dummy variable indicating household's access to credit where CREDIT = 1 if anyone in the 
household  has borrowed greater than 150 birr from someone outside the household or from an institution for 
business or farming purposes over the past 12 months and 0 if otherwise. 
LANDHOLDING_SIZE stands for size of the land holding of a household measured in meter squared. 
OVERALLPLOTOWN is a dummy variable indicating household's plot ownership where OVERALLPLOTOWN 
= 1 if the household has some plot under its ownership (acquired through inheritance or local leaders' grant) and 0 
if otherwise. 
AVERPLOTSLOPE stands for the average plot slope of a household' overall plot measured in percent. 
OVERALLFERTILEPLOT is a dummy variable indicating household's overall plot soil quality where 
OVERALLFERTILEPLOT = 1 if the household has some plot with fair or good soil quality and 0 if otherwise.  
DSTNEARMKT stands for distance to the nearest market from residence measured in kilometer. 
DSTMAJROAD stands for distance to the nearest major road from residence measured in kilometer. 
DSTNEARPOPCENTER stands for distance to the nearest population center with more than 20,000 people from 
residence measured in kilometer. 
OXEN stands for the total number of oxen owned by a household. 
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HHTLU stands for the total livestock units currently owned and kept by a household. 
EXCONTACT is a dummy variable indicating whether a household had participated in the extension program 
where EXCONTACT = 1 if the household had participated in the extension program and 0 if otherwise. 
NONAGRIBUSIN is a dummy variable indicating whether a household owned a non-agriculture business or 
provided a non-agricultural service from home over the past 12 months where NONAGRIBUSIN = 1 if the 
household has owned a non-agriculture business or provided a non-agricultural service from home over the past 
12 months and 0 if otherwise. 
COMIRRIGSCH is a dummy variable indicating presence of an irrigation scheme in the community in which a 
household reside where COMIRRIGSCH = 1 if the community in which a household reside has an irrigation 
scheme and 0 if otherwise. 
AMTOFRAIN is a dummy variable indicating the amount of rain received in the last season. 
 
3. Results and Discussions  
3.1 Descriptive Statistics 
Various variables that were included in the propensity score matching model that describe the major observed 
characteristics of the sample respondents are presented in table 1. In Oromia and Benishangul-Gumuz regions, the 
yield and yield growth of fertilizer adopters is significantly greater than that of non-adopters. Thus, it tentatively 
shows that there is significant difference in yield and yield growth level in these regions between those households 
that adopt fertilizer of any kind and those that do not adopt. All the important variables used in the probit model 
except household's overall plot soil quality have different effect in the different administrative regions considered. 
 
3.2 Propensity Scores Estimation using Probit Model  
The descriptive statistics has shown a tentative impact of fertilizer adoption on increasing yield in some of the 
regions. Nevertheless, a mere comparison of yield has no causal meaning since fertilizer adoption is endogenous. 
And it is difficult to attribute the change to adoption of fertilizer since the difference in yield might be owing to 
other determinants. To this end, a rigorous impact evaluation method; namely, Propensity Score Matching has to 
be employed to control for observed characteristics and determine the actual attributable impact of fertilizer 
adoption on yield growth in different maize producing regions of Ethiopia. Propensity scores for adopters and non-
adopters were estimated using a probit model to compare the treatment group with the control group. In this regard, 
only those significant variables were used in estimating the propensity scores for each region. The check for 
‘overlap condition’ across the treatment and control groups was done and the result as indicated on figure 1 showed 
that the overlap condition is satisfied for all the five regions considered as there is substantial overlap in the 
distribution of the propensity scores of both adopters and non-adopters. 

For Oromia region, the propensity score for adopters ranges between 0.1672046 and 0.7900534 while it 
ranges between 0.0571815 and 0.7739796 for non-adopters and the region of common support for the distribution 
of estimated propensity scores of adopters and non-adopters ranges between 0.1672046 and 0.7900534. For 
Amhara region, the propensity score for adopters ranges between 0.2837106 and 0.9383422 while it ranges 
between 0.1493821 and 0.9496272 for non-adopters and the region of common support for the distribution of 
estimated propensity scores of adopters and non-adopters ranges between 0.2837106 and 0.9383422. For SNNP 
region, the propensity score for adopters ranges between 0.0578879 and 0.8832533 while it ranges between 
0.0333115 and 0.7807528 for non-adopters and the region of common support for the distribution of estimated 
propensity scores of adopters and non-adopters ranges between 0.0578879 and 0.8832533. For Tigray region, the 
propensity score for adopters ranges between 0.2292409 and 0.9999998 while it ranges between 0.1964364 and 
0.9684217 for non-adopters and the region of common support for the distribution of estimated propensity scores 
of adopters and non-adopters ranges between 0.2292409 and 0.9999998. For Benishangul-Gumuz region, the 
propensity score for adopters ranges between 0.2007994 and 1 while it ranges between 1.21e-19 and 0.7252187 
for non-adopters and the region of common support for the distribution of estimated propensity scores of adopters 
and non-adopters ranges between 0.2007994 and 1. When matching techniques are employed, observations whose 
propensity score lies outside this range were discarded. 
 
3.3 Assessing Matching Quality 
Checking whether the matching procedure is able to balance the distribution of the relevant variables in both the 
control and treatment group is important in using the propensity score method. The before and after matching 
covariate balancing tests presented on table 2 suggested that the proposed specification of the propensity score is 
fairly successful in balancing the distribution of covariates between the two groups as indicated by decreasing 
pseudo R2 for all regions except Tigray, decreasing mean standardized bias for all regions, the insignificant p-
values of the likelihood ratio test for Tigray and Benishangul-Gumuz regions and satisfied interval value of 
Rubin’s R (ratio of treated to (matched) non-treated variances of the propensity score index) after matching for all 
regions except Tigray and Benishangul-Gumuz.  
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4. Results 
Different matching algorithms are available for Propensity Score Matching with nearest neighbor matching and 
kernel matching being the most common ones (Kikulwe et al., 2012 citing Caliendo and Kopeinig, 2008). 
Accordingly, nearest neighbor matching matches adopters with non-adopters with the nearest propensity score, 
while controlling for differences between adopters and non-adopters whereas kernel matching computes treatment 
effects by deducting from each outcome observation in the treatment group a weighted average of outcomes in the 
control group. Table 3 depicts the average impact of fertilizer adoption on maize yield growth using nearest 
neighbor matching one and five (NN=1 and NN=5) as well as Epanechnikov kernel matching with two band widths 
(BW=0.03 and BW=0.06). Accordingly, all or most of the matching algorithms employed support the hypothesis 
that fertilizer adoption has a positive and significant impact on yield growth in only two of the five regions 
considered, namely Tigray and Benishangul-Gumuz. Moreover, fertilizer adoption has a higher impact on yield 
growth in Tigray region, ranging from 96-116%, compared to that in Benishangul-Gumuz region, ranging from 
36-66%.  
 
5. Conclusion and Recommendation 
This study is undertaken to identify the regional disparity in the impact of adoption of fertilizer on maize yield 
growth among different major maize producing administrative regions of Ethiopia. It used propensity score 
matching technique which is a robust impact evaluation technique that identifies the impact which can be attributed 
to fertilizer adoption. The study also employed and compared various matching algorithms to ensure robustness 
of the impact estimates. Finally, the study concludes that adoption of fertilizer doesn't have the desired positive 
and significant impact on yield growth in all of the different major maize producing administrative regions of the 
country. Moreover, its impact greatly varies among the regions. Therefore, this study recommends that the 
agricultural research and extension system of the country should be strengthened to further take into account the 
differences among different regions and areas (like zones, woredas and “kebeles”/villages) havivg high variability 
in landscape positions, agro-ecologies, soil characteristics and management practices/farming systems in order to 
generate and scale-up site- and context-specific type and quantity of fertilizer as well as other appropriate improved 
agricultural technologies and information that suits to the specific conditions of all maize producing farm 
households of the country.  

 
Figure 1(a): Distribution of propensity scores of adopters and non-adopters for Oromia region 
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Figure 1(b): Distribution of propensity scores of adopters and non-adopters for Amhara region 
 

 
Figure 1(c): Distribution of propensity scores of adopters and non-adopters for SNNP region 
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Figure 1(d): Distribution of propensity scores of adopters and non-adopters for Tigray region 
 

 
Figure 1(e): Distribution of propensity scores of adopters and non-adopters for Benishangul-Gumuz region 
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Table 1: Descriptive statistics of important variables used in the probit model-Propensity Score Matching 

 
***, **, * indicate significance at at 1%, 5% & 10% level respectively. 
Source: Own computation, 2020 
 
 Table 2:  Propensity Score Matching Quality Test 

Region Sample Ps R2 LR chi2 p>chi2 MeanBias MedBias R %Var 

Oromia 

Unmatched 0.082 27.93 0.000 30.8 29.6 0.42* 25 

Matched    0.023 7.01 0.428 11.4 10.6 0.99 0 

Amhara 

Unmatched 0.087 27.85 0.002 28.3 28.4 0.66 33 

Matched    0.031 11.30 0.335 12.7 11.5 1.06 17 

SNNP 

Unmatched 0.161 32.53 0.000 39.8 39.7 1.61 67 

Matched    0.095 13.23 0.211 16.7 12.9 1.40 0 

Tigray 

Unmatched 0.346 27.24 0.001 64.2 68.6 1.16 38 

Matched    0.476 91.74 0.000 49.0 30.2 2.83* 50 

Benishangul-
Gumuz 

Unmatched 0.412 43.62 0.000 54.7 48.0 0.47* 20 

Matched    0.265 22.79 0.007 38.0 36.6 10.25* 20 

* if B>25%, R outside [0.5; 2] 
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Table 3: Average Treatment Effects estimation using different propensity score matching estimators 

Region 
Outcome 
Variable 

Matching 
Algorithm 

ATT (Std. Err.) 

 
 

Oromia LnYield 

Nearest Neighbor (NN=1) 0.344**(0.183) 
Nearest Neighbor (NN=5) 0.176(0.152) 

Kernel (BW=0.03) 0.295**(0.169) 
Kernel (BW=0.06) 0.151(0.164) 

 
 

Amhara LnYield 

Nearest Neighbor (NN=1) 0.207(0.258) 
Nearest Neighbor (NN=5) 0.201(0.211) 

Kernel (BW=0.03) 0.179(0.174) 
Kernel (BW=0.06) 0.134(0.195) 

 
 

SNNP LnYield 

Nearest Neighbor (NN=1) 0.521*(0.330) 
Nearest Neighbor (NN=5) 0.160(0.285) 

Kernel (BW=0.03) 0.290(0.255) 
Kernel (BW=0.06) 0.257(0.251) 

 
 

Tigray LnYield 

Nearest Neighbor (NN=1) 0.962*(0.630) 
Nearest Neighbor (NN=5) 0.286(0.480) 

Kernel (BW=0.03) 1.159***(0.383) 
Kernel (BW=0.06) 1.060***(0.442) 

 
 

Benishangul-Gumuz LnYield 

Nearest Neighbor (NN=1) 0.658**(0.324) 
Nearest Neighbor (NN=5) 0.575***(0.231) 
Kernel (BW=0.03) 0.364*(0.266) 
Kernel (BW=0.06) 0.433**(0.219) 

***, **, * indicate significance at 1%, 5% & 10% level respectively and bootstrapped standard errors are based 
on 100 replications. 
Source: Own computation, 2020 
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