Identification of Badh2 Mutation Type among Indonesian Fragrant Rice Varieties

Djarot Sasonko Hami Seno*, I Made Artika1, Waras Nurcholis1, Tri Joko Santoso2, Kurniawan R Trijatmiko2, Bambang Padmadi1, Dewi Praptiwi1, Jap Mai Ching1, Zainal Ali Masyud1
1. Department of Biochemistry, Bogor Agricultural University, Bogor-West Java 16680, Indonesia
2. The Center for Agricultural Biotechnology and Genetic Resources Research and Development, Department of Agriculture, Ministry of Agriculture Republic of Indonesia
3. Department of Chemistry, Bogor Agricultural University, Bogor-West Java, Indonesia
* E-mail of the corresponding author: hamisenodjarot@gmail.com

Abstract
The premium price as well as the high and increasing world market demand for fragrant rice has triggered the development of various fragrance markers. The application of these markers on genotyping of various popular Indonesia rice varieties is reported in this paper. PCR profiles of popular Indonesia non-fragrant (Ciherang, Fatmawati) and fragrant (Pandan wangi, Rojo Lele, Mentik Wangi, Gunung Perak, Pulu mandoti, Pare Kembang, Sintanur) rice varieties were compared using aromatic markers of Bradbury et al. (2005b), Lang and Buu (2008), Shi et al. (2008), and Sakthivel et al. (2009). For comparison, IR64, Nipponbare and Taipei 309 varieties were included. Rice genomic DNA was isolated from young leaves using the method as described by Doyle and Doyle (1990), PCR amplified using each of the above fragrance markers and PCR products were analysed by agarose-gel-electrophoresis. Fragrance markers of Bradbury et al. (2005b), Shi et al. (2008), and Sakthivel et al. (2009) were only able to discriminate fragrant Mentik Wangi and Gunung Perak from non-fragrant rice varieties, while other fragrant rice varieties (Pandan wangi, Rojo Lele, Pulu mandoti, Pare Kembang, Sintanur) showed similar band patterns as those of non-fragrant rice varieties. This suggests there are at least two groups of badh2-deletion patterns among Indonesia fragrant rice varieties. Group 1 include Mentik Wangi and Gunung Perak, while group 2 includes Pandan wangi, Rojo Lele, Pulu mandoti, Pare Kembang and Sintanur. Only the RM 223 marker of Lang and Buu (2008) was able to distinguish both fragrant groups from non-fragrant Ciherang. The difference in RM233-amplicon sizes between fragrant groups 1 and 2, also supports the variation of badh2 mutation pattern among Indonesia fragrant rice.

Keywords: Bradbury, Badex7-5, FM-E7, FM-E2A, RM 223, fragrance, Pandan Wangi

1. Introduction
Various fragrance analysis have been developed to assist selection in rice breeding for aroma. Those methods include: organoleptic based on taste (Reinke et al. 1991, Petrove et al. 1996) or odor (Sood and Sidiq 1978, Paule and Powers 1989); BADH2 enzyme-bioassay (Strvong et al. 2008); 2-AP detection using mass spectrophotometry/selective ion monitoring (Tanchotikul and Hsieh 1991), GC (Lorieux et al. 1996, Widaja et al. 1996) or stable isotope (Yoshishashi 2002) and the use of RFLP (Restriction Fragment Length Polymorphisms), SNPs (Single Nucleotide Polymorphisms) or SSRs (Simple Sequence Repeats) markers (Ahn et al. 992, Cordeiro et al. 2002). However, these methods are considered difficult, labour intensive, unreliable, time consuming and require large samples, or are unable to predict the fragrance gene or allele statues (Bradbury et al. 2005b, Sakthivel et al. 2009). In order to increase the number of fragrant rice varieties, several methods are considered applicable for fragrance analysis in heterozygote progenies, since fragrance in rice is a recessive trait (Lorieux et al. 1996, Dong et al. 2000, Bradbury et al. 2005a, Borquis et al. 2008). Fragrant-marker-assisted PCR, followed by agarose-gel-electrophoresis, has been considered as the most potential and amenable approach for routine fragrance genotyping in large scale breeding materials, due to its low-cost, speed, simplicity, and the sensitivity of this method (Bradbury et al. 2005b, Lang and Buu 2008, Shi et al. 2008, Sakthivel et al. 2009).

The finding of an 8 bp and 3 SNPs mutation in the badh2 gene of fragrant rice has led to the development of a specific fragrant marker-assisted PCR method (Bradbury et al. 2005a, Borquis et al. 2008) that can be used to facilitate early selection of non-fragrant and fragrant rice, as well as their cross and backcross progenies which are always heterozygous. The size difference in the badh2 gene between non-fragrant and fragrant rice results in a different amplicon size (Bradbury et al. 2005b). Lang and Buu (2008) have also reported fragrant marker RM 223 that produces ~160 and ~120 bp amplicons for non-fragrant and fragrant rice, respectively. Besides the exon 7-deletion (badh2.7) that had been previously reported (Bradbury et al. 2005a, Borquis et al. 2008), Shi et al. (2008) also reported another deletion in the exon2 of badh2 gene (badh2.2), and constructed fragrance markers FM-E7 and FM-E2 that flank the 8 bp or 7 bp deletion in badh2.7 or badh2.2, respectively. However, the suggestion of using PAGE method to resolve PCR products were not quite practical for routine genotyping in large scale breeding materials/germplasms.
Although various fragrance markers (Bradbury et al. 2005b, Lang and Buu 2008, Shi et al. 2008, Sakthivel et al. 2009) have been reported which successfully discriminate between various fragrant rice varieties in Australia, India, Thailand, and China; none of these have been applied to Indonesia rice varieties. Fragrant genotyping was carried out on popular Indonesia non-fragrant (Ciheang, Fatmawati) and fragrant (Pandan wangi, Rojo Lele, Mentik Wangi, Gunung Perak, Pulu mandoti, Pare Kembang, Sintanur) rice varieties using various reported fragrance markers (Bradbury et al. 2005b, Lang and Buu 2008, Shi et al. 2008, Sakthivel et al. 2009). For comparison, IR64, Nipponbare and Taipei 309 were included.

2. Materials and Methods

2.1 Plant materials and reagents

Rice samples were supplied by the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development as well as by the Indonesian Center for Rice Research. The Bradbury marker was obtained from the Midland Certified Reagents Co. RNase, PCR buffer, faststart Taq DNA polymerase and dNTP were supplied by Roche Diagnostics Indianapolis. One kb standard DNA size marker and agarose low EE0 were supplied by Invitrogen and Applichem Biochemical Chema Synthesis Service, respectively. All other chemicals, of the highest purity available, were purchased from Sigma.

2.2 DNA extraction

Genomic DNA was extracted from fresh young leaves following the protocol described by Doyle and Doyle (1990).

2.3 PCR and electrophoresis

The composition of PCR mix and cycling conditions, as well as the electrophoresis conditions were as described by the previous authors (Bradbury et al. 2005b, Lang and Buu 2008, Shi et al. 2008, Sakthivel et al. 2009), except for the source of reagents which are described above. In addition, agarose gel was used for the FM-E7 and FM-E markers PCR products, in place of the recommended polyacrylamide gel (Shi et al. 2008).

3. Results and Discussion

3.1 Genotyping using Bradbury marker

Isolated DNA from non-fragrant and fragrant rice samples were PCR amplified using Bradbury et al. (2005b) primer, and analysed by agarose-gel-electrophoresis. The results (Figure 1) showed that only fragrant Mentik Wangi and Gunung Perak rice PCR profiles were as previously reported (Bradbury et al. 2005b), and these were different from those of non-fragrant samples (Ciherang, Fatmawati, IR64, Niponbare, Taipei 306). However, other fragrant (Pandan wangi, Rojo Lele, Pulu mandoti, Pare Kembang, Sintanur) were similar. Based on these results, it was deduced that there were two groups of badh2-deletion patterns among Indonesia fragrant rice varieties. Group 1 includes Mentik Wangi and Gunung perak, while group 2 includes Pandan wangi, Rojo Lele, Pulu mandoti, Pare Kembang, and Sintanur.

Bradbury Marker has been proved to positively amplify the badh2 gene of various rice varieties (Bradbury et al. 2005b, Amarawathi et al. 2008). The existence of a 585 bp badh2 band (Figure I) indicates that the badh2 gene of all the examined Indonesia rice variety samples were identical to those rice varieties of other countries. The presence of the fragrant band (257 bp) in group 1 fragrant rice samples (Mentik Wangi and Gunung Perak) indicated similarity of the badh2.7 mutation pattern with those previously reported fragrant rice samples (Bradbury et al. 2005b, Borquis et al. 2008). However, those of Group 2 (Pandan wangi, Rojo Lele, Pulu mandoti, Pare Kembang, and Sintanur) which did not possess the fragrance band seemed to have a different badh2-mutation pattern. Similar results have also been reported previously (Amarawathi et al. 2008). The badh2 mutation in group 2 may be shorter than that of group 1 (8 bp) as illustrated in Figure 2. As a result, the internal fragrant primer (IFAP) becomes unsuitable, and therefore no fragrance bands were observed. On the other hand, the non-fragrance internal primer (INSP) becomes suitable, and therefore unexpected non-fragrance bands (385 bp) were observed in the samples of group 2 fragrant rice samples. Consequently, the size of group 2 badh2 gene should be larger than that of group 1 fragrant rice varieties.
3.2 Genotyping using FM-E7 or Badex marker

The PCR profiles of non-fragrant and fragrant rice varieties were further compared using FM-E7 (Shi et al. 2008) or Badex7-5 (Sakthivel et al. 2009) marker. The results showed that both FM-E7 (Figure 3) and Badex 7-5 (Figure 4) markers were able to distinguish between non-fragrant and fragrant rice of group 1, but not of group 2.

The PCR profile results using FM-E7 (Shi et al. 2008) (Figure 3) or Badex 7-5 (Sakthivel 2009) (Figure 4) markers also supported the view that there are 2 groups of exon 7-badh2 deletion patterns among Indonesian fragrant rice varieties. The group members are identical to those obtained previously using the Bradbury et al. (2005b) marker. The difference in band migration distance was relatively small (Sakthivel et al. 2009). The use of polyacrylamide gel has been suggested to resolve PCR amplicons resulted using the Shi et al. (2008) marker. However, no further experiments were carried out since these markers were unable to discriminate Pandan Wangi and Rojo Lele from non-fragrant rice samples.
3.3 Genotyping using FM-E2A marker

An earlier report has found the *badh2.2* mutation in fragrant rice (Shi et al. 2008). Therefore, experiments were done to compare non-fragrance and fragrance PCR profiles using the exon 2 fragrance marker (FM-E2A). However, the results (Figure 5) showed no differences in the PCR profiles of all samples. The fact that no difference between fragrant, as well as those of non-fragrant rice samples (Figure 5) in the PCR profiles was obtained using the FM-E2A marker (Shi et al. 2008) suggested that the previously reported exon 2-*badh2* mutation is not applicable to most of the examined Indonesian fragrant rice samples.
3.4 Genotyping using the RM223 marker

In attempt to find suitable fragrance marker for Pandan Wangi or Rojo Lele (group 2), their PCR profiles were further compared with non-fragrant Ciherang and fragrant rice of group 1 (Mentik Wangi and Gunung Perak) using the RM223 marker of Lang and Buu (2008) as primer. The results (Figure 6) showed that RM223 was able to discriminate Pandan Wangi and Rojo Lele from non-fragrant Ciherang. The size of the group 2 amplicons was observed to be smaller than those of the group 1 fragrant rice variety samples.

Apart from the ability of the RM 223 SSR marker (Lang and Buu 2008) to discriminate fragrant from non-fragrant rice samples (Figure 6), the results also suggest that there are differences between group 1 (Mentik Wangi and Gunung Perak) and group 2 (Pandan Wangi and Rojo Lele) rice samples, and that the size of group 1 amplicons were also found to be smaller than those of group 2. This supports the results obtained previously using the Bradbury marker (Bradbury et al 2005b) in Figure 1.

4. Conclusion

The results of fragrance genotyping using various fragrance (Bradbury, FM-E7, Badex 7-5, and RM 223) markers supported the view that there are at least 2 groups of exon7 badh2-mutation patterns among Indonesian fragrant rice varieties. Group 1 includes mentik Wangi and Gunung Perak; while group 2 includes Pandan wangi, Rojo Lele, Pulu mandoti, Pare Kembang, and Sintanur. No badh2.2 mutation was found among Indonesian rice
varieties.

Acknowledgments
The authors thank the Higher Education Directorate and Bogor Agricultural University, Ministry of Education and Culture of the Republic of Indonesia for funding the research work (BOPTN Contract no: 137/IT3.41.2/SPK/2013, 15 May 2013); and LPPM IPB, FMIPA IPB, Department of Biochemistry FMIPA IPB, LT IPB, BB Biogen, and LIPI for cooperation, administration management, laboratory, and human resource support; as well as all research and technical assistance (Dimas Adrianto Msi, Aniversari Apriana MSi, Joel Rivandi Sinaga SSI, Euis Marlina SSI, Rady Munzirwan SSI, Sugihartati SSI, Taufiq SSI, Dewi Praptiwi, SSI, Bambang Padmadi SSI, Muhammad Taufan Fatahajudin, Helmy Ramadhan Al Anshary) for cooperation and hard work during this research.

References

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. **Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/journals/** The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Recent conferences: http://www.iiste.org/conference/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar