Effect of Integrated Supply of different fertilizers and compost on Total Yield of *Andrographis paniculata* at Harvesting Stage

¹Sushma Mishra and ²Dr.Aruna Jain ¹Research scholar, ²Asst. Prof. Department of Botany Sarojini Naidu Govt. Girls P.G (Autonomous) College Shivaji Nager, Bhopal. mishrasushma21@gmail.com

Abstract

The present investigation was carried out to study the effects of Bio fertilizers, Chemical Fertilizers and Vermicompost and their combination on the Productivity of *Andrographis paniculata*. The experiment was conducted in a randomized block design (RBD) with 8 treatments i.e. T_1 -NT, T_2 - VC, T_3 -BF, T_4 -CF, T_5 -BF+VC, T_6 -BF+CF, T_7 -CF + VC, T_8 - BF+CF+VC. The experimental results revealed that maximum fresh and dried weight of root, shoot and leaves individually as well as total weight of all the parts and maximum seed yield was obtained in T_8 treatments followed by T_5 plot treatment. Thus it can be concluded that integrated combination of organic manures along with BF and CF results into improved plant productivity and seed yield.

Introduction

Fertilizer application to crops is a necessary condition for good yield of crops due to inherent low fertility status of the soils. The developmental strategy of medicinal plant production in the present century must be through increased productivity of the land under cultivation, reduced costs of production and higher input use efficiency with no harm to the soil, ground water, environment and product quality. The stability of production depends on replenishing nutrients removed from the soil by crops, maintaining desirable physical condition of the soil, preventing an increase in soil acidity and toxic elements and minimizing or preventing erosion. Use of fertilizers is reported to be responsible for over 50% yield increase in crops. Beneficial effect of bio fertilizers, chemical fertilizers and vermicompost in crop productivity has already been reported by many researchers (Jat *et al.*, 2006 in Gram; Dubey *et al.*, 2012 in Fenugreek). Rate of production will be calculated by taking fresh and dried weight of the plant parts and seeds in fully mature crop at harvesting stage.

Material and methods

The field experiment was conducted at Sarojini Naidu Govt. Girls P.G. (Autonomous) college, Bhopal of Madhya Pradesh. The experiment was conducted in a randomized block design (RBD) with 8 treatment using chemical fertilizers (NPK), vemicompost, and biofertilizers (*Azotobacter*, phosphate solubilizing bacteria) in different combinations including one control treatment. The treatments were were T_1 - control (no treatment), T_2 -Vermicompost 5t ha⁻¹, T_1 _Biofertlizers (250g *Azotobacter* ha⁻¹ + 250g PSB ha⁻¹), T_4 - Chemical fertilizers (60:30:30kg NPK ha⁻¹), T_5 _BF + VC (125g *Azotobacter* + 125g PSB + 5t vermicompost ha⁻¹), T_6 - BF + CF [125g *Azotobacter* + 125g PSB + 50% NPK (RDF) ha⁻¹], T_7 .CF + VC (50% NPK + 5t vermicompost ha⁻¹) and T_8 - BF + CF + VC [250g biofertilizers (125g *Azotobacter* + 125g PSB) + 50% NPK (RDF) + 5t VC. The Net plot size of each plot was 9.62 (approx. 10) m² and spacing of rows were 15 cm.

The crop is ready for the harvest after 135 days of sowing, when the plants started flowering and leaves undergoing senescence. At this stage they are harvested by cutting the plants at the base. For the analysis of fresh weight plant parts uprooted and partitioned into leaves, stem, roots and reproductive parts and whole plants were dried in sunlight. For the measurement for total yield, it has weighed by electrical analytical balance. The yield per hectare was computed and expressed as quintal per hectare.

Seed yield

The seeds were separated by winnowing. Total seed yield per plot was worked out by adding the seed weight of all the seeds.

Statistical Analysis

Analysis of observations taken on different variable was carried out to know the degree of variation among all the treatments. The results were obtained through analysis of variance (ANOVA) and SPSS software, version 20, 2011.

Result and Discussion

Table 1. Effect of INM on Fresh and Dry matter production (Kg/plot) at 135 DAS of A.paniculata

Plot No.	Treatment	RW		SW		LW		TW	
		RFW	RDW	SFW	SDW	LFW	LDW	TFW	TDW
T_1	NT	84.1	28.2	133.5	44.8	81.7	27.0	299.3	100.0
T_2	VC	151.8	50.4	307.3	102.4	148.9	49.6	608.0	202.4
T_3	BF	131.4	44.7	283.5	95.1	129.2	43.0	544.1	182.8
T_4	CF	127.1	40.9	254.1	71.5	114.6	38.8	495.9	151.2
T ₅	BF+VC	183.1	60.7	390.0	132.6	175.8	59.1	748.9	252.4
T ₆	BF+CF	178.5	59.8	387.9	122.9	173.7	58.3	740.1	241.0
T_7	CF+VC	181.0	60.2	389.2	130.9	174.8	58.9	745.0	250.0
T_8	BF+CF+VC	209.4	69.7	440.1	147.0	185.7	62.5	835.2	279.2
Mean		155.8	51.82	323.2	105.9	148.0	49.65	627.0	207.3
SD		40.25	13.42	99.47	34.56	36.72	12.47	175.9	60.29
SEm		14.2	4.747	35.16	12.2	12.98	4.411	62.21	21.31
95% confidence interval of	Lower	122.1	40.59	240.0	77.00	117.3	39.21	479.9	156.9
the difference	Upper	189.4	63.05	406.3	134.7	178.7	60.08	774.1	257.7

Table 2. Effect of INM on Average Seed yield (g/plot) at 135 DAS of

A. paniculata

Plot No.	Treatment		Seed yield in g/plot			
T ₁	NT		1024.3			
T ₂	VC		1624			
T ₃	BF		1441			
T_4	CF		1267.8			
T ₅	BF+VC		1976.7			
T ₆	BF+CF		1743.2			
T ₇	CF+VC		1914.3			
T ₈	BF+CF+VC		2024.7			
mean			1627.0000			
SD			359.24048			
SEm			127.01069			
95% confidence interval of the difference Lower			1326.6674			
Uppe		Upper	1927.3326			

Table 3. Effect of INM on Fresh and Dry matter production (q/ha) at 135 DAS of

A. paniculata

	Treatment	RW		SW		LW		TW	
		RFW	RDW	SFW	SDW	LFW	LDW	TFW	TDW
Plot No.									
T_1	NT	8	3	13	4	8	3	29	10
T_2	VC	16	5	31	10	15	5	62	20
T_3	BF	13	4	28	10	13	4	54	18
T_4	CF	13	4	25	7	11	4	49	15
T_5	BF+VC	19	6	39	13	18	6	76	25
T_6	BF+CF	18	6	39	12	17	6	74	24
T_7	CF+VC	18	6	39	13	17	6	74	25
T_8	BF+CF+VC	21	7	44	15	19	6	84	28
Mean		15.75	5.125	32.25	10.5	14.75	5	62.75	20.625
SD		4.2003	1.3562	10.124	3.5857	3.8079	1.1952	18.069	6.046
SEm		1.485	0.4795	3.5795	1.2677	1.3463	0.4226	6.3885	2.1376
95% confidence	Lower	12.238	3.9912	23.786	7.5023	11.566	4.0008	47.644	15.571
interval of the difference	Upper	19.262	6.2588	40.714	13.498	17.934	5.9992	77.856	25.68

Plot No.	Treatment		Seed yield kg / ha				
T_1		NT	10				
T_2		VC	16				
T_3		BF	14				
T_4		CF	13				
T ₅		BF+VC	20				
T_6		BF+CF	17				
T_7		CF+VC	19				
T_8		BF+CF+VC	20				
	Mean	l	16.1250				
SD			3.60307				
SEm			1.27388				
95% confidence in	e interval of the Lower		13.1128				
difference U		Upper	19.1372				

Table 4.Effect of INM on Average Seed yield (kg/ha) at 135 DAS of A. paniculata

Maximum fresh and dried weight of root, shoot and leaves individually as well as total weight of all the parts and maximum seed yield recorded was in T_8 treatments followed by T_5 plot treatment. Conjunctive use of BF, CF and VC i.e. BF+CF, BF+VC, CF+VC and alone treatment gave significantly higher results compared to non-treated plants. Same results has been already reported by Pal., (2002) in Brahmi; Chand *et al.*, (2011) in Geranium; Gupta *et al.*, (2011) in black Henbane, Abbey and Kanton, (2004) in Onion; Shashidhar KR., *et al.*,(2009) in Mulberry; Prabhu M. *et al.*, (2006) in Cucumber.

Nutrient management in integrated manner is beneficial for crop productivity. So it can be concluded that organic manure and bio fertilizers can replace around 25 to 50 percent of CF as already reported by Kandeel *et al.*, 2002 in *Ocimum basilicum*; Manjuntha *et al.*, 2002 in Patchouli; Shivalingappa., 2001 in Tuberose.

Thus it can be concluded that integrated combination of VC along with BF and CF results into improved plant productivity and seed yield. This also results into reducing the nutrient loss from the soil.

References

Abbey L. and R.A.L. Kanton A.B. (2004). Fertilizer type, but not time of cessation of irrigation, affect Onion development and yield in a semi arid region. *Journal of vegetable crop production*. 9(2): 41-48.

Chand Sukhmal, Ankit Pandey, Mohammed Anwar and Dharni Dhar Patra (2011). Influence of integrated supply of vermicompost, bio fertilizer and inorganic fertilizer on productivity and quality of rose scented Geranium (*Pelargonium* Sp.). *Indian J. of Natural Products and resources*. Vol. 2(3): 375-382.

Dubey Pramod Kumar, C.S. Pandey, A.B. Shakoor Khanday and Gaurav Mishra (2012). Effect of integrated nutrient management on nutrient uptake, protein content and yield of Fenugreek. *International Journal of Food, Agriculture and Veterinary Sciences*. Vol.2(1).

Gupta Atul kumar, C.S. Pandey, Vineeta and Jitenra kumar (2011). Effect INM on herbage yield on black Henbane (*Hyoscyamus niger L.*). Open Access J. of Medicinal and Aromatic Plants. Vol. 2(1): 10-14.

Kandeel A.M., S.A.L. Nagla and A.A. Sadek. (2002). Effect of bio fertilizers on growth, volatile oil yield and chemical composition of *Ocimum basilicum* L. *Plants Annals of Agricultural Science*. *Cario*. 47:351-371.

Manjuntha R., A.A. Farooqui, M. Vasundhara and K.N. Srinivasappa. (2002). Effect of bio fertlizers on growth, yield and essential oil content in Patchouli (*Pogustemon cabin* pellet). *Indian Perfumer*. 46(2): 97-104.

Jat R.S., and J.P.S. Ahlawat (2006). Effect of vermicompost, biofertilizers and P on growth, yield and nutrient uptake by Gram and their residual effect on fodder Maize.*Indian Journal of Agril. Sci.* 74 (7): 359-361.

Pal V.B. (2002). Influence of nitrogen, phosphorus, potash and FYM on growth and yield of Brahmi (*Bacopa monniori*) under Mollisol. M.Sc Thesis submitted to G.B. Pant Agricultural and Tech. University pant nager.

Prabhu M., S. Natarajan, K. Srinivasan and L. Pugalendhi. (2006). Integrated nutrient management in Cucumber. *Indian J. Agric. Res.*, (40) 2: 123-126.

Shashishekhar K.R., T.K. Narayanaswamy, R.N. Bhaskar, B.R. Jagdish, M. Mahesh and K.S. Krishna (2009). Influence of organic based nutrients on soil health and Mulberry (*Morus indica* L.) production. *Journal of Biological Science*.

Shivalingappa J., M.M. Khan, A.A. Farooqi, K.N., Sreenivasappa, M. Vasundhara and B.S. Sreeramu (2001). Influence of various bio-fertilizers on growth, flower yield and concrete content in Tuberose. *Indian Perfumer*. 45: 179-183.

Statistical analysis. (2011).SPSS software, version 20.

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: <u>http://www.iiste.org</u>

CALL FOR JOURNAL PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There's no deadline for submission. **Prospective authors of IISTE journals can find the submission instruction on the following page:** <u>http://www.iiste.org/journals/</u> The IISTE editorial team promises to the review and publish all the qualified submissions in a **fast** manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: <u>http://www.iiste.org/book/</u>

Recent conferences: <u>http://www.iiste.org/conference/</u>

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

