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Abstract 

Mean-variance optimization as a modern portfolio theory is a major model for theoretical purposes, however, in 

practice portfolio managers don’t have enough interest despite some other ad hoc methods for many reasons 

such as estimation errors. Recently, the significance of modern portfolio theory has been analyzed that it doesn’t 

beat the simple naïve 1/N rule not only in many real empirical databases but also in a simulation. By this paper, 

due to inherent weakness of Sharpe ratio we first express more common use and adjusted measurements such as 

adjusted expected utility of portfolio under ambiguity aversion to analyze their effects on portfolio optimization 

after this consideration, because using only sample mean and variance (Sharpe ratio) to evaluate performance 

value for the portfolio models may be subject to considerable bias. Second, we propose a new model based on 

the new measurement (adjusting ambiguity Sharpe ratio) to improve portfolio optimization problem. Our result 

states that by using the new measurement mean- variance optimization beats the naïve rule by applying the 

adjusted measurement and also the novel model outperforms Markowitz in terms of Sharpe ratio while the 

interesting is that for adjusting Sharpe ratio inverse result exists. Therefore, our study expresses optimization 

makes estimation almost worse when we try to use a measurement as an optimization target. 

Keywords: portfolio selection, optimization, measurement, Sharpe ratio. 

 

1. Introduction 

Markowitz (1952) seminal paper as the base of the modern portfolio theory provided widely uses in academic 

research for constructing portfolios of assets. So far, the idea of portfolio selection and diversification has been 

exhausting in the explaining and understanding of risk and return for making a decision by maximizing the 

expected utility function. Markowitz (1952) provided the theory of portfolio selection which it is popularly 

called as a mean–variance optimization problem (MVO). He provided a suggestion that investors should 

consider jointly return and risk on the basis of a trade-off between their security returns and risk to determine 

how to allocate their funds among investment choices. He assumed that utility of terminal wealth is well 

approximated by a two Taylor expansion. Hence, applying the expected operator (E[X]), one can approximate 

the expected utility which is derived from an investment in risky assets by the first two moments of portfolio 

return distribution. As a result, the portfolio selection is a trade-off between expected return and risk. 

However, it is well-known that the mean-variance portfolio is not well-diversified (Jorion 1985; 

GREEN & Hollifield 1992) due to the estimation error in the forecasting process. Moreover, in a recent study by 

DeMiguel et al. (2009) found that equally weighted portfolios (1/N rule) often outperform mean-variance 

portfolio and its extensions in terms of Sharp ratio, certainty–equivalent return and turnover surprisingly. Due to 

estimation error, a considerable effort has been devoted to the solving portfolio problems and estimating the 

parameter values of them. While these parameter values are estimated from time series sample of past returns, 

various portfolio weights and then unstable portfolios will be obtained  over time. Although a vast literature is 

played to handle estimation error of moments, minimum-variance portfolio surprisingly outperforms other 

portfolios and it has a highest sharp ratio (Jorion 1986; Merton 1980; Jagannathan & Ma 2003).  They explore 

the estimation error in the sample mean is so larger than the variance which ignoring the mean improves the 

portfolio performance. Indeed, Merton (1980) argued that the instability of portfolio weights and sampling errors 

are due more to estimate the amount of mean and it is difficult to estimate the expected return from time series of 

realized expected return. “The estimates of variances or covariances from the available time series will be much 

more accurate than the corresponding expected return estimates.” Merton (1980) said. 

Measuring and evaluating expected utility of portfolios strategies is central to investing wealth because 

in the presence of risky assets it represents the significant effect on decision making of any investor and people 

preferences as a rule of choice. Recent research studies in measuring portfolio performance have applied  out-of-

sample Sharpe ratio of mean and risk of sample portfolio returns or its certainty-equivalent return ratios like as 

DeMiguel et al. (2009; 2012), Tu & Zhou (2011), Kirby & Ostdiek (2012) and Jagannathan & Ma (2003). 

However, Tu & Zhou (2011) measured their portfolio utility in addition to Sharp ratio to compare different 

strategies. Kirby & Ostdiek (2012) and Tu & Zhou (2011) suggest timing portfolio strategy and the combination 

of the sophisticated portfolio to solve this problem, respectively. To explore why mean-variance portfolios 
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perform so poorly in their study, we should address this problem by considering two different aspects. First, we 

ask how Markowitz obtained the idea of portfolio diversification or mean-variance optimization and based on 

what assumptions. Second, we focus on the measurement tools which they used to evaluate the performance of 

each strategy. As a result, we should clear that are two concepts consistent to do an evaluation of each strategy? 

Or applying another measurement could lead to different result.  

To address the first aspect, we see that the idea of portfolio selection and diversification has come from 

explaining and understanding of risk and return for making a decision by maximizing the expected utility 

function which it is assumed that utility of terminal wealth is well approximated by a two Taylor expansion. The 

classical portfolio optimization model hypothesizes that the investors are perfectly aware of their preferences by 

a utility function, therefore, they maximize expected utility function. However, some studies show that this is 

Incompatible with actual choices. One in particular surveys on decision-making under ambiguity aversion 

because of poorly performance in actual choices and dissatisfaction of expected theory framework introduced by 

Von Neumann & Morgenstern (1944) and earlier made by Denial Bernoulli in 1738, which individual welfare 

can be measured by computing the expected utility. The linearity (affine transformation) of expected utility 

function with respect to probability and risk preferences implies that the expected theory is neutral with any 

uncertainty about probability and risk preferences effect. By looking historical data, the investor may become 

confident about forecasting returns but there is some hidden information that would affect the quality of 

judgment, therefore, the investors will consider it as ambiguous which makes different ambiguous permia from 

risk premia. The more recent general model of expected theory under ambiguity introduced by (Epstein & 

Schneider (2008), Epstein & Schneider (2010), Ju & Miao (2012) and Gilboa & Marinacci (2011)). Under the 

expected utility theory all idiosyncratic shocks will wash away by well diversification and in this framework 

investors like expected portfolio returns and dislike variance of portfolio returns which the effect of imposing 

this model often perform poorly out of sample but in the general and more real preferences model, this no longer 

holds and well diversified portfolio may collapse ( see, Klibanoff et al. (2005), Easley & O’Hara (2009) and 

Maccheroni et al. (2013) ). As a result, ambiguity does matter then this paper wants to capture ambiguity 

aversion through smoothing the preferences utility function. 

With respect to the 2
nd

 aspect, a distinguished number of articles in portfolio selection concentrate on 

Sharp ratio as a main well known measurement tool, while it is incompatible with non-normal distribution of 

expected return which tends to unsatisfactory opportunities in the case of asymmetric expected return. Thus, we 

provide a measurement that controls the Sharp ratio of expected utility instead of expected return and ambiguity 

aversion related to the hidden information mentioned earlier. The empirical evidence shows that mean-variance 

portfolio in terms of proposed measure which is more consistent with the target of investors outperform naïve 

diversification. By this finding, though we cannot claim on affectless of estimation error on the weights of the 

portfolio which there has been notable literature, in turn, this implies that the usefulness of mean-variance 

framework and in the worst circumstances, mean-variance optimization outperform the simple naïve rule. It is 

interpreted that it is not necessarily a sign to flaw the mean-variance framework. 

While there are extensive surveys to improve portfolio performance by solving the parameter 

uncertainty due to true parameters are not known for decision makers and applying other policies like as 

Bayesian portfolio, short-sale constraints and optimal combination methods, by this study we also focuses on 

how well their measurements assess the out-of-sample performance of portfolios in many different strategies. 

They provide several models to treat classical framework for a better performance. Using higher-frequency data 

by Merton (1980) and shrinkage estimators by Ledoit & Wolf (2004) to estimate more accurate covariance, 

considering Bayesian method by Pástor & Stambaugh (2000) and Pástor (2000) to reduce estimation errors in 

mean, imposing  moment restrictions to portfolio by Jagannathan & Ma (2003) and incorporating combination of 

sophisticated portfolios by Kan & Zhou (2007) and Tu & Zhou (2011) to show that this improve mean-variance 

model. 

 This study extends previous works by applying the corrected measurement to indicate that mean-

variance optimization is useful by evaluating adjusted measurements and argues that the possible result of 

modern portfolio theory outperforms the simple equally weighted portfolio (1/N rule); thus, Sharp ratio of 

expected return (or excess return) is not a fair consistent measure to assess the performance of portfolio for 

obtaining the preference of investors. Our current study constructs an appropriate measurement to compare 

different strategies. In the empirical evidence, we find that the out-of-sample performance of mean-variance 

portfolio beats naïve rule by incorporating proposed measurement. 
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The paper is categorized as follows. Section 2 describes the concept of several measurements of portfolio 

performance and the proposed one. Section 3 illustrates briefly some strategies and suggests a new model under 

ambiguity aversion for considering the effect of some hidden information to explain Ellsberg (1961)’s paradox. 

Section 4 explains the methodology and discusses the result of empirical data among these approaches. 

2. Measurement Description 

In this section, we briefly discuss a set of main performance measurements which applied by authors to evaluate 

different portfolio strategies discussing about usefulness or huge bias results of mean-variance optimization 

respect to benchmark model including Sharp ratio, Certainty-equivalent returns, turnover and reward to risk ratio 

and then present adjusted measurement to address mysterious question raised by some authors specially 

DeMiguel et al. (2009). 

2.1. Current Measurements 

When comparing the performance of different models to each other or versus a benchmark model to 

characterizes how well the utility of investors will be constructed to provide their preferences, some 

measurements should be derived from expected utility of return rather than the expected return. Several 

measurements of performance have been proposed by different authors which we briefly introduce them as 

follow: 

A: Sharpe Ratio:  
a strategy’s performance was suggested first by Roy (1952) as a risk-reward ratio and then the ratio was derived 

by William Sharp which it was introduced in Sharpe (1966) as a reward-to-volatility ratio. The measure 

examines how much return you receive for enduring the additional risk. The main essential vulnerability of sharp 

index is that the ratio consider the volatility of portfolio as the risk of the portfolio and this is a big flaw because 

if we have asymmetric returns, the volatility will not calculate the appropriate risk of strategies then Sharpe ratio 

can be problematic significantly. Subsequently, other measures such as alpha and market timing were introduced 

by Jensen (1969) and Henriksson & Merton (1981) respectively. 

By the way, Sharpe ratio is a popular and simple way to compare the return of portfolios obtained by 

different strategies. It has been used particularly in most articles to address out-of-sample performance of mean-

variance portfolio and its extensions to defend or reject the futility of its performance, see Merton (1980), Pástor 

(2000), Jagannathan & Ma (2003), Kan & Zhou (2007), Kirby & Ostdiek (2012) and DeMiguel et al. (2014). 

The ratio is calculated by historical data by assuming that these data have productivity ability.  It is calculated as 

follow:  

�

�
SR=

σ

p f

p

R R−
         (1) 

which, �pR denotes expected portfolio return, �σ p is portfolio standard deviation and fR is defined as the risk-free 

rate. 

B: Certainty-Equivalent return:  

Certainty-Equivalent return (CE) is defined as the certain rate of return (zero risk) with utility equals to the 

utility of expected return with an associated risk for a given wealth. If too many investors are risk averse, 

portfolio managers would need to offer excess return more than expected return to convince them to consider 

riskier assets. It depends on the risk tolerance of any investor to be encouraged by the amount of certain 

equivalent return and the characteristics of portfolios (expected return and the volatility of expected return). 

Previously, McCulloch & Rossi (1990) use this measure to assess economic significance of Bayesian decision 

framework from Arbitrage Pricing Theory (APT). Kandel & Stambaugh (1996) incorporate this ratio to 

investigate the economic significance of predictability of stock return. 

Although CE returns are very similar to target utility function of investors, the results for any strategies are 

related to certain return and it clearly doesn’t represent certain utility or utility preference of investor. Lack of 

consideration of utility function is a potential problem and biased estimate may result, however a vast literature 

has been focused on this rate to affirm or criticize  the men-variance portfolio, for example see Campbell & 

Viceira (1999), Pástor & Stambaugh (2000), DeMiguel & Uppal (2005) and Hong et al. (2007). By solving the 

following equation, the CE is obtained: 

U(W(1+CE))=E(U)         (2) 

Where W denotes the investor’s wealth and U is the utility function: 
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1-λ1
W  for λ>0 and λ 1

U(W)= 1-λ

lnW        for λ=1 


≠




     (3) 

here λ  is risk aversion coefficient of the investor. CE also can be used as the inverse utility function of expected 

utility see DeMiguel & Uppal (2005). 
1CE=U (E(U))−

         (4) 

DeMiguel et al. (2009) and Tu & Zhou (2011) explained CE as the risk-free rate of return which 

individual likes to accept in turn of investing in different risky portfolio strategies. It can approximately interpret 

as the level of expected utility of investor with a quadratic utility function. It is calculated by  

ɵ
2

CEQ=r σ
2

λ
−ɵ          (5) 

which rɵ is the realized out-of-sample return of risky strategy and ɵ
2
σ is its related variance. 

C: Turnover:  
In the presence of transaction costs, an investor should consider how frequently assets are traded across total 

assets by taking total new assets are bought and sold over a particular period. A company with higher turnover 

ratio will require more transaction cost rather than a firm with a lower rate, thus strategy with high turnover will 

reduce the total return of any period. It is calculated by the absolute average number of total shares traded in any 

period for each portfolio strategy. 
T-M N

j,t+1 j,t

t=1 j=1

1
TRO= ( w -w )

T-M
∑∑        (6) 

here j,tw denotes the wealth of portfolio obtained by strategy j at period t and N is the total number of available 

assets for T observing period and M window estimation period. 

2.2. Alternative Suggested Measurement 

A: Generalized Sharpe Ratio (GSR) 
Clearly, comparison based on mean and standard deviation of distribution by Sharpe ratio, certainty equivalent 

(CE) rate and their descendants measures for evaluating constructed optimal portfolios do not consider possible 

differences of portfolios and investor’s preferences due to first, the assumption of normality in return distribution 

criticized by many authors such as Jean (1971) developed utility function based on more parameters, Harvey & 

Siddique (2000) showed that skewness in stock return should be included in portfolio selection, Harvey et al. 

(2004) discussed how important is incorporating higher order moments in portfolio selection and recently 

DeMiguel et al. (2012) determined optimal portfolio weight by using option-implied skewness to improve out-

of-sample performance of portfolios which leads substantial improvement in Sharpe ratio. Whereas in Sharpe 

index and its descendants are assumed returns are fully Gaussian distributed. In such situation that we do not 

take into account other moments, thus return mean and variance of the portfolio may not sufficient to examine 

the level of investor utility. This disadvantage of Sharpe ratio can be shown by the following simple example of 

Hodges (1998) in table 1 which provides two probability distribution of excess return over a period. 

Table 1: 

Distribution I  

Excess return  -20 -10 -5 5 10 20 30 

Probability 0.01 0.04 0.25 0.4 0.25 0.04 0.01 

 Mean 3.75 Variance 60.18 Sharpe ratio 0.48  

Distribution II  

Excess return  -20 -10 -5 5 10 20 40 

Probability 0.01 0.04 0.25 0.4 0.25 0.04 0.01 

 Mean 3.85 Variance 66.42 Sharpe ratio 0.47  

As it can be seen distribution type II has more preference for investor rather than type I, because of shifting 

outcome from 30 to 40 and the others are same, whereas distribution type I has more Sharpe ratio (0.48) rather 

than type II. 

Second, even we assume the normality of return distribution for Sharpe ratio, it cannot differentiate 

investor preferences which is higher return and lower risk when the excess return has a lower risk free rate then 

the Sharp ratio is negative. As a result, fund with higher standard deviation and lower return is more worthwhile 
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than the fund with lower standard deviation and higher return especially during bear market. Then, it doesn’t 

measure exactly the quadratic utility of investor which we are going to maximize it in different portfolio 

strategies especially in mean-variance portfolio theory. Under Sharpe ratio assumption, portfolio optimization 

could be reward maximization and risk minimization problem. It formally can be written as the following 

program: 

�

�w
max  SR:

σ

s.t:  w ι=1, ι =[1,1,...,1]

p f

p

R R−

′ ′
        (7) 

 

where w is portfolio weight. Although this formulation has some parameters as the same as mean-variance 

problem especially in mean and variance of the portfolio are related, not identical, the result obtained from them 

is not the same especially when we use it to compare different strategies with the naïve strategies which it 

doesn’t have any volatility in weights of portfolios. Thus, a further correction in measurement is needed 

particularly in comparing different strategies with benchmark strategy (1/N rule). 

Third, some researchers have shown that Sharpe ratio is very prone to manipulation, see for example 

Leland (1999), Goetzmann et al. (2002) and more recently Goetzmann et al. (2007). As a simple example, it is 

possible to a successful strategy with high return with low volatility may produce a remarkably low Sharpe ratio. 

To see this, Goetzmann et al. (2002) show that without adding any value to investor’s preferences in option-like 

strategies can increase Sharpe ratio. Furthermore, Auer (2013) finds that a negative excess return can cause an 

increase in Sharpe ratio of a fund with a certain poor performance.  

Now we should ask this question why the 1/N rule has better performance than mean-variance 

measuring by Sharpe ratio. When we apply the rolling window to calculate the Sharpe ratio, the mean of Sharpe 

ratio of naïve diversification will be the sample mean of all assets over the observation which is the consistent 

estimation of Sharpe ratio. Although for the variance of Sharpe ratio calculated from naïve diversification is not 

the same as the variance of all assets, yet it is a consistent estimation of the variance. So if we have a market that 

has high positive sample mean and low variance, this helps the naïve diversification to be optimal or has a better 

Sharpe ratio performance. 

Therefore, we test the out-of-sample performance of portfolios by applying measures that cover the 

weakness of Sharpe ratio like Generalized Sharpe Ratio. Generalized Sharpe ratio introduced by Hodges (1998) 

which measures optimal expected utility of investors with constant absolute risk aversion which is obtained by 

the following formulation: 

*2
ln( )GSR U

T M

−
= −

−
        (8) 

here, T M− denotes the length of observation. There are two methods of estimation of GSR; nonparametric and 

parametric. The nonparametric method needs to numerical method but the parametric method has a closed-form 

solution presented by Zakamouline & Koekebakker (2009) as (ASSR) the adjusted for skewness Sharpe ratio 

and the adjusted for skewness and kurtosis Sharpe ratio (ASKSR). In the mean-variance-skewness framework, 

ASSR can measure the adjusted skewness Sharpe ratio for investor’s preferences which is given by: 

( 1)
1 ( ) ( )

6 3

s
ASSR

µ λ λ µ

σ σ

+
= +        (9) 

also, ASKSR measures first four moments of distribution with the assumption that return distribution follows 

Normal Inverse Gaussian by parameter vector ( , , ,α β γ δ ). ASKSR can be obtained by: 

* 2 * 22( ( ) ( ( ) ))fASKSR a r aλ γ δ θ α β λ= − − − − −
        (10) 

where 

2 2

2 2

2 2 2 2 2 2 2

*

2 2

3 3 4 9 3 3 3 4 9
, , , 3

(3 5 9) (3 5 9) (3 5 9) (3 5 9)

( )1
( )

( )

f

f

k s s s k s

k s k s k s k s

r
a

r

θ α β

σ
α β γ µ δ σ

σ σ σ

α γ
β

λ σ γ

= −

− − − −
= = = − =

− − − − − − − −

−
= +

+ −
(11) 

here, , , ,s kµ σ denote mean, standard deviation, skewness and kurtosis of distribution respectively 
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B: Adjusted for Ambiguity Sharpe Ratio (AASR) 

The expected utility theory is defined that a decision maker could choose the higher expected value as the 

preferred one. Then based on this theory, the classical portfolio optimization model hypothesizes that the 

investors are perfectly aware of their preferences by utility function, therefore, they maximize expected utility 

function. However, some studies show that this is Incompatible with actual choices. One, in particular, surveys 

on decision-making under ambiguity aversion because of poorly performance in actual choices and 

dissatisfaction of expected theory framework introduced by Von Neumann & Morgenstern (1944) and earlier 

made by Denial Bernoulli in 1738, which individual welfare can be measured by computing the expected utility. 

The linearity (affine transformation) of expected utility function with respect to probability and risk preferences 

implies that the expected theory is neutral with any uncertainty about probability and risk preferences effect. 

This raises the question of interaction between the property which is referred to as the “independent axiom” and 

“Ellsberg paradox” the most famous challenge has been proposed by Ellsberg (1961). He proposed the following 

challenge. An urn contains 90 balls that thirty of them are red balls and the rest are black and white balls which 

the proportion of them is unknown. There are four games that players are confronted to take at random a ball 

from an urn. The prize depends upon the color of the ball is taken out, as are expressed in the following table. 

Table 2: Ellsberg paradox 

Game Red Black Withe 

M1 10 0 0 

M2 0 10 0 

N1 10 0 10 

N2 0 10 10 

 

Ellsberg observed that many players who preferred M1 over M2 also prefer N2 over N1. This is 

incompatible with the “independent axiom” of expected utility. To explain this paradox, Gilboa & Schmeidler 

(1989) proposed a decision criterion that players always react to select worst possible probability distribution 

because in this way they do not need to know the distribution of hidden information (Maxmin Expected Utility 

theory). Their welfare is measured by minimizing the various expected utility. It follows that the behavioral 

properties of ambiguity aversion which can explain Ellsberg paradox. 

By looking historical data, the investor may become confident about forecasting returns but there is 

some hidden information that would affect the quality of judgment, therefore, the investors will consider it as 

ambiguous which makes different ambiguous permia from risk premia. The more recent general model of 

expected theory under ambiguity introduced by (Epstein & Schneider (2008), Epstein & Schneider (2010), Ju & 

Miao (2012) and Gilboa & Marinacci (2011)). Under the expected utility theory all idiosyncratic shocks will 

wash away by well diversification and in this framework investors like expected portfolio returns and dislike 

variance of portfolio returns which the effect of imposing this model often perform poorly out of sample but in 

the general and more real preferences model, this no longer holds and well diversified portfolio may collapse 

( see, Klibanoff et al. (2005), Easley & O’Hara (2009) and Maccheroni et al. (2013) ). As a result, ambiguity 

does matter then this paper wants to present a measurement which capture ambiguity aversion through 

smoothing the preferences utility function based on Gilboa & Schmeidler (1989) decision criterion (or Maxmin 

theory) as an adjusted for ambiguity Sharpe ratio. This is also possible based on mathematical intuitions by 

minimizing the variance of utility and maximizing the expected utility. Economically, the ratio measures utility 

premium per standard deviation of utility which compensates the investor for the volatility by the utility. It is 

simply defined as 

2

(2)

(2)

1

1 2

(E [U(W)])

E [U(W)]

U (E[W])
E [U(W)]=U(E[W])+ µ

2
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1

1
( )

1

λ
w µ - w Σ w

2
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t

t M

T

tt M

t t t t t t

m

v

m
T M

v m
T M

−

=

−

=
=

=
−

−
− −

′ ′=

∑

∑
 

3. Models 

In this section, we briefly describe some strategies which we apply to evaluate different measurements as we 

mentioned formerly. We utilize them, first because of employing these models by different authors to investigate 
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the value of their approaches to analyzing the stock market. Second, to find out how well the results will be by 

suggested measurements. We consider there is N risky asset available to invest in period t.  

3.1. Equally weighted diversification portfolio (Naïve Model) 

Naïve diversification refers to 1/N rule or the formation of the same importance to each stock in a portfolio. 

There are not estimation in this approach because of no parameters to estimate. Although it is easy to compute 

the weight of portfolio, in practice it is difficult to manage the stocks to be equally weighted due to not only 

constant price changing over the time, but also we have to include all number of stocks in the portfolio. 

3.2. Mean-variance portfolio 

Markowitz (1952) gives a model that the investor obtains efficient frontier which is the efficient trade-off 

between return and the risk of diversified portfolios. The investor can reduce only unsystematic risk through 

diversification, but systematic risk cannot be moderated in this approach because it is unpredictable. In 

Markowitz’s seminal paperwork, he minimizes the amount of risk portfolio for a given portfolio expected return, 

which is called as the mean-variance framework. The following formulation can express this: 

w

0

min  w Σw

s.t: w µ µ ; w ι=1, ι =[1,1,...,1]

′

′ ′ ′≥
       (12) 

here, 1 2 nw=(w ,w ,...,w )′ is the weight vector of N risky assets, Σ  is an N N×  covariance matrix of returns 

between N risky assets, 1 2 Nµ=(µ ,µ ,...,µ )′  is the vector of expected returns, 0µ  is the target expected return. For 

the single-period framework, a rational investor with U  a utility function and 0W  initial wealth chooses his 

portfolio to maximize his expected utility. At the end of period, his wealth becomes: 

0W=W (1+w µ)′           

 (13). 

Let λ denote an investor risk-aversion coefficient. Under the assumption that an investor’s utility 

function is given by quadratic utility function (that is, asset returns are fully described by mean and variance), 

the expected utility of terminal wealth can be approximated through a second-order Taylor expansion such that 

the following equation holds: 
(2)

2U (E[W])
E[U(W)] U(E[W])+ W-E(W)

2
(E[( )])≈      (14) 

here, (i)U (E[W]) denote ith-order derivative of the utility function, where W is the terminal wealth of investor. 

Then, by considering CRRA
1
 investors, define (2) (1) 2

W-E(W)λ=(-W*U (E[W]))/U (E[W]); Σ=E[( )] . Finally, it can 

be shown that the Markowitz’s model can be written as following:  

w

λ
max  (w µ- w Σ

2

s.t:  w ι=1, ι =[1,1,...,1]

w)′ ′

′ ′

        (15) 

for a general utility function, the above problem will no longer be expressed by the Markowitz framework which 

is the trade-off between risk and return. 

3.3. Global Minimum-variance Portfolio 

In this model, it only considers variance of historical past return of assets to maximize the expected utility. As 

we have noted this model ignores the mean of sample return and chooses a set of assets which minimize the 

variance of returns. 

w
min  (w Σ

s.t: w ι=1, ι =[1,1,...,1]

w)′

′ ′
        (16) 

                                                 
1 Constant Relative Risk Aversion 
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3.4. Variance-Skewness Portfolio Model 

Suppose that the price changes in excess of the risk-free rate are independently and identically distributed with 

mean vector µ  and define ∑  as the matrix of covariance of asset returns. We will construct the expected 

volatility utility of terminal wealth by: 
2 2 2

E[(U(W)-E[U(W)]) ]=E[U (W)]-E[U(W)]Var(U(W))=      (17) 

We then minimize this variance of utility to better diversify efficient portfolios from sample moments. This 

problem can become even more well-diversified portfolios because the extreme behavior of the weights is more 

due to the estimation of the sample first moment which obviously disappear from our analysis in the following 

calculations. 

First, for calculating
2

E[U(W)]  let 
(i)
µ denote ith central moment. The following equation holds if we 

approximate the expectation of utility wealth by a second-order Taylor expansion at µ=E(W) : 

(2)

(2)U (E[W])
E[U(W)] U(E[W])+ µ

2
≈        (18) 

multiply above equation by itself to get: 
(2)

(2) (2)

2
2 2 (2) 2(U (E[W]))

E[U(W)] (U(E[W])) + µ U(E[W]) µ
4

U (E[W]) ( )≈ +    (19). 

Then, similarly we take the first term 
2

E[U (W)]  by implying a second-order Taylor expansion for utility 

function at µ=E(W) gives: 

0 1 2
(1) (2)(W-E(W))

U(W)
(W-E(W)) (W-E(W))

U(E(W))+ U (E(W))+ U (E(W))
0! 1! 2!

≈     (20) 

multiply above by itself to get 
2

0 1 2
2 (1) (2)(W-E(W))

U(W)
(W-E(W)) (W-E(W))

U(E(W))+ U (E(W))+ U (E(W))
0! 1! 2!

 
≈  
 

 (21) 

applying both sides by expected operation to get 
2 2 (1) 2 (1) 2

(1) 2 (2) 4 (2) 2

E[U(W) ] E[U(µ) +2U(µ)(W-µ)U (µ)+(W-µ) (U (µ))

1
+(U(µ)+(W-µ)U (µ))(W-µ) U (µ)+ (W-µ) (U (µ)) ]

4

≈

   (22). 

Finally, we can use equation (20) and (23) to calculate equation (18): 
2 2 2

(1) 2 (2) (1) (2) (3) (2) 2 (4) (2) 2 (2) 2

E[(U(W)-E[U(W)]) ]=E[U(W) ]-E[U(W)]Var(U(W))=

1 1
=[(U (µ)) ]µ +U (µ) U (µ)µ + (U (µ)) µ - (U (µ)) (µ )

4 4

 (23) 

if suppose the investors have CRRA preferences with risk aversion parameter λ , for example, let define 
1-λ

W
U=

λ
be utility function for CRRA investor. Then higher-order moment tensors can easily parametrize 

portfolio moments as: 
(2)

(3)
3

(4)
4

µ =w

µ =w M (

µ =w M (

Σw

w w)

w w w)

′

′

′

⊗

⊗ ⊗
        (24) 

note that 

3

4

M =E[R-E[R]] E[R-E[R]] E[R-E[R]] ,

M =E[R-E[R]] E[R-E[R]] E[R-E[R]] E[R-E[R]]

⊗ ⊗

⊗ ⊗ ⊗
    (25) 

by taking the initial wealth as a numeraire, the following explanation can be suggested by our analysis: 
(1)

(2)

(3)

(3)

U (W)=1

U (W)=-

U (W)= ( 1)

U (W)=- ( 1)( 2)

λ

λ λ

λ λ λ

+

+ +
        (26) 

therefore, we can rewrite the investor optimization’s problem as a minimizing the following portfolio moments:  
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2 2
(2) (2) 2 (3) (4)(λ) (λ)
µ - (µ ) +λµ (µ )

4 4
+       (27) 

which clearly removes the first-moment impact of sample return in trade-off among moments. 

Interestingly, it shows that if only the sample second moment is between zero and
2(λ) /4 , the investor 

are willing to accept higher variance in exchange of lower skewness and higher kurtosis, otherwise vice versa. 

As compared to consequences portfolio constructed using mean-variance framework, only when the sample 

second moment is bounded between zero and
2(λ) /4 , we find a consistent result. This behavior unlikely can 

explain why optimized portfolios are not optimum. 

4. Methodology for Evaluating the Performance of Models 

In this section, we express our methodology in two important dimensions. First, we describe how to measure the 

outperformance of proposed model. This model has some significant advantages. Specifically, it avoids 

estimation of the first moment of past sample returns, it provides a way to evaluate the investor portfolio 

selection problem which assumes the sample mean of returns estimation fluctuate a lot when we rebalance the 

portfolio according to some investigates as the same as Merton (1980) and Jagannathan & Ma (2003). Although 

there has been considerable effort to improve the estimation of the expected return such as using Bayesian 

estimation, robust optimization and option-implied information, the estimation of the expected retunes in 

empirical and simulation-based analysis is poorly behaved and needs very long time series data. Then, we 

conclude this with a discussion on the relation between expected utility and variance of expected utility objective 

function. We focus on minimizing the expected variance utility function as it avoids the expected return than 

maximizing the mean-variance models because the estimation error would result in extreme rebalancing 

portfolios even run the model by robust estimation. Therefore, we are tremendously interested to discover the 

behavior of portfolio asset when we bound variance in the posited area of the variance-skewness portfolio with 

empirical data and compare the result with mean-variance portfolio 

 

Second, we explore the out-of-sample performance of different strategies by current and suggested 

measurements as an alternative ranking metrics, employing historical market data. To identify the out-of-sample 

performance of strategies, we have to specify a well efficient measurement which is satisfying information 

regarding the real data. Sharpe ratio is a widely used measure as a benchmark ratio to gauge the performance of 

portfolio; however, recently a number of papers have shown that this measure can result in misleading outcome 

as the estimation errors do. The nature of measure error can be explored by examining the performance of 

portfolios with two or more ranking metrics. This error may be heavily weighted toward portfolios with low 

performance. Similarly, measure error may rank the high-performance portfolio as a worse portfolio. Thus, any 

distortion introduced by measurement should consider during our calculation, regardless of whether a particular 

metric was most wieldy used for performance evaluation. For comparing the results come from Sharpe ratio with 

alternative metrics, we use rolling estimation window to compare different policies by Sharpe Ratio, Certainty 

Equivalent return, Ambiguity Ratio and ASKSR. 

4.1. Performance Evaluation of Proposed Model 

We consider an economy with the R returns vector of N different risky assets. Let M i denote ith higher order 

moment tensor for the assets which is introduced by Jondeau & Rockinger (2003) using Kronecker product as 

equation (29). The investor’s terminal wealth can be defined such that equation (14) and considered the initial 

wealth as a numeraire. Then, the central moments of portfolio returns can satisfy equation (30). 

iM =E[R-E[R]]  ; i>1i⊗
        (28) 

(i) (i-1)
iµ =w M w ; i>1⊗′         (29) 

we can rewrite the investor optimization’s problem as a function portfolio of weight vector with two first 

moment tensors (only trade-off between variance and skewness): 
2

2
3

w

(λ)
min  w (w)- (w (w)) +λw M (w w)

4
′ ′ ′Σ Σ ⊗      (30) 

which define the trade-off between variance and skewness. To analyze the out-performance of constructed 

portfolio, we compare certainty equivalents for an investment in different competing portfolios. Differentiating 

the above objective function with respect to ( w ) gives optimum weight values of portfolio: 
2

32 w-(λ) w(w w)+3λM (w w)=0′Σ Σ Σ ⊗       (31) 
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write the third order moment tensor for n assets: 

3 1 2M =[S |S | | S | | S ]i n⋯ ⋯        (32) 

then the above equation is equivalent to: 

2

1

2

[2 -(λ) (w w)+3λ( w )]w=0 

                 or 

[2 -(λ) (w w)+3λw ]w=0 

n

i i

i

S

S

=

′Σ Σ Σ

′ ′Σ Σ Σ

∑
      (33) 

so, the explicit solutions can be written as following: 

2 3

2
3

2 3 2
3 3

3λM (w w)
(λ w Σw-2)=

Σw

3λ skew
w={w|(λ var-2)= ; var=w Σw, skew=w M (w w) }

var

(-3M (3M ) 8Σ )Σ
w= or w=0 

-2λ

−

⊗
′

′ ′ ⊗

± +

    (34) 

Based on our strategy, we can now formally say that variance-skewness portfolio optimization (VSO) is 

well diversified at skewness, therefore, we can make portfolio diversification based on considering jointly 

securities skewness and their co-movements. While it is difficult to make an accurate estimation of return due to 

the direct impact of idiosyncratic volatility on the first moment of individual security rather than other moments, 

the estimation error of mean significantly moves portfolio weights from optimum one. We conclude from our 

obtained objective function (equation 31) that if we decrease the variance of the portfolio, in fact, we increase 

proportionally the variance of expected utility it means that we make worse our utility portfolio. 

This portfolio is the Global Minimum Variance of Utility portfolio (GMVU) which can be formulated 

by the optimization portfolio 
2

2
3

w

(λ)
min VarE(U)=w Σ(w)- (w Σ(w)) +λw M (w w)

4

S.T:

w i=1; i=[1, ,1,1]

′ ′ ′ ⊗

′ ⋯

    (35) 

refer to GMVU we can obtain the efficient frontier of skewness and variance which is totally different with the 

efficient portfolio of risk-return. Another efficient portfolio that we can introduce is an efficient portfolio of 

expected variance and return of utility which we call it EVU. We can formulate it as following 

w
min VarE(U)

S.T:

E(U)

w i=1; i=[1, ,1,1]

≥

′ ⋯

M

        (36) 

Our goal is to analysis the performance of our model compared to a benchmark portfolio on the asset 

allocation of the data set. In order to improve the result of our model, we need to mitigate the impact of 

estimation error in portfolio optimization which it increases exponentially with the number of risky assets. 

Following the literature on improved estimation method, the shrinkage estimators are the most effective 

approach suggested by Ledoit & Wolf (2004) and Martellini & Ziemann (2010) for covariance, skewness and 

kurtosis respectively, gives better performance than original sample estimator and easy to implement which 

gives us more motivation to consider these estimators. They define the posterior misspecification function of 

convex linear combination estimator as: 
2L(δ)=||δ +(1- ) - ||δ ΩF S         (37) 

here, δ is the shrinkage intensity which is between 0 and 1; F the shrinkage target which we estimate by the 

sample constant correlation approach, S the sample estimator and Ω  is the true moment tensor matrix. Note that 

Frobenius norm of a matrix is defined as  
2 2||s|| i

i

s=∑          (38) 

by finding the optimum shrinkage intensity, the expected value of loss will be minimized and asymptotically 

behave like a constant over time period T . This optimal value can be written 
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* 1 π-ρ
δ =

T γ
         (39) 

where, π  denotes an asymptotic tensor moment of the sample estimator, ρ represents the asymptotic tensor 

moment between the sample and structured estimator and γ represents misspecification of the structured 

estimator. Then, the shrinkage estimators are calculated by: 
* *δ +(1-δ )F S          (40) 

4.2. Empirical results  

In this subsection, we examine the performance of our constructed portfolio using returns from Center for 

Research in Security Prices (CRSP) monthly returns data. We consider the sample period January 2004 to 

October 2013. We select top 7 firms from CRSP database, and then we collect monthly returns for these stocks 

from January 2004 to October 2013. As a result, we obtain valid monthly returns of 7 socks for 118 periods. We 

first set window estimation M=60 and then to measure the stability of each portfolio we estimate moment and 

comoments parameter which obviously are not known by using (Martellini & Ziemann 2010; Ledoit & Wolf 

2004) shrinkage estimation method. The relative risk aversion coefficient is taken equal to different cases 

of λ=1,3 .  

Table 3 compares the results of Markowitz and naive rules with various measurements. It shows that the 

result of the Markowitz portfolio is better than the naïve rule with Adjusted for Ambiguity Sharpe Ratio (AASR) 

and Adjusted for Skewness Sharpe Ratio (ASSR). Clearly, however, the results in terms of Sharpe ratio and 

Certainty Equivalent return measurements go to inverse results. We view these results as evidence that the 

adjusting measurements are the source of the usefulness of the Markowitz theory. This is because of two reasons. 

First, we provide a measurement that considers some possible explanation of hidden information simply through 

the ambiguity theory. Second, imposing skewness of return distribution to the measurement leads to the 

expression of non-normality of distribution which is assumed to be a normal distribution in Markowitz theory 

and its extension.  

Table 3: How well is Naïve rather than Markowitz by some new measurements? 

 

 

 

 

 

 

 

 

 

Although this was presented the Markowitz model by some new measurements has superior out-of-

sample performance than the naïve rule, we developed the Markowitz model to consider ambiguity and hidden 

information as a novel model as mentioned in subsection 3.4 in more detail. Table 4 describes the summarized 

results of empirical data for novel model and Markowitz mean-variance theory. We see the novel model almost 

has better Sharpe ratio, CER and Adjusted for Skewness Sharpe Ratio than mean-variance strategy. For example, 

the out-of-sample Sharpe ratio for Markowitz is 0.088, while the novel model has 0.091 monthly out-of-sample 

ratio. Similarly, the Certainty Equivalent Return (CER) for Markowitz is negative, while that for the novel 

approach is strongly positive in different coefficients of risk aversion. Moreover, both strategies almost have 

same Adjusted for Skewness Sharpe Ratio around 0.09. The comparison of different measurements typically 

enhances the improvement results of using the novel model at dealing with estimation error. Thus, considering 

portfolio under ambiguity as an optimal target is very successful and much more reasonable measuring with 

current gauges like Sharpe ratio and CER. 

PANEL A:  N=7 λ=1  λ=3  

Measurements\ Models Naïve Markowitz Naïve Markowitz 

Sharp Ratio 0.091706467 0.088835632 0.0917065 0.088835632 

Adjusted for Ambiguity Sharpe Ratio 0.001051963 0.206016897* 0.001052 0.177975527* 

Certainty Equivalent Return 0.003542018 -0.179559716 0.0004849 -0.662098514 

Adjusted for Skewness Sharpe Ratio 0.091631 0.090964793 0.0920721 0.097386299* 
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Table 4: how well is the novel model rather than Markowitz? 

 

 

 

 

 

 

 

 

 

Our next observation in table 5 is that contrary to the mentioned view in table 4, the Adjusted for 

Ambiguity Sharpe Ratio is not improved for the novel model which extended from Maxmin Expected Utility 

theory to explain Ellsberg paradox. For instance, although the novel model has better Sharpe ratio (0.091) than 

Markowitz (0.088), it has definitely less Adjusted for Ambiguity Sharpe Ratio (0.002) than Markowitz (0.206). 

Table 5: how well is the novel model rather than naïve and Markowitz by proposed measurement? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This novel model is constructed based on optimization of the portfolio to improve ambiguity for 

investors who concern about hidden information. Table 5 reports surprising and interesting results where the 

Adjusted for Ambiguity Sharpe Ratio (AASR) for the novel model is less than Markowitz model and Naïve rule 

in panel A and B which must be better than others, since the target of optimization for the novel model is 

maximizing the ambiguity Sharpe ratio. In fact, this finding indicates that it optimizing models based on 

measuring target by estimation from historical data the worst case will happen no matter it is Markowitz model 

or any other model. 

5. Conclusion 

We have introduced some measurements to evaluate different portfolio strategies and then proposed new scale to 

describe ambiguity aversion. In particular, we find that by some new measurements Markowitz strategy will 

outperform better than the naïve model. This finding is in contrary to many studies, showing that the naïve rule 

outperforms better than Markowitz strategy and its extensions. We further find a new model by this new 

proposed measurement, enhancing that the Sharpe ratio of this model outperforms better than Markowitz 

strategy and naïve rule. In addition, our study has shown that the new model, however, has higher Sharpe ratio 

and CER than Markowitz and naïve, by the proposed measurement which is the optimal target of the new model 

it has a worse result. Consequently, this appears the fact that optimization makes estimation much worse. 

In general, our finding has two important insights. First, in this paper we study how mean-variance 

strategy is misused by ambiguity and the adjusted model takes in an ambiguity premium.  Next, when an 

investor’s optimal target incorporates its performance measurement, optimized estimated portfolios generate an 

inappropriate out-of-sample result in that measurement context, this naturally extends optimization can’t help 

diversification toward right portfolios by estimation data. This concluding take up the question of whether we 

PANEL A:  N=7 λ=1  λ=3  

Measurements\ Models Novel Markowitz Novel Markowitz 

Sharp Ratio 0.091599491* 0.088835632 0.091599491* 0.088835632 

Certainty Equivalent Return 0.003185329* -0.179559716 0.001008434* -0.662098514 

Adjusted for Skewness Sharpe Ratio 0.092350955 0.090964793 0.092036462 0.097386299 

PANEL A:  N=7 λ=1  

Measurements\ Models Naïve Markowitz Novel 

Sharp Ratio 0.091706467 0.088835632 0.091599491 

Adjusted for Ambiguity Sharpe Ratio 0.001051963 0.206016897 0.002367035* 

Certainty Equivalent Return 0.003542018 -0.179559716 0.003185329 

Adjusted for Skewness Sharpe Ratio 0.091631 0.090964793 0.092350955 

PANEL B:  N=7 λ=3  

Measurements\ Models Naïve Markowitz Novel 

Sharp Ratio 0.091706467 0.088835632 0.091599491 

Adjusted for Ambiguity Sharpe Ratio 0.001051972 0.177975527 0.002367753* 

Certainty Equivalent Return 0.000484853 -0.662098514 0.001008434 

Adjusted for Skewness Sharpe Ratio 0.092072075 0.097386299 0.092036462 
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should stop any academic effort on optimization when there exists estimation. It seems useful to offer that other 

researchers find other strategies to construct and support portfolio rather than optimization method.  
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