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Abstract 

This paper uses a translog stochastic frontier model to estimate the relationship between maize yield and an 

interplay of soil carbon, soil nitrogen and inorganic nitrogen fertilizer using plot-level data collected from 

smallholder farmers in Dedza and Ntcheu Districts of Malawi in 2013/2014 growing season. One of the covariates 

in the model is nitrogen applied to a plot from inorganic fertilizers. Farmer use of nitrogen is influenced through 

participation in a non-random targeted Farm Inputs Subsidy Program (FISP) of the Malawi Government. A control 

function approach is therefore applied to correct for possible endogeneity of participation in the FISP.Results show 

that inorganic nitrogen fertilizer has significant positive effect on maize output whereas an increase in soil carbon 

is associated with low maize output but interaction between soil carbon and soil nitrogen as well as with inorganic 

nitrogen significantly increases maize output. These results seem to be linked to Carbon to Nitrogen (C:N) ratio in 

the soil. The accumulation of C beyond the optimal C:N ratio is known to reduce rate of decomposition, nutrient 

cycling, shoot: root ratio and biomass in grasses including maize. Under such circumstances, increasing nitrogen 

brings the C:N ratio to beneficial levels. The results further show that inorganic nitrogen is a substitute to labour, 

seed and land. The substitution relationship suggests that improvements in inorganic nitrogen require reduction in 

labour, seed use and land. It has further been shown that only 45.03% of the plots have marginal value cost ratios 

of greater than one which shows that considerable number of plots are not profitable. For 66.20% of the plots, 

applied inorganic nitrogen fertilizer exceeds optimal levels signifying suboptimal use of the input. The results 

suggest that inorganic nitrogen is profitable at low levels of application which is largely due to prevailing high 

nitrogen-maize price ratio. The prominent issue for policy consideration from these results is that soils in Malawi 

are depleted of nitrogen leading to unfavorably high C:N ratios which negatively impact maize production. Given 

that nitrogen-maize price ratio is already high in Malawi, farmers will need programs that enhance their access to 

nitrogen fertilizers at low prices for nitrogen fertilizer application to be profitable. Such programs need to be 

implemented simultaneously with a package of intensification practices that fix and retain nitrogen in the soil. 
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1. Introduction 

It is widely believed that sustainable agricultural productivity growth in sub-Saharan Africa will require much 

greater usage of inorganic fertilizer and improved seed, along with management practices that maintain and 

improve soil fertility (Snapp et al., 2014, Chianu et al., 2012). Nevertheless, limited use of nutrient inputs, gaseous 

losses, soil erosion and the general soil land degradation in the region present a fundamental food production 

challenge (Muyayabantu et al., 2012). Thus, meeting food demand for the growing population has remained an 

integral part of research and development agenda in the region.  

In Malawi, maize is grown on 70% of smallholder land and is primarily for consumption, with only 15% sold 

on the market (MoAFS, 2011; Jayne et al., 2010). Land holdings are very small, with over 80% below one hectare 

of land, and are continuing to fragment due to population growth, sub-divisions, and conversion of farmland to 

housing and other uses. In this environment, agricultural productivity growth will require greater concentration of 

inputs and soil-augmenting practices to achieve sustainable increases in productivity (Chirwa, 2005; Katengeza et 

al., 2012; Smale, 1995).   

Efficient use of fertilizer potentially enhances agricultural productivity (Dittoh et al., 2012) but in Malawi its 

gainful use is hindered by diverse factors. For instance, high retail fertilizer prices have excluded most poor 

smallholder farmers from accessing inorganic fertilizers (IFDC, 2013). Furthermore, despite the country having 

heterogeneous biophysical and ecological conditions, fertilizer application rates for various crops are based on 

generalized recommendation (Mutegi et al., 2015). Such factors limit potential of farmers to optimize crop 

production even if inorganic fertilizer is used.  

To improve smallholder maize yields, the Malawi Government has been implementing various forms of 

fertilizer subsidy programs for over two decades. It is however not clear whether current levels of fertilizer use 
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can be sustained without continued subsidization. The evidence is mixed but some studies show that smallholder 

farmers get highly variable crop response to fertilizer application, which points to varying profitability of fertilizer 

across farm households and limited demand for fertilizer when obtained at commercial market prices (Snapp et 

al., 2014; Dorward et al., 2008).  Evidence from the crop science and agronomy literature indicates that crop 

response to fertilizer (and hence its profitability) depends on soil characteristics that are highly influenced by the 

continuous adoption of integrated soil fertility management practices (Snapp et al., 2014).   

To guide policy decisions in a backdrop of fertilizer use challenges, there is growing need to understand how 

productivity relates to soil nutrients and nutrients supplied through application of inorganic fertilizers. However, 

a gap in empirical evidence exists on such yield-input relationship with respect to maize and other key food security 

crops in Malawi. Studies have focused on general effects of subsidy fertilizer on yield (Ricker-Gilbert et al., 2009; 

Chibwana et al., 2014; Holden, 2013) or on the general effect of fertilizer input on yield within a production 

frontier framework (Tchale, 2009; Tchale and Sauer, 2007; Simwaka et al., 2013).  

As Whitbread et al. (2013) noted, few studies have examined maize yield responses to nitrogen under farmer 

managed conditions. This paper presents an assessment of the effect of soil carbon, nitrogen, both from inorganic 

fertilizer sources and from the soil (soil nitrogen), and the interaction effect of carbon and nitrogen on maize yield. 

Analysis follows control function approach to address the endogeneity of nitrogen from subsidized fertilizer input. 

Estimation of a stochastic production frontier within an econometric framework that controls for endogeneity, is 

a first application to the assessment of the effects of nutrient use on maize yield in Malawi.   

The rest of paper is organized as follows: Section 2 presents a review of literature on maize productivity. A 

theoretical model, which is the basis of the analytical model for the study, is covered in Section 3. Section 4 

outlines the empirical model, while Section 5 describes the data. The results of the analysis are presented in Section 

6 before presenting conclusion and recommendations in Section 7. 

 

2. Literature Review on Maize Productivity 

In most soils, the use of inorganic nitrogen and phosphorus fertilizers as well as the application of organic fertilizers 

such as farm yard manure increase maize yield (Oad et al., 2014; Ademba, 2009; Ademba et al., 2015; Mutegi et 

al., 2012; Nasim et al., 2012). Applied nitrogen reduces the impacts of Striga hermonthica damage to maize yields 

(Ademba, 2009) and there is evidence that the combination of organic and inorganic fertilizers is superior to the 

application of organic or inorganic fertilizers separately (Mutegi et al., 2012).   

Some studies have shown that inorganic fertilizers alone can improve maize yield (Jiang and Schulthess, 2005; 

Amin, 2011; Crista et al., 2014; Le Silva et al., 2006; Woldsenbet and Haileyesus 2016) while others have argued 

that the use of organic fertilizers alone is more superior in enhancing maize yields than inorganic fertilizers. 

Achieng et al. (2010) found that use of farm yard manure is the best bet for maize production on both Alfisols and 

Ultisols because there was no significant yield advantage from inorganics over farm yard manure. Supporting this 

argument, Okonmah (2009) and Boateng et al. (2006) observed that application of poultry manure increases maize 

yield.   

Impact of fertilizers on maize yield is sometimes affected by location factors. In China, Gao et al. (2009) 

found different yield response rates between northeast, northcentral, and northwest regions with total 

macronutrient accumulation being higher in the northwest compared to the other two regions. Mugwira et al. (2007) 

evaluated the effects of manure and inorganic fertilizer on maize growth, yield, and nutrient uptake at Grasslands 

Research Station and Matiza in Chihota communal area from 1983/84 to 1988/89 as a part of a wider project on 

sandveld soils in Zimbabwe. The study concluded that feedlot manure was effective in correcting deficiencies of 

N, P, or Mg at the Grasslands. However, application of both manure and inorganic fertilizer had no significant 

effect on poor status of nutrients of soils at Matiza location.  

Ajayi et al. (2005) assessed the effect of fertilizer tree fallows on maize yield in several trials. The study 

found that apart from increased maize yields, fertilizer tree fallows were more profitable than continuous maize 

cultivation without fertilizer. However, the fallows were less profitable than fully fertilized plots, especially when 

the fertilizer was subsidized. The fertilizer tree system is a low-cost investment that requires less labour over its 

full cycle than other land uses over the same period of time. The results suggested that lasting fertilizer tree fallow 

systems can generate lasting environmental impacts such as improved soil structure, increased carbon 

sequestration and reduced cutting of woodlands for fuelwood.   

Mango et al. (2015) analyzed technical efficiency of maize production among smallholder farmers in 

Zimbabwe. The study found that maize output is positively influenced by inorganic fertilizers, seed quantity, the 

use of labour and area planted. The results also showed that the average efficiency of maize production could be 

improved by 35 percent through better use of existing resources and technology. Njenga (2013) studied the effect 

of fertilizer input subsidy on maize production in Wareng District, Kenya. The results indicated that an extra 

subsidized bag of fertilizer applied increased the number of maize bags produced per acre by 14.3 percent. Access 

to research and extension services, being a male farmer, access to credit, and use of improved seed (hybrids) 

increased maize productivity.  
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3. Theoretical Framework 

Smallholder farmers make numerous input allocation decisions in maize production to maximize output given the 

available inputs and other constraints. The random utility principle underscores the choices farmers make in maize 

production. A farmer may fail to reach optimal production due to random shock, technical inefficiency or both. 

Kassie et al. (2014) observed that the agricultural production environment in sub-Saharan Africa, where 

smallholder farmers operate under uncertainty conditions, requires application of a stochastic production frontier 

to account for both technical inefficiency and random errors.  

This paper takes the stochastic nature of agricultural production into account and applies a control function 

approach to correct for possible endogeneity of participation in the Malawi Farm Input Subsidy Program (FISP). 

This is important because the selection of FISP beneficiaries is not random but rather based on some defined 

criteria (Ricker-Gilbert and Jayne, 2009; Liverpool-Tasie, 2014; Darko and Ricker-Gilbert, 2013; Namonje-

Kapembwa et al., 2017; Aloyce et al., 2014).  

In a production function framework, consider a kth farmer who allocates conventional inputs, xk, which along 

with other productivity shifters, zk, affect maize output, yk. This relationship in a stochastic production function is 

specified as: 

  kkkk zxfy   ,,
 where nk ,...2,1  and kkk  

               (1) 

In (1),


is a vector of unknown parameters to be estimated. The composite error term, 
,k captures unobservable 

characteristics that affect maize output and has two elements: a symmetrical two sided normally distributed 

disturbance term ( k ) reflecting the stochastic effects that cannot be controlled by a farmer; and an asymmetric 

non-negative error term ( k ) which is a one sided (
0k ) efficiency component for the kth farmer, thus 

kkk  
 (Battese and Coelli, 1995).  

Maize output response associated with additional use of an input is measured by the marginal product of the input 

which can be derived from (1) by taking partial derivative of yk with respect to xk as follows:  
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where mpkj is marginal product of input j for a kth farmer and xkj is input j for a kth farmer.  

Partial production elasticities of maize output with respect to the inputs can be computed as ratio of marginal 

product to average product and is defined as: 
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where ekj is partial output elasticity of a kth farmer with respect to of input j. Elasticity of scales, es, which measures 

returns to scale of the technology can then be computed as the sum of all output elasticities as follows: 

 kjees
                                  (4) 

Technical similarity of factors of production in (1) can be measured by elasticity of substitution which captures 

degree to which one input can be substituted for another without changing quantity of maize output. Given that 

input xkh and input xkq are a subset of inputs j defined in (2) and (3), elasticity of substitution, eoshq of the two 

inputs is defined as:                                        

khkq

kh
hq

xx

x
eos

kqx
*





                                 (5) 

where, the expression kq

kh

x

x





 is marginal rate of technical substitution between input xkh and input xkq.  

Optimal level for each input in (1) can be determined as level of the input at the point where marginal value is 

equal to input cost. At this point, the marginal value–cost ratio is equal to one and a risk neutral farmer registers 

positive benefits from using the input (Liverpool-Tasie et al., 2017).  For a kth farmer, marginal value–cost ratio 

of jth input is derived as follows: 

kjj mpmvcr *
j

y

p

p


                                 (6) 

where mvcrj is marginal value–cost ratio, py is price of maize, pj is price of an input and mpkj is marginal product 

of a given input as defined in (2). 

Given the actual maize output, yk, in (1), and the highest predicted maize output for the kth farmer given the 

available technology,
*

ky
, the technical efficiency (tek) of an individual farmer is computed as:                  
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where parameters xk, zk,
,
vk and k are as defined in (1). tek has values between 0 and 1 and a farm is technically 

efficient when te = 1. Based on Battese and Coelli (1995), maize output gap in terms of technical inefficiency and 

its determinants is expressed as follows: 

  kkTf   ,k                                 (8) 

where Tk is a vector of covariates explaining technical inefficiency,  is vector of unknown parameters to be 

estimated and k is error term.  

For consistent estimation of stochastic production frontier (Equation 1), the assumption that explanatory variables 

xk and zk are exogenously determined must hold (Amsler et al., 2014). One of the covariates in this study is nitrogen 

from inorganic sources, which is accessed through participation in FISP thereby potentially violating this 

assumption. To correct for this endogeneity, a control function approach following Darko and Ricker-Gilbert (2013) 

and Namonje-Kapembwa et al. (2017) was employed.  

The estimation procedure entailed inclusion of residuals computed from auxiliary model of participation among 

the factors explaining technical inefficiency in (8). A probit auxiliary model was used to analyze the two possible 

alternatives of either participating or not participating in FISP. The conditional probability, Pr, of the probit model, 

given binary outcome, S, for participation in FISP is as follows: 

   '|1 kHfH kSPr
                              (9) 

where Hk is a vector of explanatory variables including exclusion factors and covariates, Tk is defined in (8) and


is a vector of parameters to be estimated. The model in (9) is non-linear and is estimated through maximum 

likelihood procedure as follows: 

  kkHf  'kS
                               (10) 

where k is an error term with mean zero and independently and normally distributed. Computed residuals, 
,k  

from Equation (10) are included among explanatory variables in the inefficiency model to control for endogeneity. 

Thus, (8) is redefined as: 

  kkkTf   ,,k                                (11) 

Standard errors are adjusted for the two-step procedure through bootstrapping because the conventionally-

calculated standard errors from the Step 2 estimation are incorrect (Bezu et al., 2013; Amsler et al., 2014).  

 

4. The Empirical Model 

A translog stochastic frontier model was specified to estimate the relationship between maize output and an 

interplay of soil carbon, soil nitrogen and inorganic nitrogen fertilizer. Unlike a linear production function, the 

translog production function flexibly measures interaction effects of inputs. Three functions were estimated using 

the maximum likelihood technique to analyze sensitivity of findings to model specification. Model 1 estimated 

equations (1) and (7) jointly without correcting for endogeneity of participating in FISP which is controlled in the 

other two models. Models 2 and 3 estimated (1) and (11) using conventionally-calculated and bootstrapped 

standard errors, respectively. The estimated frontier function is specified as: 
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where yk is maize output (kg) and xk constitutes the following conventional inputs: inorganic nitrogen fertilizer 

(kg), labour (labour-days), maize seed (kg) and farming plot (ha). Factors included in vector of productivity shifters, 

zw, are soil nitrogen (%), soil active carbon (%), location dummies for Linthipe, Golomoti and Kandeu Extension 

Planning Areas, an interaction term for soil nitrogen and soil carbon, and an interaction term for inorganic nitrogen 

fertilizer and soil carbon. 
,k ,ki

and w are parameters to be estimated for linear inputs, quadratic and interaction 

inputs, and other productivity shifters, respectively. The error term k is as defined in (1).  

Following Abdulai et al. (2013), all conventional input variables used in the analysis were mean-centered. 

Inorganic nitrogen fertilizer had zero values in some observations due to non-use of the input as such their 

corresponding log transformed values were undefined. Following Battese (1997), such zero values were replaced 

by unities and a dummy variable for fertilizer use was introduced in vector zw to correct for bias arising from 

substitution of the zero values and thereby obtain correct parameter estimates. This approach allows estimation of 

a production function from which elasticities of inputs with true zero values can be derived. Inorganic fertilizer 
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quantities were converted to milligram before replacing the zeros to ensure that the imputed values are not very 

close to or exceed any reported quantity. The model was estimated using the converted values but interpretation is 

in kilogram for it is a commonly used unit of measurement for fertilizer in Malawi.    

From the estimated production function, the partial elasticity of production, ekj, derived from (12) is given in (13). 

Elasticity of scale was accordingly derived as sum of all partial output elasticities. 
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Elasticity of substitution for a pair of inputs measures the curvature of an isoquant. According to Stern (2008), 

Allen-Uzawa Elasticity of Substitution is the most commonly used and is adopted in this study. The Allen-Uzawa 

elasticities of substitution is derived from (12) as follows: 
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where auehq is Allen-Uzawa Partial elasticity of substitution between inputs h and q, Hhq is the cofactor determinant 

of Hessian matrix for inputs h and q, and H is the border determinant of the Hessian matrix. 

Marginal products, mpkj, with respect to input quantities are derived from (12) based on the output elasticities in 

(13) as follows: 

 




 




  

n

i
jjij

kj

k x
x

y

1
ln*

ln
* 

kj

k

kj

k
kj

x

y

x

y
mp

                   (15) 

The marginal product of inorganic nitrogen fertilizer was used to determine the marginal value–cost ratio of the 

input. The point at which the ratio is equal to one was also computed accordingly.  

Theoretical consistency with production theory requires fulfillment of monotonicity and quasi-concavity 

conditions for all inputs. For monotonicity condition to be satisfied, marginal product should be positive which 

implies positive partial production elasticities as well. Quasi-concavity condition is attained for negative 

semidefinite hessian matrix denoting that the leading principal minors of odd order are negative and of even order 

are positive. In practice a translog production function does not globally meet the two conditions but the model is 

assumed to behave appropriately if wide enough regions in input space satisfy the two regularity conditions (Corbo 

and Meller, 1979).  

Translog loses its flexibility if concavity restrictions are imposed globally and hence restrictions are imposed 

at a particular reference point (Baum and Linz, 2009). Henningsen and Henning (2009) noted that attainment of a 

quasi-concave production function in practice may be deficient of a technical rational because of two factors. First, 

inputs are not perfectly divisible and production activities are not independently applicable as quasi-concavity 

conditions assume. Second, a household or a firm may maximize output given inputs rather than maximizing 

profits. 

The inefficiency term in the translog production function is assumed to be independently distributed and follow 

an exponential distribution with mean,
,
and variance,

.2

u An inefficiency model as defined in (11) was estimated 

as follows:  
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h
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                            (16) 

where covariates in vector Tk are proportion of productive female household members, children under ten years of 

age, dummy for marital status, dummy for hired labour, remittances received by a household, ownership of bicycle, 

ownership of phone, head managed plot, spouse managed plot, perceived plot fertility and years of farming on a 

plot. The factor, ,  is a generalized residual from probit auxiliary model as identified in (10). All covariates in 

(16) were included in the probit plus two exclusion variables: dummies for permanence of residence over last 12 

months and distance to fertilizer market. 

 

5. Data and Variable Description 

The analysis utilized plot-level data collected from smallholder farmers in Dedza and Ntcheu Districts of Malawi 

in the 2013/2014 growing season. The data was collected within the catchment area of Africa Rising Project which 

was being implemented to promote use of Integrated Soil Fertility Management (ISFM) practices. The two districts 

of Dedza and Ntcheu fall within semi-arid to sub-humid tropical agro-ecological zones. Their soils are 

predominantly sandy loam, well drained, moderately fertile and acidic, and prone to soil erosion. The average 

annual rainfall varies between 700 and 1100 mm and is mainly received from December to March with some minor 

rainfall in November and April. Maize-based production systems are dominant in the two districts.  

A structured questionnaire was used to purposefully collect data from households taking into account 
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differences in the ecological zones following a stratified random sampling procedure. The survey targeted 

Mtakataka, Linthipe and Golomoti Extension Planning Areas (EPAs) of Dedza District, and Kandeu and Nsipe 

EPAs of Ntcheu District. The survey generated rich data on cropping systems, input usage, and household socio-

economic characteristics. This paper focuses on plots with maize. Observations with other main crops were 

therefore dropped. Likewise, observations with missing or invalid data were also dropped, resulting in a total of 

213 observations used for the analysis. 

In estimating the translog production frontier model, harvesting labour was excluded from the analysis 

because it does not directly affect crop productivity. Liu (2006) noted that inclusion of environmental factors may 

control biases in the production frontier. For this reason, soil carbon and soil nitrogen, the two factors with direct 

link to the study’s objective, were included in the analysis to represent environmental factors while locational 

dummies were included as proxies for spatial agro-climatic differences (Mignouna et al., 2010; Tchale, 2009).  

Exclusion variables in the probit analysis were selected based on a principle underlined by similar studies 

that used sociopolitical and wealth indicators as instruments in relationships between subsidy fertilizer and 

production outcomes. For example, Aloyce et al. (2014) used length of residence in the village, accessibility to a 

village, and wealth situation of the household as exclusion variables when estimating an auxiliary model for 

subsidy fertilizer. Bezu et al. (2013) and Ricker-Gilbert and Jayne (2009) used number of years the household 

lived in the village and a member of parliament residing in the community as instruments that proxy social capital 

which may influence access to input subsidy. The instruments in this study are assumed to significantly correlate 

with access to subsidy fertilizer but not have direct influence on maize productivity. Validity of the instruments 

was tested using Durbin–Wu–Hausman test for endogeneity. Description of variables used in the analysis and their 

summary statistics are given in Table 1. 

Table 1: Summary Statistics of the Variables Used in the Stochastic Production Frontier 

Variable Description Mean Std. Dev. 

Maize output Maize output (kg) 420.804 394.200 

Inorganic nitrogen fertilizer  Nitrogen from inorganic fertilizer (kg) 26.048 68.656 

Labour Household and hired labour (labour-days) 52.634 40.120 

Seed Amount of seed (kg) 6.855 5.530 

Farming plot Farm plot size (ha) 0.224 0.189 

Soil carbon Percentage carbon in the soil (%) 1.296 0 .564 

Soil nitrogen Percentage nitrogen in the soil (%) 0.108 0.035 

Inorganic fertilizer use 

dummy 
Dummy (1 = use of inorganic fertilizer, 0 = otherwise) 0.709 0.455 

Linthipe Dummy (1 = Linthipe EPA, 0 = otherwise) 0.164 0 .371 

Kandeu Dummy (1 = Kandeu EPA, 0 = otherwise) 0.244 0 .431 

Golomoti Dummy (1 = Golomoti EPA, 0 = otherwise) 0.108 0.311 

 

6. Results and Discussion 

6.1 Diagnostic Test of the Model  

Adequacy of the translog production frontier in representing data was tested using a generalized likelihood-ratio 

(LR) test. The test was implemented under the null hypothesis that a Cobb Douglas model better fits the data 

compared to a translog production function. This was rejected (Prob > chi2 = 0.0836), signifying that the translog 

production frontier function represents the data. The null hypothesis that technical inefficiency effects are absent 

in the estimated model was also tested using LR test and was equally rejected (Prob > chi2 = 5.328e-14). Thus, 

there was no significant evidence supporting the choice of an average response function over a model which takes 

into account inefficiency effects in maize production. 

Strict monotonicity and quasi-concavity were fulfilled for 86.85% and 85.92% of the sample points which 

suggests that the estimated model is largely consistent with theoretical assumptions underlining a typical 

production function. Breusch-Pagan test for heteroscedasticity showed that the null hypothesis that there is 

homoscedasticity cannot be rejected (Prob > chi2 = 0.9350). The mean Variance Inflation Factor of 9.27 gives an 

indication that multicollinearity is within tolerable levels. Durbin-Wu-Hausman test for endogeneity failed to reject 

a null hypothesis that use of subsidized fertilizer is endogenous in the production frontier (Prob > chi2 = 0.0565). 

Function control approach was accordingly employed to correct for the endogeneity. In this two-step estimation 

technique, generalized residuals from probit auxiliary model were included as regressors in the inefficiency model 

which was jointly estimated with the frontier model. Results of this analysis are not presented in this paper but are 

available from the author on request.  

 

6.2 Econometric Results of the Translog Production Frontier 

The three estimated production functions are presented in Table 2. Results for model 1 were not adjusted for 
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endogeneity of participating in FISP. Endogeneity was corrected in models 2 and 3 through control function 

approach but standard errors were bootstrapped only in model 3 at 1100 repetitions. Amsler et al. (2014) 

recommended bootstrapping standard errors in such two-step estimation. We present all the three models for 

comparison purposes. However, our discussion in this paper focuses on model 3 because its standard errors are 

bootstrapped. Effects of estimated parameters are consistent across the three models but significance levels vary. 

This suggests that results would be different if the study did not follow control function approach and standard 

errors were not bootstrapped. 

Table 2: Translog Stochastic Frontier Estimates 

Variable Model 1 Model 2 Model 3 

Log of inorganic nitrogen fertilizer 0.1014** 

(0.0464) 

0.1019** 

(0.0463) 

0.1019* 

(0.0596) 

Log of labor 0.1478* 

(0.0799) 

0.1490* 

(0.0799) 

0.1490* 

(0.0882) 

Log of seed 0.1507* 

(0.0840) 

0.1473* 

(0.0827) 

0.1473 

(0.0947) 

Log of farming plot 0.4125*** 

(0.0870) 

0.4159*** 

(0.0865) 

0.4159*** 

(0.1130) 

Log of labor squared -0.0203 

(0.0598) 

-0.0203 

(0.0596) 

-0.0203 

(0.0722) 

Log of seed squared 0.0371 

(0.0407) 

0.0378 

(0.0408) 

0.0378 

(0.0553) 

Log of farming plot squared -0.0832*** 

(0.0319) 

-0.0837*** 

(0.0319) 

-0.0837* 

(0.0447) 

Log of inorganic nitrogen fertilizer X log of labor -0.0338 

(0.0303) 

-0.0353 

(0.0302) 

-0.0353 

(0.0333) 

Log of inorganic nitrogen fertilizer X log of farming plot 0.0422* 

(0.0255) 

 0.0435* 

(0.0255) 

0.0435 

(0.0310) 

Soil carbon -0.6949** 

(0.3440) 

-0.6649* 

(0.3424) 

-0.6649* 

(0.3882) 

Soil nitrogen -1.8860 

(4.8461) 

-2.3211 

(4.8354) 

-2.3211 

(5.5347) 

Soil nitrogen X soil carbon 4.2179** 

(1.7034) 

4.2537** 

(1.7014) 

4.2537** 

(1.8299) 

Log of inorganic nitrogen fertilizer X log soil carbon 0.0399** 

(0.0177) 

0.0410** 

(0.0177) 

0.0410** 

(0.0204) 

Inorganic fertilizer use -1.2494*** 

(0.4287) 

-1.2629*** 

(0.4280) 

-1.2629** 

(0.5589) 

Linthipe 0.5966*** 

(0.1475) 

0.5716*** 

(0.1455) 

0.5716*** 

(0.1985) 

Kandeu 0.2666** 

(0.1048) 

0.2787*** 

(0.1052) 

0.2787 

(0.1775) 

Golomoti 0.1083 

(0.1374) 

0.0909 

(0.1353) 

0.0909 

(0.1816) 

Intercept 1.8868*** 

(0.4875) 

1.9123*** 

(0.4860) 

1.9123*** 

(0.6290) 

Sigma u 0.3594 0.3640  

Sigma v 0 .4864*** 

(0.0413) 

0.4848*** 

(0.0385) 

-1.4481* 

(6.3156) 

Wald chi2(17)      324.1700 323.0500 196.4200 

Prob > chi2    0.0000 0.0000 0.0000 

Log likelihood 187.7799 187.6960 187.6960 

Number of observations 213 213 213 

Model Tests 

Monotonicity 86.85% 

Quasi-concavity 85.92% 

Function Form test chi2(6) = 9.72; Prob > chi2 = 0.0836 

Inefficiency test chi2(1) = 56.60; Prob > chi2 = 5.328e-14 

Heteroscedasticity test  chi2(1) = 0.01; Prob > chi2  = 0.9350 
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Variance Inflation Factor 9.27 

Endogeneity test chi2(  1) = 3.64; Prob > chi2 = 0.0565 

Standard errors in parentheses                        *** p < 0.01, ** p < 0.05, * p < 0.1 

Among the conventional inputs, inorganic nitrogen fertilizer, labour and farming plot are significant factors 

that explain variation in maize output. The positive coefficient of inorganic nitrogen fertilizer signifies that the 

likelihood of having high maize output is greater for farmers using more of the input than those who do not. The 

results compare favorably with the findings of Dlamini et al. (2012) and Liverpool-Tasie (2017) who observed 

positive relationship between maize productivity and inorganic fertilizer in Swaziland and Nigeria, respectively. 

Majority of smallholder farmers in Malawi own small pieces of land which are largely nitrogen deficient (CARD, 

2014). Nitrogen content on about 98.12 percent of farming plots in this study is below critical limit of 0.2 percent 

adopted in a study by Sagona et al. (2016) who analysed physiochemical properties of farming land in three 

districts of Southern Malawi. Intensified use of nitrogen fertilizer on such plots would present an option for 

maximizing maize production.  

As expected a prior and consistent with Essilfie et al. (2011) and Ayinde et al. (2015), first order parameter 

estimate on labour is positive and significant at the 10% level. This implies that using more labour on a farming 

plot is associated with high maize yield than using less of it. Household labour is one of the key inputs readily 

available to resource constrained smallholder farmers who have limited access to purchased inputs. Households 

with adequate labour are able to meet timeliness in all field operations. Shortage of household labour therefore 

aggravates chronic production deficits among poor households, particularly those with farm sizes of up to 1 hectare 

who are perennial net food buyers (Devereux 1997; Jayne et al., 2010).  

Coefficient of the first order term of farming plot is significant and positively associated with maize output 

whereas the quadratic term of the same has significant negative effects. Thus, increasing farming plot size would 

increase maize output to a point where further increase in farming plot size would reduce the output. The inverse 

relationship between farm size and maize productivity is reported in empirical work of many authors including 

Liverpool-Tasie et al. (2017). Such relationship is depicted in small farms in China purportedly attributable to use 

of more labour in place of capital inputs as scale of production increases with land size (Sheng et al., 2019). It was 

further noted by Restuccia and Santaeulàlia-Llopis (2017) that access to land by more productive farmers in 

Malawi is constrained by restrictive land markets as land is, to a greater extent, traditionally accessed through 

inheritance.  

Contrary to findings of Matsumoto and Yamano (2009), soil carbon has a significant negative effect on maize 

output at the 10% level. Similar findings, however, were reported by Eschen et al. (2006) in Switzerland who 

found a reduction in shoot biomass in response to increasing levels of carbon in annual species than in perennial 

species. This was due to a reduction in shoot: root ratio in grasses in response to the addition of carbon that 

increased C:N ratio to unacceptable and possibly intolerable levels that impede crop productivity. For about 89.67 

percent of the farming plots under the study, carbon content is above critical point of 0.7 percent required to support 

crop production as reported by Snapp (n.d.). This critical point appeared in more recent literature and is comparable 

to a critical value of 0.8 reported by Snapp (1998). With the low nitrogen content in the soil, C:N ratio may be 

high on most farming plots and therefore reducing carbon content would reduce the ratio to some tolerable levels 

that can boost maize production.  

Unlike the coefficient on soil carbon, the interaction term of soil nitrogen and soil carbon is positive and 

significant as expected. This shows that the negative relationship between maize output and soil carbon may indeed 

be at low levels of soil nitrogen; maize output would increase as soil nitrogen content in the soil exceeds some 

threshold level and soil carbon simultaneously increases. The interaction between inorganic nitrogen fertilizer and 

soil carbon is significantly positive which shows that joint increase of the two factors would also increase maize 

output. In a study by Dong et al. (2012) in China, it was concluded that fertilizer application improves soil fertility 

by increasing carbon and nitrogen content in the soil with only slight increase in the C:N ratio. Our findings 

therefore appear to suggest that applied nitrogen fertilizer avails nitrogen in the soil to levels where maize output 

increases with an increase in soil carbon.  

As expected, non-use of inorganic nitrogen fertilizer is negatively associated with maize yield. One location 

dummy (Linthipe) has significant effect on maize output which suggests the importance of spatial biophysical and 

ecological factors in maize productivity.  

6.2.1 Elasticities of the Estimated Function  

Partial production elasticities, elasticity of scale and elasticities of substitution computed from the estimated 

production function are presented in Table 3. Consistent with Essilfie et al. (2011) and Dlamini et al. (2012), mean 

partial production elasticities for all conventional inputs are less than one and therefore inelastic. It is shown that 

holding all other factors constant, a percentage increase in inorganic nitrogen fertilizer would increase maize output 

by about 0.15 percent while a percentage increase in labour, seed and farming plot would result in 0.27 percent, 

0.13 percent and 0.30 percent increase in maize output, respectively. These findings suggest that increase in use 

of the inputs would still shift maize yield towards some optimal achievable levels.   
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Output elasticities for soil nitrogen and soil carbon are 3.19 and -0.34, respectively. This shows that a 

percentage increase in soil nitrogen would increase maize output by 3.19 percent whereas similar increase in soil 

carbon would reduce maize output by 0.34 percent. The output elasticity of soil carbon is unexpectedly negative 

possibly due to low levels of soil nitrogen relative to soil carbon. Empirical evidence from China suggests that soil 

organic matter decomposition rate is low when C:N ratio is high because nitrogen content is not sufficient to 

sustain the growing population of decomposition bacteria (Shi, 2017).  Under such circumstance, application of 

nitrogen-rich materials such as inorganic nitrogen fertilizer tends to speed decomposition and reduce temporary 

loss of soil nitrogen to microbial biological activities (Miller, 2000).  

Threshold level of soil nitrogen that would yield positive elasticity of soil carbon was estimated for each 

farming plot. Soil carbon content vary across farming plots with different biophysical properties. As such, soil 

nitrogen critical values may also differ across plots. It was shown that the elasticity of soil carbon would be positive 

if nitrogen content on a plot exceeds the average of 0.19 percent. Only 3.76 percent of the farming plots contain 

soil nitrogen that exceed their threshold level. The estimations are consistent with observation by Mutegi et al. 

(2015) who noted that nitrogen is a key limiting soil nutrient on most farming plots in Malawi.  

Table 3: Distribution of Elasticities  

Elasticity Variable Mean  Std. Dev. 

Output Elasticity Inorganic Nitrogen fertilizer  0.1492 0.0423 

Labour 0.2721 0.1617 

Seed 0.1351 0.0324 

Farming plot 0.3020 0.2021 

Soil carbon -0.3432 0.2209 

Soil nitrogen 3.1925 2.4002 

Elasticity of Substitution Nitrogen fertilizer and labour 3.1550 2.8099 

Nitrogen fertilizer and seed 3.2542 2.9785 

Nitrogen fertilizer and Farming Plot 1.4079 1.0978 

Labour and seed 1.4485 0.5997 

Labour and Farming Plot 0.6170 4.7382 

Seed and Farming Plot 4.2614 47.0968 

Elasticity of Scale 3.3860 2.5362 

Soil Nitrogen Threshold Level that Yields Positive Elasticity of Carbon (%) 0.1883 0.0435 

The elasticity of scale is estimated at 3.39 which shows that the farmers in the two study districts of Malawi 

are producing at increasing returns to scale. The results also show that a percentage increase in each of the inputs 

would increase maize output by 4.64 percent. Oduntan et al. (2016) observed decreasing return to scale among 

maize-cowpea farmers in South West Nigeria while Bwala et al. (2015) observed returns to scale of 1.06 in North 

Central Nigeria in a production frontier that did not control for environmental factors.   

Table 3 also presents partial elasticities of substitution for the conventional input pairs. According to Debertin 

(2012), if a production function has more than two inputs, it is possible for some pairs of the inputs to be substitutes 

and others complements. For complement pairs, the elasticity of substitution is negative and positive for substitutes. 

The elasticity of substitution of labour, seed and farming plot for inorganic nitrogen fertilizer are 3.16, 3.25 and 

1.41, respectively. Elasticity of substitution of labour for seed is 1.45 which is higher than elasticity of substitution 

of labour for land (0.62). Elasticity of substitution of seed for land is 4.26 which shows that the two inputs have 

the highest substitutability of all conventional input combinations.  

6.2.2 Profitability of Inorganic Nitrogen Fertilizer 

Estimation of the optimal inorganic nitrogen fertilizer requirements considered the marginal product (MP) derived 

from estimated translog function, average price of inorganic nitrogen fertilizer and market price of maize 

prevailing in the study area. Table 4 summaries the marginal products for the conventional farm inputs. The 

marginal product of inorganic nitrogen fertilizer is 7.98kg, implying that an additional kilogram of inorganic 

nitrogen fertilizer would yield an increase of 7.98kg in maize output, ceteris paribus. The marginal product falls 

within a range of 0.12 to 17.6 noted by Liverpool-Tasie et al. (2017) with respect to fertilizer in selected African 

studies. Marginal product of labour is estimated at 3.14 and of seed is 11.44 implying that a unit increase in labour 

and seed increases maize output by 3.14 kg and 11.44kg, respectively. The marginal products reported for seed 

and labour are comparable to the values estimated by Sauer and Tchale (2009) in Malawi. Land has the highest 

marginal product of 908.40 which shows that increasing farming plot by a hectare increases maize output by 

908.40 kg.  
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Table 4: Marginal Product of Inputs 

Variable Mean MP Std. Dev. 

Nitrogen fertilizer  7.9835 27.0209 

Labour 3.1419 2.5738 

Seed 11.4371 5.6413 

Farming Plot 908.4046 844.6057 

The market prices of fertilizer and maize as reported by farmers averaged MK1105.48/kg and MK65.93/kg, 

respectively (Table 5). This gives a high nitrogen-maize price ratio which is in conformity with observation by 

Edriss et al. (2004) that the ratio is high Malawi. Given the prices, marginal value cost ratio averaged 0.48 for all 

the plots. The marginal value cost ratio exceeds one on 45.03% of the plots which shows that use of inorganic 

nitrogen fertilizer is profitable for risk neutral farmers on these farming plots. However, the proportion of plots 

with marginal value cost ratios that exceed one may have been even lower if estimation had accounted for 

transaction and transport costs associated with fertilizer acquisition. The findings are consistent with observation 

by Snapp et al. (2014) that empirical evidence in Malawi reveals limited profitability or even negative profitability 

of fertilizer use at commercial price.   

Table 5: Marginal Value Product as Ratio of Fertilizer Price 

Nitrogen Price 

(MK/Kg) 

Maize Price 

(MK/Kg) 

Marginal Value Product as ratio of fertilizer 

price 

Plots MVPR> 1  

(%) 

Mean Std. Dev. 

1105.48 65.93 0.4761 1.6115 45.03 

Table 6 gives a summary of quantities of inorganic nitrogen fertilizer that optimize maize yield on different 

plots. Nitrogen fertilizer optimal level averaged 20.01kg for all the plots. About 66.20% of the plots uses inorganic 

nitrogen fertilizer beyond their respective optimal levels. For 29.11% of plots, observed inorganic nitrogen 

fertilizer levels are greater than their average optimal levels. Applying fertilizer beyond optimal levels signifies 

resource use inefficiencies and potential yield is not reached if applied fertilizer levels are below optimal levels 

(Amatya et al., 2008). This shows that inorganic nitrogen is profitable at low levels of application for most plots. 

If levels of inorganic nitrogen fertilizer are higher than the optimal level, profitability will be eroded by high 

nitrogen-maize price ratio. 

Table 6: Optimum Levels of Inorganic Nitrogen Fertilizer 

Nitrogen fertilizer optimal level Plots exceeding their optimal 

level (%) 

Plots exceeding average optimal 

level (%) Mean  Std. Dev. 

20.0090 110.6311 66.20 29.11 

 

7. Conclusion and Recommendation 

Farmers’ efficient use of natural soil nitrogen and soil carbon as well as nutrients from other sources including 

inorganic nitrogen fertilizer application can elevate their potential to attain optimal maize output levels. This study 

has analyzed the effect of nitrogen and carbon on maize output. Both output effects of soil nitrogen and inorganic 

nitrogen fertilizer were analyzed alongside the effects of active carbon in the soil and other factors of production.  

Results show that inorganic nitrogen fertilizer has significant positive effect on maize output whereas an 

increase in soil carbon is associated with lower maize output. It is further shown that interaction of soil nitrogen 

and soil carbon significantly increases maize output. These results seem to be linked to C:N ratio in the soil. If the 

C:N ratio is too high (high carbon), decomposition occurs slowly and the nitrogen content is not sufficient to 

sustain the growing population of decomposition bacteria. Thus, any addition of C makes matters worse by further 

increasing the ratio and this accumulation of C is known to reduce shoot: root ratio and biomass in grasses 

including maize. Under such circumstances, increasing nitrogen brings the C:N ratio to beneficial levels. Thus, 

farming practices that maintain appropriate C:N ratios would yield positive effect on maize output.  

While for most farming plots (98.12%) nitrogen content is below the critical limit of 0.2 percent, carbon 

content on 89.67 percent of the farming plots exceeds critical limit of 0.7 percent. The C:N ratio may therefore 

indeed be high for most farming plots. It is hardly surprising that the average output elasticity of soil nitrogen is 

positive whereas that of soil carbon is negative. Increasing carbon content further in such scenario may raise the 

C:N ratio to even more intolerable levels. It has been shown that the output elasticity of carbon would have been 

positive if soil nitrogen was increased in the soil to an average of 0.19 percent. The output elasticity of inorganic 

nitrogen fertilizer is low (0.15), nevertheless, it suggests that increasing use of the input still shifts maize yield 

towards some optimal achievable levels. Estimated elasticities of substitution showed varying degree of 

substitutability between inorganic nitrogen fertilizer and other conventional inputs. The degree of substitutability 

is higher with respect to labour and seed than farming plot size. Nevertheless, this shows that increased use of 

inorganic nitrogen fertilizer can be accompanied by reduction in some inputs that farmers use for maize production.  

The profitability of inorganic nitrogen fertilizer is shown to be dependent on marginal product of the fertilizer 
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and the nitrogen-maize price ratio. At market price, 45.03 percent of farming plots have marginal value cost ratios 

that exceed one with respect to inorganic nitrogen fertilizer. Furthermore, it is shown that for 66.20 percent of 

farming plots, inorganic nitrogen fertilizer is used beyond optimal levels. Therefore, the use of inorganic nitrogen 

fertilizer has been shown to be profitable for some farmers but this is mainly at low levels of fertilizer application 

as high nitrogen-maize price ratio erodes profitability at high levels of fertilizer application.  

As a key issue for recommendation, the study has shown that soils in the study area are depleted of nitrogen 

as compared to carbon leading to unfavorably high C:N ratios which impede maize production. Replenishing the 

soil with inorganic nitrogen fertilizer is one of the available options under such circumstance but its profitability 

is constrained by high nitrogen-maize price ratio. Farmers therefore need programs that enhance their access to 

inorganic nitrogen fertilizers at reasonable prices. Such programs can be implemented simultaneously with a 

package of intensified agricultural practices that fix and retain nitrogen in the soil. 
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