

Farmers' Perception on Climate Variability and Change and Its Implication for Implementation of Climate-Smart Agricultural Practices in Geze Gofa District, Southern Ethiopia

Tesfave Samuel Saguve

Department of Disaster Risk Management and Sustainable Development, Institute of Cooperatives and Development Studies, Ambo University, Ethiopia

Mailing address: 19, Ambo University, Ethiopia

Abstract

Climate change is a reality and has been confirmed by global scientific confirmation to affect rainfed agricultural systems. Climate change and variability is expected to have serious environmental, economic, and social impacts particularly on rural farmers whose livelihoods depend largely on rainfall. The farmers' Knowledge and awareness about climatic patterns are important for adaptation planning. Perceptions guides decision making and eventually determines the actions to be made by farmers on climate change adaptation. The main purpose of this study was to assess farmers' perception on climate change and variability and its implication for adoption of climate -smart farming practices. A multi stage sampling procedure used to select the sample respondent households and the total sample size of the study was 138 households. Primary data were collected by using semi-structured interview, focus group discussion (FGDs) and key informant interviews. Both descriptive statistics and binary Logistic regression model were used as data analysis techniques for this study. The descriptive statistics analysis results indicated that about 88.73% of farmers believe that temperature in the district had become warmer and also over 90% respondents were recognized that rainfall volume, pattern, distribution and timing has changed, resulting in increased frequency of drought for prolonged period of time and high intensity rainfall for short periods of time. Though the majority of the responders perceived climate change only 62.56 percent of the total respondents' adopted climate-smart agricultural practices while the remaining 37.5 percent had not adapted climate change-smart agricultural practices. This could imply that though perception, knowledge and awareness of climate change and variability are at frontline prerequisite sequentially for adoption of climate change-smart agricultural practices decisions, it is not cure-all alone factor. The output of the binary logistic regression analyses proved that age of the household head, gender, education, farm experience, household size, and distance to the nearest market, access to irrigation water, local agroecology and access to information on climate change through extension services were found to have significant influence on the probability of farmers to perceive climate change and variability. With the level of perception to climate change being more than that of adaptation, the study suggests that more policy efforts should be geared towards helping farmers to adapt to climate change. Age, gender, marital status and availability of climate information were found to be basic determinants of farmer's perception on cassava as climate change crop.

Keywords: Climate Change and Variability, Climate - Smart Agriculture, Farmers' Perception,

Introduction

Background and Justification of the Study

Climate change is a reality and has been confirmed by global scientific consensus to affect agricultural systems Climate variability and change present complex challenges to people's livelihoods in Africa. Against an anticipated increase in the frequencies of extreme events such as floods and droughts under climate change, agriculture will suffer greatly (IPCC, 2007). Climate change will have far-reaching consequences for agriculture that will disproportionately affect poor and marginalized groups who depend on agriculture for their livelihoods and have a lower capacity to adapt (World Bank, 2007). Climate change is real and its first effects are already being felt. Climate change will compound existing poverty and is expected to have serious environmental. economic, and social impacts of Ethiopia particularly rural farmers, whose livelihood depend on the use of natural resources, are likely to bear the brunt of adverse impacts. The extent to which these impacts are felt depends in large part on the extent of adaptation in response to climate change, (Glwadys, 2009). The fact that climate has been changing in the past and will continues to change in the future implies the need to understand how farmers perceive climate change and adapt in order to guide strategies for adaptation in the future. Some studies indicate that farmers do perceive on climate change and adapt to reduce its negative impacts (David et al., 2007). Also studies further show the perception or awareness of climate change and taking adaptive measures (Maddison, 2006; Hassan and Nhemachena, 2008) are influenced by different socio-economic and environmental factors.

Agriculture in Africa must undergo a major transformation in the coming decades in order to meet the intertwined challenges of achieving food security, reducing poverty and responding to climate change without

depletion of the natural resource base (FAO,2014; ACCRA,2010).Climate-smart agriculture(CSA) has the potential to enhance sustainable productivity, increase the resilience of farming systems to climate impacts and mitigate climate change through greenhouse gas emission reductions and carbon sequestration(FAO, 2010). Climate-smart agriculture can have very different meanings depending upon the scale at which it is being applied. For smallholder farmers in developing countries, the opportunities for greater food security and increased income together with greater resilience will be more important to adopting climate-smart agriculture than mitigation opportunities (Thornton et al., 2009; FAO, 2010; Lobell et al., 2011). There are a number of household agricultural practices and investments that can contribute to both climate change adaptation – a private benefit – and to mitigating greenhouse gases (GHGs)—a public good. For instance, a striking feature of many SLM practices (boundary trees and hedgerows, multipurpose trees, woodlots, fruit orchards, crop rotations, greater crop diversity, production of energy plants, improved feeding strategies (cut and carry), fodder crops, improved irrigation (drip), terraces and bunds, contour planting, water storage (water pans), and many more) and investments is that many of these activities also increase the amount of carbon sequestered in the soil or above ground, including agroforestry investments, reduced or zero tillage, use of cover crops, and various soil and water conservation structures (Hoerling et al., 2006; IPCC, 2007; IPCC, 2014). Thus, there are often longterm benefits to households from adopting such activities in terms of increasing yields and reducing variability of yields, making the system more resilient to changes in climate (Thornton et al., 2007, Jones and Thornton, 2008). Such activities generate both positive "local" (household-level and often community-level) net benefits as well as the global public good of reduced atmospheric carbon. However, adoption of many climate change-smart agricultural practices has been very slow, particularly in food insecure and vulnerable regions in sub-Saharan Africa and Southeast Asia (Jones and Thornton, 2008).

Smallholder farmers are highly vulnerable to the impacts climate change, due to their dependence on agriculture for their livelihoods, reliance on rain-fed crops and location in marginal lands (FAO, 2013)). There is a growing understanding that climate variability and change poses serious challenges to development in Ethiopia. The reason for this is that the mainstay of the Ethiopian economy is rain-fed agriculture, which is profoundly susceptible to climate change and variability. The country is expected to experience changing patterns of rainfall, increased temperatures leading to elevated evaporation rates, and flooding; these will in turn lead to greater levels of land degradation, transmission of infectious disease, and loss of surface and ground water potential. The poor subsistence farmers, who on average account for 98% of the total area under crops and for more than 90% of the total agriculture output (Dressa, 2007; EEA, 2008), are first line victims to the impacts of the changes in climate. It is a country with large differences across regions which are reflected in the country's climate vulnerability. The lowlands are vulnerable to increased temperatures and prolonged droughts which may affect livestock rearing. The highlands may suffer from more intense and irregular rainfall, leading to erosion, which together with higher temperatures leads to lower total agricultural production. This, combined with an increasing population, may lead to greater food insecurity in some areas (Aster, 2010; (Parry, 2007; Barrios *et al.*, 2004).

Determining farmers' decision to adapt to and cope with shocks in one hand and for improving existing policies and to formulate new policies and supportive programs on the other hand; which types of farmers perceive that climate is changing is imperative to understand (FAO, 2012). To enhance policy towards tackling the challenges that climate change poses to farmers, it is important to have knowledge of farmers' perception on climate change, potential adaptation measures, and factors affecting adaptation to climate change. Perception refers to the process of acquisition and understanding of information from one's environment (Maddox, 1995). For farmers to decide whether or not to adopt a particular measure they must first perceive that climate change has actually occurred. Thus, perception is a indispensable precondition for adaption (Maddison, 2006). Therefore to enhance policy towards tackling the challenges that climate change poses to farmers, it is important to have full understanding of farmers' perception on climate change, potential adaptation measures, and factors affecting adaptation to climate change (Fosu-Mensah et al., 2010; Lobell et al., 2011). As to the knowledge of the researcher, no earlier study was conducted on the awareness and perception, and determinants of farmers' perception of climate change and it's implication for implementation of climate change-smart agricultural practices in this study area Hence, this paper seeks to explore farmers' perception and it's implication for adoption of climate change-smart agricultural practices.. Hence, considering this knowledge gap, the study conducted on the farmers' perception of climate change and variability in Geze Gofa Woreda (equivalent to District). Therefore, the purposes of this study were to (1) to identify farmers' perceptions on local climate change and variability and (2) to identify factors influencing farmers' perception of climate change and variability in the study area.

Methodology

Description of the Study Area

The study was conducted in Geze Gofa *Woreda (equivalent to District)*, which is one of the 15 districts located in Gamo Gofa Zone, Southern Ethiopia. The administrative center of GezeGofa district, Bulki town, is located at

a distance of 251 kilometers from the Zonal capital, Arba Minchi town, and 517 kilometers south west of Addis Ababa the capital city of Ethiopia. Part of the Gamo Gofa Zone, GezeGofa is bordered on the south by Oyda woreda, on the west by Basketo special woreda, on the northwest by Melokoza woreda, and on the east by Demba Gofa woreda. It is located approximately between coordinate 10033'06'' to 10050'24'' North latitude and 37042'36'' to 37058'24'' East longitude. Topographically, the area lies in the altitudes range of 690m to 3196m.a.s.l. As a result, the area is characterized by three distinct agro-ecological zones-Highland (*Dega*), Midland (*WoinaDega*), and Lowland (*Kola*), according to the traditional classification system, which mainly relies on altitude and temperature for classification.

The area is highly food insecure due to a combination of factors: high population density, small landholdings, low soil fertility and land degradation and rainfall irregularities. The main food crops are maize, enset, sweet potatoes, taro, teff, and yams. Enset and root crops are an important hedge against losses of the less drought-resistant maize; but need forces the poorer majority of households to cut their enset before it matures, forfeiting 2/3 of potential food from the plant. Although all wealth groups sell some crops, none makes as much as half of annual earnings from this. Better-off and middle groups earn most of their cash from livestock and butter sales, whilst casual work is main source of cash for the poor. There are two (bimodal-belg and meher) distinct rainy seasons: the smaller one is the *belg*, from March to May. The main rains are in the *meher* season from July to September. The maize cycle straddles both seasons, whilst teff is a shorter cycle crop depending only on the *meher*, and therefore offers an important 'second chance' for those who can grow it when the *belg* season fails. Sweet potatoes are a particularly important crop, because two harvests per year practiced, with the principal one in the dry season of November-January; but the second, smaller harvest breaks the annual 'hunger' period in May-June. The staple foods are in order of amount consumed: maize, enset, sweet potatoes, taro, teff and yams.

The dual dependency on cereals and perennial/root crops offers some insurance against at least moderate rain failure, since maize is more susceptible than either root crops or enset to long breaks between showers and/or overall moisture deficit. Lack of grazing lands and fodder affect oxen production, so that only the better off and middle wealth group households who own all the plow-oxen are able to till the land efficiently, whilst others have to wait their turn to borrow teams of oxen. Even for middle and better off households, the high prices of inputs, especially chemical fertilizers and improved seed, coupled with a lack of agricultural credit facilities, limit agricultural productivity. In the last five years, food aid for poorer people has been a regular feature. Enset as perennial offers a store of food, but it is a store which takes four or more years to fill: when trees are cut one part of the store is evidently lost for as many years as it takes for a replacement to grow. In an area of such frequent food stress, there is a high tendency for people to go beyond the long-term sustainability of the stand of *Ense*t stems.

Sampling Technique and Procedure

This study is based on a cross-sectional household survey data from mixed crops and livestock farmers. To examine the farm-level perceptions of climate change and associated adaptation strategies in GezeGofa Woreda, the selection of study area took into account three distinct Agroecological Zones (AEZs). The study followed a multi-stage sampling procedure to select sample respondent households. Geze Gofa Woreda was purposively selected at first. The Woreda was purposely selected because of the frequency, intensity and duration of climate change and weather extremes related events observed and personal acquaintance with the study area. Also the Zonal weather related reports shows that almost all Woredas in the zone experiencing climate variability and changes. Secondly Study Kebeles were identified and stratified into three based on their agroecology, accordingly one kebele from highland agro-ecology (Dega), one kebeles from midland(WoinaDega) and one kebele from lowland agro-ecology(Kola) and total of three Kebeles (namely Aykina Gorpha, Aykina Fane and AykinaTsila) were purposely selected to represent Highland (Dega), Midland(WoinaDega), and Lowland (Kolla) agro-ecological zones respectively. Finally, the sample size of the study was determined to be 138 household heads. The purpose of stratifying in relation to agro-ecological differentiation is to investigate how farmers living in different agro-ecologies perceive, and adapt climate change and how different agro-ecologies are affected by climate change and variability.

Data Type, Sources and Methods of Collection

The study used both quantitative and qualitative data as well as primary and secondary data sources. Primary data were collected through semi-structured interview schedules, focus group discussions (FGDs) and key informant interviews. Semi-structured interview schedules were used to investigate whether farmers had noticed long-term changes in temperature, rainfall, and vegetation cover over the past 20 years. Farmers' perception of climate change is considered as an aggregated awareness about the trend of the following five climatic parameters (temperature intensity and duration, rain onset and offset, rain intensity, drought, floods) generated from the historical climate records of the research area. In the survey, farmers were asked to evaluate the

temperature and precipitation trends of the area over the last two to three decades. Information was collected on demographic characteristics, physical asset, livestock and land ownership, crop management practices, access to credit and extension services, prior experience with climatic and non-climatic shocks, and perceptions about climate change. Besides collecting data on different socioeconomic and environmental attributes, the survey also included information on farmers' perceptions of climate change and adaptation methods. The surveyed farmers were asked questions about their observation in the temperature and rainfall patterns over the past 20 years.

Method of Data Analysis

Descriptive statistics and binary logistic regression analysis were the main analytical techniques used in this study. The hypothesized explanatory variables were checked for the existence of multi-co linearity problem. When the absolute value of Pearson correlation coefficient between two variables is greater than 0.8, there is multi-collinearity problem. Binary Logistic regression model was employed to analyze determinants of farmers' perception of climate change and variability.

Empirical Model

Perceptions are context and location specific due to heterogeneity in factors that influence them such as culture, education, gender, age, resource endowments, agro-ecology, and institutional factors (Maddison, 2007; Deressa *et al.*, 2010). The study used abinary logistics regression model to identify factors influencing farmers' perceptions of climate change, as in Ndambiri et al. (2012). In the model, the dependent variable is dichotomous in nature taking a value of 1 or 0. Although the Ordinary Least Squares (OLS) method may compute estimates for the binary choice models, certain assumptions of the classical regression model will be violated. These include non-normality of disturbances, heteroscedastic variances of the disturbances, and questionable value of R² as a measure of goodness of fit (Gujarati, 2003). Forinstance, given:

$$yi = b0 + \underline{bici} + \underline{ei}.$$
 [1]

Where: yi = 1 if a farmer perceives climate change and yi = 0 if a farmer does not, b0 is intercept, biis parameter to be estimated, ci is variable in question, and ei is disturbance term. This model is a typical linear regression model, but because the regression is binary or dichotomous, it is called a linear probability model (LPM). However, in a regression model, when the dependent variable is dichotomous in nature, taking value 1 or 0, use of linear probability models becomes a major problem. This is because predicted value can fall outside the relevant range of zero to one probability value. Thus, if linear probability models are used, results may fail to meet statistical assumptions necessary to validate conclusions based on the hypothesis tested (Federet al., 1985).

Gujarati (2003) recommended Logit and probit models to overcome the problem associated with LPM. These models use Maximum Likelihood Estimation (MLE) procedures and ensure that probabilities are bound between 0 and 1. Both logit and probit transformations estimate cumulative distribution, thereby eliminating the interval 0, 1problem associated with LPM. The logistic cumulative probability function can be represented by:

$$P_i = F(Z_i) = \frac{1}{1 + e^{-z_i}}$$
 [2]

where Pi is the probability that ith person will be in I - first category, Zi = b0 + bici + ei where b0 is intercept of the model; bi is model parameters to be estimated; ci are the independent variables and represents base of natural logarithms, which is approximately equal to 2.718. In equation (2), Zcan range from positive infinity to negative infinity. The probability of a farmer perceiving climate change lies between 0 and 1. If we multiply both sides of the equation (2) by 1 + e-ziweget:

$$(1 + e^{-z_i})P_i = 1$$
 [3]

Dividing by P and then subtracting 1 leads to:

$$e^{-z_1} = \frac{1}{P_i} = \frac{1 - P_i}{P_i}$$
 [4]

By definition; however, $e^{-zi} = 1/e^{-zi}$ so that the equation (4) becomes

$$e^{-z_i} = \frac{P_i}{1 - P_i}$$
 [5]

By taking the natural logarithm of both sides of equation (5), we get:

$$Z_{i} = \log \left(\frac{P_{i}}{1 - P_{i}} \right)$$
 [6]

In other words:

$$\log\left(\frac{P_i}{1-P_i}\right) = Z_i = \beta_0 + \beta_i \chi_i$$
 [7]

This makes the logistic probability model.

Therefore, it can be noted that the logistic model defined in the equation (7) is based on the logists of Z, which constitutes the stimulus index. Marginal effects can also be computed to show changes in probability when there is a unit change in independent variables. Marginal effects are computed as:

$$\frac{\partial P_k}{\partial \chi_k} = \frac{\beta_k e^{-z_k}}{\left(1 + e^{-z_k}\right)^z}$$
 [8]

Therefore, this logistic regression model was used to determine those factors, which influenced farmers' perception on climate change. The dependent variable is farmers' perception of climate change, a binary variable indicating whether or not a farmer has perceived climate change. It was regressed on a set of relevant explanatory variables hypothesized based on literature to have influence on perception to climate change. Using these variables, the model is specified as:

$$Z_{i} = (\beta_{i}\chi_{i}) + \varepsilon_{i}$$
 [9]

Where: Zi is the perception by the ith farmer that climate is changing, ci is the vector of explanatory variables of probability of perceiving climate change by the ith farmer, bi is the vector of the parameter estimates of the regressors hypothesized to influence the probability of farmer is perception about climate change.

Definition of Variables

The major variables expected to have influence on the farmers' perception of climate change and variability is explained below:

- A. The dependent variable of the study: in this study the dependent variable is farmers' perception of climate change and variable. So climate change and variability is about change and variability in weather and climate elements such as temperature intensity, rainfall//precipitation volume and patter, seasonal changes weather extreme events (drought, flood, torrential rain falls, heat waves, cold waves) onset and offset in rainfalls and etc. Perception is a dummy variable takes 1 when the farmers' perceive changes and variations in the weather elements and 0 otherwise.
- B. The explanatory/ independent variables: The independent variables that are hypothesized to affect the farmers' perception of climate change and variability are combined effects of various factors, such as: household demographic characteristics, socio-economic characteristics, institutional characteristics in which farmers operate and village level agro-ecological and biophysical conditions. In this study, independent variables are age, sex, education, family size, occupation, access to extension, access to credit, size of farm land, access to market, farming experience and access to weather information; while the dependent variables are feeling to climate change, rainfall change, drought, increase of drought frequency, perception of temperature increase etc Based on the review of related literatures, and researcher's experience, 15 potential explanatory variables were considered in this study and examined for their effect on a farmer's perception of climate change and variability

Results and Discussion

Socio-Economic and Demographic Attributes of the Sample Respondents

The majority (70.29 %) of the respondents in the survey were male-headed households (Table 1).

Table 1. Household headship characteristics of the Sample Respondents

Household head

Percentage of Res

nousenota neua	rereentage of Kespondents (n=136)
Female Headed Household	70.29 %(97)
Male headed households	29.71 %(41)
AykinaTsila (Highland AEZ)	32.68% (43)
AykinaFane (Midland AEZ)	32.09 %(46)
AykinaGorpha (Lowland AEZ)	35.23 %(49)

Majority of the household heads who attended the most number of years in school were found in Tsila (four years) compared with one year for Aykina Fane. The most experienced farmers in terms of average number of years of farming within their localities were also in Aykina (approximately 30 years), compared with Tsila (Table 2). The average household sizes were six, and eight and six for Gorpa, Aykina and Tsila *kebeles* respectively.

Table2. Means of different household characteristics sample respondents (n=138)

Household Characteristic (Mean)	Name of kebele	!		Standard Deviation
	AykinaGorpha	Aykina Fane	AykinaTsila	
Age of household head	45	47	43.72	44.25
Years spent in schooling	3	1	4	2.25
Farming experience	27	30	25	26.74
Family size	6	8	5	6.25
Annual total income	0.55	0.67	0.56	0.52

Source: Calculated by author based on survey data in 2015

Smallholder Farmers' Perception and Knowledge of Climate Change and Variability

Farmers' were asked about their perceptions of temperature volume, heat intensity and rainfall amount, distribution and patterns and extreme events changes trend in the last two to three decades. 88.73 % farmers perceived an "increase" in temperature volume, 2.75 % of respondents perceived a "decrease" in temperature volume, 5.74 % of respondents perceived "no change" in temperature volume, 2.78 % respondents reported they don't know about change volume. On the other hand, 87.64 % of the respondents felt an increase in heat intensity; 1.75 % of the respondents perceived a decrease in heat intensity; 1.9% of the respondents claimed no change in heat intensity; 1.85% of the respondents reported they don't know about temperature change (Table3). Most of the interviewed farmers perceived precipitation changes, amount of rainfall and/or distribution, in the study area over the last 20 years. Substantial percentage of respondents (85.6 %) perceived the change in the amount of rainfall. Out of 85.6 % respondent who perceived the change in rainfall amount, 83.64 % of the respondents felt a decrease in the amount of rainfall, and the remaining 6.34 % respondents oppositely felt an increase in the amount of rainfall; on the contrary, 3.02 % of the respondents noticed no change in the amount of rainfall; 3% of the respondents did not give enough attention about the trend of the rainfall volume. The result also indicated that the majority of the respondents (89.6 %) noticed a change in the timing of rains, specifically, 90.68 % observed shorter rainy seasons, and 5.65% observed extended rainy seasons; 3.67% of the respondents observed no change in the rainy season.

Table 3.Households' Perceptions of Changes in Rainfall and Temperature over the Last 20 Years

Households' Perception (Counts of	Precipitation	Temperature	
households (%) that	Rainfall Amount	Temperature Volume	Heat Intensity
Perceived an increase	1.25	88.73	87.64
Perceived a decrease	85.6	2.75	1.75
Perceived no change	5.2	5.74	8.76
Did not know	7.95	2.78	1.85
Total(n)	138	138	138

Source: Calculated by author based on survey data in 2015

Temperature and rainfall are the two climatic variables that influence farming the most in the study area. In agriculture, the amount of rainfall is important and is an indicator of long term changes in the climate system. However, of more importance to farmers is the pattern of the rainfall. If the rain falls in the right amount and then it ceases for a long period before the next rain, the long dry spell can be devastating to farmers. The farmers' were also asked about whether they perceive that climate is changing and if so, to mention the most important changes they perceived. The most important changes they noticed and ranked as first are summarized in table4.

Table 4.Farmers' observation and perceptions about climate changes and variability

Most important climate elements change factors farmers' observed and recognized	Percentage of sample respondents(n=138)
Rains have become more erratic	58
Rainfall starts late and ends early	65
Extremes in temperatures	62.6
Long dry spells during the season	55
Rains don't come when they normally used to	72
Prolonged/extended winter season	5.4
Short winter season	2.7
Too much/heavy rains	1.3
Rainfall distribution within seasons now poor	1

Note: A multiple response frame was used. Hence, total count is more than the number of respondents. Source: Calculated by author based on survey data in 2015.

Among the other important indicators, overwhelming majority of farmers' 72% replied that rains do not come when it normally used to; 65% replied that rainfalls late onset and early termination; and the 62.57%

replied as extreme temperature, longer periods of drought and more floods were noticed largely. The study area has normally two rainy seasons (Bimodal rain season) in long past. The onset of the first rainy season was perceived by farmers to be later nowadays than before (Table 5). Conversely, the first season termination was also mentioned to be earlier. In the long past, the first rainy season onsets from early March and prolongs to Early May and the second rainy season onsets from late July and prolongs to early September. But now the farmers reported that heavy rains fell within one month, mostly at middle of April for the first rainy season and early August for the second rainy season and the distribution had become more unpredictable and erratic in both cases. The farmers noted that in the past, rainfall distribution over the season was even (normal) and they could manage to plan their agricultural activities properly and effectively, knowing when to expect significant dry and wet spells.

The survey result also corroborates with key informant interview report. A farmer in his early 70s explained that:

"...in the long past when I was teenager, conducive and normal—rains used to onset early in the month of March, but nowadays, the rainy season starts at the Mid of April and ceases early May, and this is now confusing farmers, rains are now very unpredictable. There were clear cut differences and consistency in trends and patterns in the seasons when we were young but nowadays there are a lot of disturbances, it gets cold when it is not supposed to and gets hot when it wants, rains are no conducive and good for agricultural activities. Seasons are very confusing to us nowadays..."

Farmers' perception in precipitation proves a significant variation across the three different agroecological zones (Table 5 and Table 6). The lowland farmers' are the one with the highest proportion of respondents who observed a decrease in rainfall amount and the least to perceive an increase in amount. This is probably because in the lowland zone water is already getting seriously scarce, and a little variation in the volume of rainfall could be recognized highly, for existing livelihoods are already on climatically stressed conditions.

Table 5: Farmers' observation rainfall amount change by agro-ecology

Agro-ecology	Farmers' observation on rainfall amount per day & season (%)			X^2	
	Increased	No change	Decreased	I do not know	
Lowland	4.56	8.20	82.42	4.82	29.89*(df=9)
Midland	17.76	32.23	44.32	5.69	
Highland	22.60	27.95	39.96	9.49	

^{*} Significant at 1% level; Source: Calculated by author based on survey data in 2015.

Table 6: Farmers' observation of rainfall pattern change by agro-ecology

Agro-ecology	Farmers' of	X ²		
Agro-ecology	Changed	Not changed	I do not know	
Lowland	89.80	4.56	5.64	76.9*(df=14)
Midland	57.60	37.25	5.15	
Highland	43.65	52.80	3.55	

^{*} Significant at 1% level; Source: Calculated by author based on survey data in 2015.

The variance analysis of farmers' observation and perception of heat intensity per day and number of hot days per year by agro-ecology revealed that there is no statistically significant variation in perception of temperature across the agro-ecological zones. This could imply that the change in temperature occurred in all agro-ecologies and it was experienced more or less equal by every farming community. The analysis of variance for perception of temperature change shows significant variation among the different educational levels.

Commonly practiced Climate-Smart Agricultural Practices

Farmers' adopted various climates –smart agriculture (CSA) deliberately to protect their livelihood from severe consequences posed by changes and variability in the climate system. Also, others unintentional implemented climate–smart agricultural practices. So, those adopted climate-smart agriculture without recognizing and understanding the change and variability in climate could not sustainably implement the CSA's Practices, because it was not based on solid awareness and understating of the risk of climate change and its very purpose was not sustainably increasing agricultural productivity and incomes; adapting and building resilience to climate change and reducing and/or removing greenhouse gases emissions. The survey result proves that about 33.76% of adopted agroforestry, 25.62% soil and water management measures, 20.5% crop management and 20% used livestock management practices.

Table7. Climate-smart agricultural practices adopted by Sample Respondents

Climate-smart agricultural practices	Percentage of Respondents Adopt	ed
Agroforestry (Boundary trees and hedgerows, mul	tipurpose trees)	33.76%
Soil and water management (Terraces and bunds,	Contour planting	25.62%
Livestock management (Fodder crops, improved fo	eeding strategies (e.g. cut &carry))	20%
Crop management (Crop rotations, Intercropping	with legumes, biological weed & pest n	ngt 20.50%

Source: Calculated by author based on survey data in 2015

There is also statistically significant variation of farmers' perception status and adoption of climate change-smart agricultural practices. Generally, as the survey result reveals 62.56 % of the sample respondents perceived and aware of changes and variability in climate where as 37.44% did not perceive the change and variability in the climate. From the perceived entire respondent only 53.75% adopted at least one climate change-smart agricultural practices whereas 46.25 did not adopted any climate change-smart agricultural practice. Also, from not perceived farmers' 21.65% adopted at least one climate change -smart agricultural practices and 78.35% not adopted any climate change-smart agricultural practice. So, though perception is not all cure solution for adoption of climate change-smart agricultural practices, it has a strong association with adoption of changesmart agricultural practices.

Table 7. Adoption of Climate change -smart agricultural practices by perception

Status of farmers' perception of changes and variability's in climate (%)		Not adopted climate change- smart agricultural practices (%)	X^2
Perceived (62.56)=100	53.75	46.25	78.6 **(df=16)
Not perceived (37.44)=100	21.65	78.35	

Determinants of farmers' Perception of climate change and variability.

It is interesting to know which types of farmers are likely to recognize the climate change - an important issue to understand for practicing adaptation strategies. For this study, temperature increase and rainfall decrease are considered as the two measures of perceptions. To identify the correlates of farmers' perception of change in climate, the dependent variable is a binary variable that takes the value 1 if the head of household perceives that temperature is increasing or rainfall is decreasing from last twenty years and the value 0 otherwise. Farmers should perceive changes in the climate trend s to respond effectively through adaptation practices. It is through adaptation that they can minimize adverse effects of climate change in their agricultural production in particular and livelihoods in general. The sustainability of implementation of adaptation strategies also depend upon the right belief, perception, knowledge and commitment of the smallholder farmers' themselves. However, ability of farming households to perceive climate change is affected by diverse socio-economic, demographic, biophysical and institutional factors. Table 10 below presents the binary logistic regression coefficient together with marginal effects after the dependent variable (perception) was regressed on a set of explanatory variables that have been discussed beforehand. Those factors had significant influence on farmers' perception to climate change in Geze Gofa Woreda. In this section the factors associated with the perception that climate is changing by sample respondents are investigated

Despite the fact that majority of the farmers interviewed claimed that they perceive as the climate is changing, some of the farmers who perceived climate change did not respond by implementing climate-smart agricultural practices. It fall out that both farmers who perceive and responded and also those not responded share some common characteristics, which assist in better understanding the reasons underlying their perception. From the model results, a positive estimated coefficient implies increase in the farmers' perception on cassava as the crop for climate change adaptation with increased value of the explanatory variable. Whereas negative estimated coefficient in the model implies decreasing perception with increase in the value of the explanatory variable.

The results from the binary regression model analyses of the sampled households are presented in Table 10. The model outputs from regression indicated that most of the independent variables have significantly influenced the smallholder farmers' perception of climate change ad variability. The results revealed that the age, educational status, sex, family size, access to extension services, wealth (farm size, number of farming oxen, cattle, ruminant animals and pack animals), farming experience and exposures to mass media, access to training programs & campaign on climate change and environment conservation and sustainable utilization issues, knowledge of indigenous early warning information, access to timely weather forecasts and early warning

^{*} Significant at 1% level; Source: Calculated by author based on survey data in 2015

information in local languages, increased frequency of contact with agricultural extension agents, educational level of household head and age of the household head have significant relationship with farmers' perception to climate change have positively and significantly influenced the perception of the farmers about the change in climate conditions over years. In this regard, increasing the exposure of a farmer to awareness meeting on climate change issues and natural disasters plays positive role in terms of improving farmer's perception of future changes. From this, it is apparent that investment on improvement of the ways in which early warning information dissimilates and improvement in the education level of household head would yield a better result in terms of improving the understanding of the prevailing climate change.

From the model output (table 10), it is clear that age influence how they perceive climate variables. Older farmers are seen to perceive better than their counterparts, which alludes to the importance of age which is directly linked to farmers' farming experience and use of indigenous. These findings are consistent with Dhaka et al. findings who also observed that farmers' education level influence their perception of climate variability and change. Dhaka observes that age is directly linked to farming experience. Old farmers possess indigenous knowledge on how to perceive climate variables, particularly the amount of rainfall in the beginning of each farming season. Such knowledge, as the results indicate, is not possessed by the younger farmers but the older ones, and need to be passed on to the young generation to help them perceive correctly important climate variables such as rainfall, and that should be the focus of agricultural policies aimed at improving food production.

According to some studies, the influence of age on perception of climate change and adaptation to change of climate are of mixed nature. Some of them concluded that age had no influence on perception of climate change and adaptation, while others found that age is significantly and negatively related to perception of climate change. According to the result of this study, the age has positive and significant effect on the perception of farmers in the study area toward rainfall change, drought, and frequency of drought and crop failure due to shortage of rainfall

With respect to education, it can be observed that education also has a role to play in influencing the way farmers perceive climate change and variability, which is consistent with Kamruzzaman (2007), findings who also observed that farmers with higher level of education perceived environmental factor and climate variables correctly and vice versa. This means that an effort to help farmers perceive correctly needs to also focus on improving the level of education of farmers, particularly to equip then with skills relating to farming as it could be observed that farmers who possess skills or has been trained in certain skills perceive climate variables better followed by those with tertiary or at least secondary education. This suggests that to help improve how farmers perceive of climate variables, education (both formal and informal) must be emphasized Farming household heads with education and more farming experience are more likely to perceive changes in climate than those with less farming experience and less education. The point that education and farming experience have significant association with perception implies the capability of experienced and educated farmers to better access information about climate change compared to those with less experience and education. Also other Studies show that with more experience and education, farmers develop knowledge and skill that may help them sense risks better (Maddison, 2007; Deressaetal. 2011).

Also from the model output (table 10) it is clear that Male headed households seen to perceive better than their counterparts. Male-headed households are often considered to be more likely to get information about new technologies and take risky businesses than female-headed households (Asfaw and Admassie, 2004). Moreover, Tenge et al. (2004) argued that female-headed households may have negative effects on the adoption of soil and water conservation measures because they have limited access to information, land and other resources due to traditional social barriers. The result of study by Nhemachena and Hassan (2007) indicated a contrary result to the above argument by showing that female-headed households are more likely to take up climate change adaptation methods.

On the other hand, the model output has shown that variables like distance from the market was negatively related to the perception of climate change though not found as such significant. This is due the fact that the more a farmer is distant from output market and input market, the less likely he or she can have more contacts for information sharing. Market places are usually the place where rural household exchange information regarding all matters of the agricultural activities as well as socio-economic issues. Market places in the study location are very few, where some of the farmers were required to travel more than half a day to reach market places. From the below Table 10, it is apparent that a unit increase in the distance of farmers from a market will lead to an increase in probability of not perceiving by significant level. Similarly, the male headed households have better level of perception to climate change as compared to female headed households, this is may be because of the network of a family in accessing information which indicates a differential access of gender to climate change information issues. This result is in line with the argument that male-headed households are often considered to be more likely to get information about new technologies, climate and take risky businesses than female-headed households (Asefa and Berhanu, 2008).

Access to extension services and weather information is also crucial in shaping perception. Those farmers with access to extension services and weather information tend to perceive correctly alluding to the importance of improving farmers' access to weather data and agricultural extension services through improved weather focusing and information dissemination. It is therefore important that all the factors influencing farmers' perception are taken into consideration to improve their perception because these factors further influence households' choice of adaptation strategies to climate as scholars have rightly observed

It was also interesting to note that a radio plays a major role in disseminating information on weather and quite instrumental in shaping farmers' perception of climate variables, particularly in the study area. Although some farmers rely on their relatives or neighbors for weather information, this practice is not recommended since this information is not always reliable. It is not surprising that radios play a major role in weather information dissemination because majority of farmers have access to radio hence are able to access weather information on a daily basis.

The findings indicate that access to extension services and weather information affects how farmers perceive climate variables. Those farmers with access to extension services and weather data tend to perceive correctly the amount of rainfall at the start of a farmers' perception of climate change and variability.

Table 10: Logistic regression result for perception of soil conservation practices

Dependent variable: Perception	β(coefficient)	(P-Value)	
Independent Variables			
Educational level of household head	0.896*	0.074	
Gender of household head	1.24**	0.062	
Age of household head	0.321*	0.0256	
Farm size	0.255**	0.012	
Farm experience	1.57**	0.650	
Distance from market	-0.321*	0.032	
Family size	1.34**	0.072	
Access and Ownership of audiovisual Medias	0.24	0.570	
Membership in CBOs and other social groups	0.259***	0.089	
Extension workers visit/contact	0.257*	0.096	
Livestock ownership	0.23	0.1652	
Previous exposure to climate extreme events	0.268***	0.098	
Agro-ecology: Lowland	1.327***	0.0205	
Midland	0.054	0.087	
Highland	0.011	0.033	
Access to irrigation and water harvesting schemes	1.43**	0.080	
Access to Training programs & campaign on CC	0.37**	0.227	
Access to formal weather forecasting's	1.037*	0.002	
Access to indigenous early warning system	0.011*	0.0069	

Model Chi-square 102.480 Log likelihood function 96.234 Nagelkerke (R2) 0.792

Number of observation: 138

***, **, * = significant at 1%, 5% and 10% probability level respectively

Conclusion and policy Implication

The study set out to evaluate farmers' perceptions of climate change in Southern Ethiopia with special reference to Geze Gofa District. It was found out that majority of the farmers were well aware that climate was changing and it was the cause of the recurrent droughts that were ravaging the district. Majority of the farmers noted that there was an increase in temperature, extended periods of temperature, a decrease in precipitation, changes in the timing of rains and an increase in the frequency of droughts According to the findings of the study, farmers' perception and awareness about the changing temperature volume and heat intensity, rainfall amount, distribution, onset and offset, increased frequency and intensity of weather and climatic extreme events is very high. The high level of perception was a result of access to awareness raising campaign by educated family members and extension workers, access to indigenous early warning information, farmer's location in terms of agro-ecology, closeness to market, educational level, and age of household heads. However, the way farmers perceived the changes in climate significantly varies across agro-ecologies, farming experience, gender, and

educational level. Although overwhelming majority of farmers appears to be well aware of climate change, few seem to actively undertake adaptation measures to counteract climate change. Indeed, almost 37.5 % did not undertake any remedial actions. This can imply that though perception is a necessary ingredient for adoption of adaptation strategies, but not the only panacea for the problem. The results from the study also show that the age of the household head, gender, education, farming experience, household size, access to irrigation water, distance to the nearest market, local agro-ecology, access to information on climate change, access to extension services and off farm income were crucial factors in influencing the likelihood of farmers to perceive climate change.

With properly specific evidence-based policy support, smallholder farmers can adjust to climate change and improve their crop production. To do this, climate change policies need to factor in farmers' understanding of the risks they face and potential adaptations to climate change. The perception that climate change is caused by curses implies that scientists and development experts should consider the cultural and traditional beliefs of farmers when designing adaptation practices. As such, participatory approach must be used to ensure that farmers' beliefs and understanding are a crucial part of the design and dissemination of adaptation practices. Farmers' access to timely weather information also needs to be prioritized to help farmers in their production decision-making processes (e.g., selection of adaptation options). The Ethiopian meteorological agency and agricultural staff need to be properly trained and resourced to collect, collate, and disseminate accurate weather information and early warnings timely and widely.

Also, the government should boost the capacity of scientists and agricultural staff to develop and promote appropriate and effective technologies to help farmers adapt to climate change. In addition, the prevailing high cost of farm inputs and lack of credit facilities and subsidies require the government to ensure that agricultural loans with flexible terms are made available to farmers to boost their capacity to adapt to the changing climate. Results find that farmers of GezeGofa especially those with assets, access to credit, extension services and, greater participation in groups and more exposed to climate change shocks; are already perceived that climate is changing. Participation in social groups is particularly important in enhancing their perceptions of climate change which should be encouraged by government with appropriate policy intake. Government policies should be initiated to improve household access to extension services and access to credit and information, which would improve and diversify farmers' knowledge of climate change and perception and thereby to improve their adaptation strategies. Improving opportunities for households to generate off-farm income could provide a further strategy in response to negative shocks. The understanding of how farmers perceive climate risk is valuable to other stakeholders such as extension service, providers and climate information providers as it can assist in tailor-making their services to suit the farmers' needs and support them to better cope and adapt with climate variability. The results in the study indicate that farmers have a biased estimation of poor seasons, probably because human behavior attaches higher significance to negative events, and this could have a significant role in farm decision-making and farm investments. Farmers' perceptions of climate variability are important as it determines the process of how to provide relevant meteorological services.

References

- 1. ACCCA. (2010). Farm-level climate change perception and adaptation in drought prone areas of Tigray, Northern Ethiopia: in improving decision-making capacity of smallholder farmers in response to climate risk adaptation in three drought prone districts on northern Ethiopia, *IDRC Project No093*.
- 2. Acquah-de Graft, H., &Onumah, E. (2011). Farmers' perceptions and adaptations to climate change: An estimation of willingness to pay. *Agris*, 3(4), 31-39. Adaptation Strategies in Rural Sahel. *Environmental Management*, 43(2009), 804-816.
- 3. Akponikpe, P., Johnston, P., & Agbossou, E. K. (2010). Farmers' perceptions of climate change and adaptationstrategies in sub-Sahara West Africa. 2nd International Conference on Climate, Sustainability and Development in Arid Regions, Fartaleza-Ceara, Brazil.
- 4. Apata, T. G., Samuel, K. D., & Adeola, A. O. (2009). Analysis of climate change perceptions and adaptation among arable food crop farmers in South Western Nigeria. *Contributed paper presented at 23rd Conference of International Association of Agricultural Economists, Beijing, China, August 16-22, 2009.*
- Bekele N, Omolo A. 2006. Mapping climate vulnerability and poverty in Africa. Research report, ILRI, Nairobi.
- 6. Boko, M., Niang, I., Nyong, A., Vogel, C., Githeko, A., Medany, M., Osman-Elasha, B., Tabo R. and Yanda P. (2007) Africa. Climate Change 2007: Impacts, Adaptation and Vulnerability.
- 7. Brohan et al. 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research Atmospheres, 111, D12106. CIA, 2009. CIA Factbook, available online: https://www.cia.gov/library/publications/the-world-factbook/
- 8. Bryan, E., Deressa, T, T., Gbetibouo, G, A. & Ringer, C. (2009) Adaptation to climate change in
- 9. Bryan, E., Ringler, C., Okoba, B., Roncoli, C., Silvestri, S. & Herrero, M. (2013) Adapting agriculture to

- climate change in Kenya: Household strategies and determinants. J. Environ. Manage. 114, 26–35. Elsevier Ltd. doi:10.1016/j.jenvman.2012.10.036
- 10. Bryan, E., TemesgenDeressa, Gbetibouo, G.A., and Ringler, C. (2010) Adaptation to climate change in Ethiopia and South Africa: options and constraints. Available from: http://www.sciencedirect.publications.com
- 11. Bryant, C. R., Smit, B., Brklacich, M., Johnston, T. R., Smithers, J., Chiotti, Q. & Singh, B. (2000) Adaptation in Canadian agriculture to climatic variability and change. Clim. Change 45, 181–201. *climate impacts*, ed. R. Mendelsohn. Edward Elgar: Cheltenham: UK
- 12. Deressa T, Hassan RM, Alemu T, Ysuf M, Ringler C (2008). Analyzing the determinants of farmers' choice of adaptation methods and perceptions of climate change in the Nile Basin of Ethiopia. IFPRI Discussion Paper 00798.
- 13. Deressa T.T, R.M. Hassan C. Ringler, T. Alemu and M. Yesuf (2009). Determinants of farmers' choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Global Environmental Change 19 (2009) 248–255.
- 14. Deressa, T., Hassan, R. M., Alemu, T., Yesuf, M. &Ringler, C. (2008) Analyzing the Determinants of Farmers' Choice of Adaptation Methods and Perceptions of Climate Change in the Nile Basin of Ethiopia. In: International Food Policy Research Institute, 36..
- 15. Deressa, T., Hassan, R., Ringler, C., Alemu, T., &Yesuf, M. (2008). *Analysis of the Determinants of Farmers' Choice of Adaptation Methods and Perceptions of Climate Change in the Nile Basin of Ethiopia*. IFPRIDiscussion Papers No. 798, International Food Policy Research Institute, Washington DC.
- 16. DfID, 2004. The impact of climate change on the vulnerability of the poor (03). Global and Local Environment Team, PolicyDivision, Department for International Development, London, UK.
- 17. Dixon, J., Gulliver, A. & Gibbon, D. (2001) Farming Systems and Poverty: Improving farmers' livelihoods in changing world. FAO and World Bank,. Rome and Washington DC. Empir. Res. 3(3), 251–265.
- 18. Easterling, W.E., P.R. Crosson, N.J Rosenberg, M.S. McKenney, L.A. Katz, and K.M. Lemon. 1993. Agricultural impacts of and responses to climate change in the Missouri-Iowa-Nebraska region. *Climatic Change*, 24 (1–2): 23–62.
- 19. Ethiopia (NAPA). National Meteorological Agency, Addis Ababa Ethiopia and South Africa: options and constraints. Environ. Sci. Policy 12 413–426.
- 20. European Center for Development Policy Management (2012) Regional approaches to food security in Africa: The CAADP and other relevant policies and programmes in IGAD, Discussion paper, No. 128e, Octber 2012, www.ecdpm.org/128e
- 21. FAO (2010) analysis of climate change and variability risks in the smallholder sector: case studies of the Laikipia and Narok Districts representing major agro-ecological zone in Kenya, Rome Italy.
- 22. FAO (2014) post 2015 and SDGs: nourishing people, nurturing the planet, FAO and the post02015 development agenda papers, www.fao.org/post-2015-mdg/
- 23. FAO (Food and Agriculture Organization of the United Nations), 2013. Submission by the Food and Agriculture Organization of the United Nations (fao) on the Support to Least Developed and Developing Countries in the National Adaptation Plan Process Regarding the Integration of Agriculture, Fisheries and Forestry Perspectives. FAO, Rome, Italy.
- 24. FAO (Food and Agriculture Organization of the United Nations), 2014. Family Farmers: Feeding the World, Caring for the Earth. FAO, Rome, Italy.
- 25. Fosu-Mensah, B., Vlek, P., &Manschadi, M. (2010). Farmers' Perceptions and Adaptations to Climate Change: A Case Study of Sekyedumase District in Ghana. *A contributed paper presented at World Food SystemsConference in Tropentag, Zurich: 14th -16 September, 2010.*
- 26. Gandure, S., Walker, S., & Botha, J. J., (2012). Farmers'perceptions of adaptation to climate change and water in a South African rural community. *Environment Development*. Retrieved from http://dx.doi.org/10.1016/j.endev.2012.11.004
- 27. Greenpeace (2012) climate protection between hope and despair: 20 years of the UNFCCC, Amsterdam, The Netherlands.
- 28. Halsnæs K, Trærup S (2009) Development and climate change: a mainstreaming approach for assessing economic, social, and environmental impacts of adaptation measures. Environmental Management (this issue). doi:10.1007/s00267-009-9273-0.
- 29. Hulme, M. (1994). Regional climate change scenarios based on IPCC emissionsprojections with some illustrations for Africa. *Area*, 26, 33-44.
- 30. IFAD (International Fund for Agricultural Development), 2013. Smallholders, Food Security, and the Environment. IFAD, UNEP, Rome, Italy.
- 31. IFPRI (2013) East African agriculture and climate change: a comprehensive analysis, IFPRI Issue brief 76. 2033 K Street, NW, Washington,

- 32. Intergovernmental Panel on Climate Change (IPCC), 2001. Climate Change 2001: Impacts, Adaptation and Vulnerability. A Contribution of the Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. McCarthy, J.J., O.F. Canziani, N.A.Leary, D.J. Dokken and K.S. White). Cambridge UniversityPress, UK.
- 33. IPCC (2001) Climate change 2001: Impacts, adaptation, and vulnerability. Intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.
- 34. IPCC (2007) Summary for Policymakers. In: Climate Change 2007: Impacts, Adaptation and
- 35. IPCC, 2014: Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability.
- 36. IPCC. 2007. Summary for policy makers. In M. L. Perry, O. F. Canziani, J. P. Palutikof, P. J. Vander Linden, & C. E. Hanson, Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of working group II to the fourth assessment reprot of the Intergovernmental Panel on Climate Change pp. 7-22. Cambridge: Cambridge University Press.
- 37. Kissinger, G., M. Herold, V. De Sy. (2012) Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers. Lexeme Consulting, Vancouver Canada. (UNEP undated) Africa's Adaptation Gap: Climate-change impacts, adaptation challenges and costs for Africa, Technical report.
- 38. Legesse, B., Ayele, Y. &Bewket, W. (2012) Smallholder farmer's perceptions and adaptation to
- 39. Livingston, G., Schonberger, S. & Delaney, S. (2011) Sub-Saharan Africa: The state of smallholders in agriculture.
- 40. Maddison, D. (2006). The perception of and adaptation to climate change in Africa. CEEPA Discussion Paper No. 10. Centre for Environmental Economics and Policy in Africa, University of Pretoria, South Africa.
- 41. MDF Report (2013) Food security in Africa: Issues, challenges and lessons: Assessing Progress in Africa toward the Millennium Development Goals.
- 42. Mendelsohn, R., Dinar, Y. and Dalfelt, A. (2000) Climate Change Impacts on African Agriculture. Yale University and Mission Statement. FDRE, Addis Ababa.
- 43. Mendelssohn, R. 2001. Adaptation. In Global warming and the American economy: A regional assessment of
- 44. Mengistu, D. K. (2011). Farmers' perception and knowledge of climate change and their coping strategies to the related hazards: Case study from *Adiha*, central Tigray, Ethiopia. *Agricultural Sciences*, 2(2), 138-145
- 45. Mertz, O., Mbow, C., Reenberg, A., &Diouf, A. (2009). Fermers' Perceptions of Climate Change and Agricultura
- 46. Mwingira, C. E., Pallangyo, M. E., Felix, R., Pima, N., Meingataki, G., &Salum, S. (2011). Impacts of Climate Change on Biodiversity and Community Livelihoods in the Katari Ecosystem. *International STARTSecretariat*. Washington, DC.
- 47. Nagayets, O., 2005. Small farms: current status and key trends. The Future of Small Farms: Proceedings of a Research Workshop, IFPRI, Wye, UK, pp. 355–367.
- 48. Nhemachena, C., & Hassan, R. (2007). *Micro-level Analysis of Farmers' Adaptations to Climate Change inSouthern Africa*. IFPRI, Environment and Production Technology Division. Washington, DC: International Food Policy Research Institute.
- 49. Nyanga, P., Johnsen, F., Aune, J., &Kahinda, T. (2011). Smallholder Farmers' Perceptions of Climate Change and Conservation Agriculture: Evidence from Zambia. *Journal of Sustainable Development*, 4(4), 73-85. http://dx.doi.org/10.5539/jsd.v4n4p73
- 50. Nyong, A. (2005). Key Vulnerabilities to climate change in Africa: in Global warming: Looking beyond Kvoto
- 51. Nzeadibe, T. C., Egbule, C. L., Chukwuone, N., & Agu, V. (2011). Farmers' Perceptions of Climate Change Governance and Adaptation Constraints in Niger Delta Region of Nigeria. *African Technology PolicyNetwork*, Research Paper No. 7.
- 52. Oxfam International. (2010). Therain doesn't come on time anymore. Poverty, vulnerability and climate variability in Ethiopia. Oxfam International.
- 53. P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 7-22 Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and
- 54. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-32.
- 55. PCC, 2007: Summary for Policymakers. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on

- *Climate Change*, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. vander Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 7-22.
- 56. Pettengell C., 2010. Climate Change Adaptation: Enabling people living in poverty to adapt (Oxfam InternationalRicardian approach. Policy research working paper 4342, World Bank, Washington, DC
- 57. Reilly, J., and D. Schimmelpfennig. 1999. Agricultural impact assessment, vulnerability and the scope for adaptation. *Climatic change* 43: 745–788
- 58. Rosenzweig, C., and M.L. Parry. 1994. Potential impact of climate-change on world food supply. *Nature* 367:133–138.
- 59. Shiklomanov, I. A. (1997). Assessment of Water Resources and Water Availability in the World. *WorldMeteorological Organization*
- 60. Smit B., and M.W. Skinner. 2002. Adaptations options in agriculture to climate change: A typology. *Mitigation and Adaptation Strategies for Global Change* 7: 85–114.
- 61. Smit, B., D. McNabb, and J. Smithers. 1996. Agricultural adaptation to climatic variation. *Climatic Change* 33: 7–29.
- 62. Smith J.B., and S. Lenhart. 1996. Climate change adaptation policy options. In *Vulnerability and adaptation of African ecosystems to global climate change*, CR special, 6(2), book version
- 63. Smith, J.B. 1996. Using a decision matrix to assess climate change adaptation. In *Adapting to climate change: Aninternational perspective*, ed. J.B. Smith, N. Bhatti, G. Menzhulin, R. Benioff, M.I. Budyko, M. Campos, B. Jallow, and F. Rijsberman. New York: Springer.
- 64. Sofoluwe, N., Tijani, A., &Baruwa, O. (2011). Farmers' Perception and Adaptations to Climate Change in Osun Satte, Nigeria. *African Journal of Agricultural Research*, 6(20), 4789-4794
- 65. Stakhiv E. (1993). Evaluation of IPCC adaptation strategies. Draft Report. Institute for Water Resources, US Army Corps of Engineers, Fort Belvoir VA, USA
- 66. Stanturf, J. A., Warren, M. L., Charnley, J. S., Polasky, S. C., Goodrick, S. L., Armah, F. &Nyako, Y. A. (2011) Ghana Climate Change Vulnerability and Adaptation Assessment. In: The review bythe United States Agency for International Development (USAID), 258.
- 67. Sustainability Institute (2012) Review of International & African Climate Change Legislation and Policies AWEPA Parliamentary Support Program in South Africa, Press, Washington, DC.
- 68. Temesgen D, Claudia,R., Mahmud, Y., Rashid. M, and Tekie, A. (2008) Analyzing the Determinants of Farmers' Choice of Adaptation Methods and Perceptions of Climate Change in the Nile Basin of Ethiopia. IFPRI. Discussion Paper No 00798 Washington, DC
- 69. Thornton, P., Jones, P., Owiyo, T., Kruska, R., Herrero, M., Orindi, V., Bhadwal, S., P Kristjanson, A Notenbaert, N Bekele, and Omolo A. (2008) Climate change and poverty in Africa: Mapping hotspots of vulnerability. AfJARE2(1), 24–44.
- 70. UN (2013) a regional perspective on the post-2015 United Nations Development Agenda, E/ESCWA/OES/2013/2 13-0077
- 71. UNDP (2006) Climate Change Futures Health, Ecological and Economic Dimensions IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- 72. UNDP (2014) Human development report: Sustaining Human progress: reducing vulnerabilities and building resilience, 1 UN Plaza, New York, NY 10017, USA.
- 73. UNDP, 2008. Climate Change Country Profiles: Malawi. Available at: http://country-profiles.geog.ox.ac.uk
- 74. UNECA (2011) Climate Change and Water in Africa: Analysis of Knowledge Gaps and Needs, Working paper 4. http://www.uneca.org/acpc/publications
- 75. UNECA (2011) climate science, information, and services in Africa: status, gaps and policy implications, working paper 1, http://www.uneca.org/acpc/publications
- 76. UNEP (2007) Africa environmental outlook: policy analysis guidelines for integrated environmental assessment and reporting, Nairobi, Kenya
- 77. UNEP (2007) Mangroves of Western and Central Africa. UNEP-Regional Seas Programme/UNEP-WCMC.
- 78. UN-ISDR. (2010). International Strategy for Disaster Reduction (Africa). Country information Ethiopia. (Available at http://preventionweb.net/english/countries/africa/eth/) World
- 79. United Nations Development Programme (UNDP) (2007) Adaptation Learning Mechanism: learning through sharing experience. www.adaptationlearning.netVulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof,
- 80. University of Gothenburg (2009) Africa environment and climate change policy brief 1. African Development Bank (2004) African Development Bank Group's policy on the environment,

- 81. WFP (2012) climate change impacts on food security and nutrition: a review of existing knowledge. UK.
- 82. Yesuf. M, Di Falco. S., Deressa, T., Ringler. C., & Kohlin. G. (2008). The Impact of Climate Change and Adaptation on Food Production in Low-Income Countries: Evidence from the Nile Basin, Ethiopia, EDR