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Abstract 
Heavy metal pollution in aquatic ecosystems is one of the most important threats of human health and food chain. 
Thus, in this study, the level of Cd, Fe, Hg, Mn, Pb and Zn accumulation in surface sediments and in Galatea 
paradoxa, were investigated to estimate their potential health risks via consumption to residents alongside the 
Mono river, Togo-Benin border. Samples were collected at two fishing areas and analyzed using flame atomic 
absorption spectrophotometry Moreover, the likely health risks developed as a result of human contamination by 
heavy metal through clam consumption was also assessed using target hazard quotient (THQ) and hazard index 
(HI). The mean maximal metal concentrations (μg/g dw) were as follows: Fe (25624) > Mn (1176.0) > Zn (23.29) > 
Pb (4.67) > Hg (0.038) in silty sediments and Fe (15692) > Mn (654.78) > Zn (12.53) > Pb (2.42) > Hg (0.034) in 
sandy sediments. Cd content were all below the detectable limit. When compared against some consensus-based 
sediment quality guidelines (TEL, ERL, AFNOR), it was observed that all the concentrations, excluding Fe levels 
in the samples, were lower than reference values. Similarly, computed PLI was less than 1 indicating that the lower 
tidal parts of the Mono were unpolluted. The accumulation pattern of studied trace metals in the clams followed a 
slightly different trend from that found in the sediments (Fe>Zn>Mn>Hg>Pb>Cd). Fe (1353 ± 162 μg/g dw) and 
Zn (51,8 ± 8.9 μg/g dw) content in whole tissues of G. paradoxa were well above the maximum concentration 
allowable by food safety criteria. In contrast, Cd (0.097 mg/kg dw), Hg (0.24 mg/kg dw) and Pb (0.18 mg/kg dw) 
content were very low. Computed THQ values were all below 1, with highest results found in the small size clams 
regardless of the heavy metals. The HI values indicate that none of the analyzed heavy metals may pose serious 
risk to consumers through the clams studied. The highest risk was posed by small clams, followed in decreasing 
order by medium and large clams. We therefore suggest that the clams taken from main fishing locations at Mono 
river are safe to eat.      
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1. Introduction 
Pollution of coastal waters has increased dramatically in recent years and has led to an increase in environmental 
problems in many developing countries (Kumar et al. 2013). In Togo, since the second half of the 1900s, rivers, 
estuaries and coastal lagoons have received high inputs of pollutants due to the escalation of the activities of palm 
oil plantations, the misuse of pesticides in cotton cultivation, the cross-border traffic in adulterated fuel and above 
all, the discharge of untreated waste from the treatment of phosphates at the Kpémé plant (Gnandi & Tobschall, 
2001; Gnandi, 2003; Rezaie-Boroon, 2011; Tanouayi et al. 2015). Although metals such as Zn, Cu, Mn, Co and 
Fe are known to be essential elements, which play important roles in biological metabolism at very low 
concentrations (Saeed et al. 2008), all trace metals whether essential or not, are potentially toxic at a threshold 
bioavailability. Existing research has demonstrated that living organisms surviving in highly polluted 
environments are subjected to severe oxidative stress potentially leading to cell death (Padmini et al. 2005; Yahya 
et al. 2018). Furthermore, heavy metals entering aquatic ecosystems subsequently enter the food chain and 
accordingly a frequent consumption of seafood contaminated by trace metals, namely As, Cd, Hg, Pb, Cd and Cu, 
can cause hazards to human health (Jensin & Jernelov, 1969; Mance, 1987).  

Benthic molluscs are widely used in a given ecosystem to detect positive and negative changes. They have 
proved as useful bio monitors in freshwater and marine ecosystems due to their natural capacity to accumulate 
elevated concentration of trace metals and their persistence in the same place. (Elder & Collins, 1991; Richardson 
& Lam, 2004; Weng & Lu, 2017). Bivalves have also the ability to detoxify themselves (Connell et al. 1999). The 
balance between these two processes is not fixed but depends on many factors. Factors known to affect the uptake 
of trace metals and their accumulation in bivalves include metal bioavailability, characteristics of the physical 
environment, season of sampling, size and physiological state of the organism (Boening, 1999; Ravera, 2001). 
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The freshwater clam, Galatea paradoxa (Born, 1778) [Order, Veneroidea, Superfamily, Tellinoidea and the 
Family Donaciade] is a bivalve mollusc confined to estuaries and lower tidal parts of large rivers in West Africa 
including Mono River (Lawson, 1963; Kondakov et al. 2020). The species is the basis of an artisanal fishery 
throughout it range (Etim, 1994; Adjei-Boateng et al. 2012). Individuals are harvested from their natural growing 
beds and serves as a means of livelihood to young men and women from nearby communities who fish, process 
and market the species. Its nutritional properties make it valuable to consumers, so its consumption and market 
value have increased significantly in recent years. Regrettably, most Galatea populations are heavily threatening 
by anthropogenic impacts such as dam construction, riverbed substrate mining and river pollution (Adjei-Boateng 
et al. 2012; Obirikorang et al. 2013). Therefore, the safety of clams has been a matter of concern for human health 
and has been attracting more attention (Etim, 1991; Obirikorang et al. 2009, 2010; Amissah et al. 2010; Nwabueze 
& Oghenevwairhe, 2012; Asare-Donkor et al. 2015; Leizou & Muhammad, 2018).  

In Togo, research on metal contamination in aquatic environments has increased in recent years but most of 
them focused on concentration of pollutants in water, marine organisms and lagoon’s fish species (Gnandi et al., 
2006; Bawa, 2007; Ouro-Sama et al., 2014; Ouro-Sama, 2019). Consequently, despite their economic importance, 
bivalve shellfish, notably freshwater clams and mangrove oysters have received very little attention (Solitoke, 
2019). Thus, our study aimed to (i) to determine the concentration of some heavy metal (Cd, Fe, Hg, Mn, Pb and 
Zn) in G. paradoxa a bivalve mollusk harvested from the Mono river (ii) to investigate the pollution levels of two 
important fishing sites. Frequently, fried or boiled clams are sorted in lot of different sizes (small, medium and 
large) before being sold. It would then be interesting to investigate the influence. In addition, since G. paradoxa 
is an important component of the human diet in the zone, the risk of consuming the clam was also assessed.  
 
2. Materials and Methods 
2.1 Study area 
Samples were obtained in December, 2017 and July, 2018 (wet and dry seasons, respectively) from stationary 
fishing points located between Kpondavé, latitude 6°19'60" N and longitude 1°43'0" E and Avévé, latitude 6°24’ 
N and longitude, 1° 45' E in the District of the Grand Lakes (Figure 1). The two sites are within the active clam 
fishing zones on the Mono River.   

The Mono River is the most prominent river in Togo. Approximately 400 km long, this river drains into the 
Bight of Benin through an extensive system of brackish water lagoons. Along the southern portion towards its 
mouth, it forms the international boundaries between Togo and Benin. Most of the river’s basin on the upper 
tableland is cultivated for maize, cassava and cotton. 

 
Figure 1. Map showing the study area and sampling sites of the Mono river estuary 

The fluvial sediments in the clam distribution areas are mainly sand particles. However, depending on the 
site, there may be significant differences in the particle size distribution of the beds. Thus, muddier sediments are 
found in areas where bank erosion is very high. This is the case of the Kpondavé site where the proportions of fine 
particles (<63 μm) vary around 40% depending on the season. On the other hand, the sediments of the Aveve site 
are essentially sandy with a proportion of medium size particles exceeding 80%. 
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2.2 Samples collection and analytical methods 
The Clams were collected by hand picking at low tide. For each sampling site, 30 individual clams for each size 
were obtained and categorized based on shell length as: small (25 - 40 mm), medium (41 - 55 mm) and large (>55 
mm). There were three replicates for each size class. Back to the laboratory, the bivalves were kept for 24 h in 
river water from the same sampling station to allow depuration of gut contents and of particulate material present 
in the mantle cavity. A sterile stainless steel knife was used to quickly dislodge and remove the flesh of each clam 
from the shell as described by Chiu et al. (2000). These fleshes were oven-dried to a constant weight at 60°C 
(Ferreira et al. 2004). The clams of each size class were ground together using pestle and mortar. Homogenised 
subsamples were digested with nitric acid (HNO3 68%) in Teflon vessels at 90°C for Fe, Mn, Pb, Zn analysis and 
at room temperature for Hg one.   

Sediments were dried at 80°C to a constant weight. After grinding then sieving, 2 g of the fraction inferior to 
63 µm was digested using aqua regia method (1HNO3:3HCl) according to the French standard NF ISO 11466 at 
120°C for Fe, Mn, Pb, Zn analysis and at room temperature for Hg analysis. Analyses were carried out using 
Atomic Absorption Spectrophotometer (AAS) Thermo Electron S Series type for Fe, Mn, Pb, Zn. As for Hg it was 
analyzed using a hydride and cold vapour generator, Thermo Scientific VP 100 type coupled to the AAS Thermo 
Electron S Series. These analyses were carried out according to French standards (NF T90-112, NF EN ISO 5961, 
NF EN 1233, NF EN 1483, NF EN ISO 11969) in the “Gestion, Traitement et Valorisation des Déchets (GTVD)” 
laboratory of the Faculty of Sciences, University of Lomé. All solvent/reagents were of analytical grade (SIGMA-
Aldrich and Merck). 
 
2.3 Quality control and accuracy 
The quality of the analytical methods has been verified by internal control. For that, a blank sample prepared 
simultaneously with the same reagents and under the same experimental conditions. It allowed zeroing the 
spectrometer. It permitted to determine possible contaminations and to eliminate the quantization errors. Also, 
standard solutions of each element were analysed at regular intervals to verify the accuracy of the results. 
 
2.4 Assessment of sediments contamination 
2.4.1 Contamination factor (CF) 
The contamination factor (CF) was calculated with the following equation (Häkanson, 1980): 
       
     (1) 
 
 

where Cm Sample refers to the concentration of a given metal in the sample studied and Cm Background 
refers to the value of the same metal in the reference sample. The CF values were interpreted as follows: CF<1 
indicates low contamination, 1≤CF<3 is moderate contamination, 3≤CF<6 is considerable contamination, and 
CF>6 is very high contamination. In this study, average shale (Turekian & Wedepohl, 1961) was used as a 
background value for heavy metals (Zn, Cr, Cu, Ni, Mn, Co, and Fe) since there were no existing background 
values for these heavy metals in the study area. 
2.4.2 Pollution load index (PLI) 
Originally proposed by Tomlinson et al. (1980) and thereafter widely used (Li et al., 2013; Sahli et al. 2014), the 
PLI provides valuable information and advice for policy and decision makers on the pollution level of an aquatic 
ecosystem. The PLI of a single site is obtained using the equation below: 
 
       (2) 
 

where n is the number of metals. The PLI value of 0 indicates perfection, a value of one (1) indicates the 
presence of only baseline levels of pollutants, and values above one (1) would indicate progressive deterioration 
of the site and estuarine quality. 
 
2.5 Health risk analysis 
2.5.1. Calculation of daily intake rates (EDI) 
Daily intake of contaminated food is a general pathway of heavy metal exposure for local inhabitants. The 
estimated daily intake was calculated to assess the average daily loading of metal into the body system of a 
specified body weight of a consumer. It was calculated based on the formulas below (Chien et al. 2002; Rattan et 
al. 2005; USDA, 2016): 
 
        (3) 
 

BackgroundCm

SampleCm
CF 

n CFnCFCFPLI  21

TAB

IREdEfChm
EDI

W 






Journal of Biology, Agriculture and Healthcare                                                                                                                                www.iiste.org 

ISSN 2224-3208 (Paper)  ISSN 2225-093X (Online)  

Vol.11, No.4, 2021 

 

84 

     
   IR= ADI x Cf        (4) 
   𝐶factor = IRww – IRdw       (5) 
   IRdw= IRww[(100-Wac)] ÷100      (6) 

From which Chm is the heavy metal concentration in clams (mg/kg dw), Ef, is the exposure frequency (365 
days per year); Ed is, the exposure duration, equivalent to average lifetime (61,1 years for an adult in Togo) [United 
Nation, 2019]; IR is the ingestion rate (kg/person/day); Cf is the conversion factor (0.265) for fresh weight (ww) 
to dry weight (dw); Bw is the average body weight (average adult body weight was considered to be 67,64 kg) 
(Aduayi-Akue, 2015) and TA is, the average exposure time for non-carcinogens (given by the product of Ed and 
Ef).  

IRdw is the dry weight intake rate, IRww is the wet weight intake rate, and 𝑊ac is the percent of water content 
in the raw clam which was 76.7% in this study. 

The consumption rate (ADI) of fresh clam for Togolese is not available in the literature. Therefore, the 
average daily intake rate (ADI) was calculated by conducting a survey where 100 adults within the fishing 
communities were asked for their daily intake of clam (Wang et al. 2005; Khan et al. 2009). The average daily 
clam intake for adults and children were calculated to be 95g/day/person (expressed as fresh weight). 
2.5.2 Target hazard quotient and Health index 
Risk of intake of metal-contaminated clam to human health was characterized by Target Hazard Quotient (THQ) 
and Health Index (HI). THQ is a ratio between exposure to a potentially hazardous element and its reference dose 
(RfD. This risk assessment method has been applied by many researchers on bivalves (Denil et al., 2017; Liu et 
al., 2018) and proved to be valid. The calculation method was as follows: 
 
          (7) 
 
 

The RfD values used in this study for Cd, Fe, Hg, Mn, Pb and Zn were 1x10-3, 7 x10-3, 1,4 x10-3; 3,6 x10-3 
and 3 x10-3 (mg/kg body weight/day) respectively (US EPA, 2013; RAIS, 2020). Assuming additive effects, HI 
(TTHQ) is a measure of the potential risk of adverse health effects from more than 1 element. HI greater than 1 
suggests likelihood of adverse effects on human health and the necessity for further action (US EPA, 1989). 
 
    (8) 
 
 
2.6 Statistical Analysis  
The STATISTICA 6.1 software was used for all statistical analyses. All data were tested for normality by Shapiro-
test and homogeneity of variances by Levene’s test. Since data did not respect the former assumptions of 
parametric analysis, non-parametric tests were applied. Kruskal-Wallis test (K-W test) followed by a multiple 
comparison test with Holm adjustment method was performed to detect differences between geographical areas 
and between clam’s size classes. The level of significance for statistical analyses was always set at α = 0.05. 
 
3. Results 
3.1 Heavy metals in sediments 
The heavy metal concentrations in the sediment samples collected during the dry and rainy seasons are summarized 
in Table 1. Fe was by far the main metal contaminant of the sediments of the river. Indeed, the Fe content was 
very high with a maximum value of 25624 ± 2843 μg/g recorded during the rainy season and a minimum value of 
15692± 1260 μg/g measured during the dry season. Next to Fe, the Mn concentration were also very high with a 
maximum value that amounted to 1176 ± 111 μg/g measured in the rainy season in the mud sediment. The sediment 
content of these two heavy metals were well above the allowed limit values. Contrariwise, Zn, Hg and Pb were 
present in the sediments but in small quantities compared to the reference values. In fact, the maximum levels 
measured reached only 23.29 ± 1.8 μg/g, 0.038 ± 0.003 μg/g and 4.67 ± 0.31 μg/g, respectively. The overall trend 
of heavy metal concentrations in the sediments was Fe > Mn > Zn > Pb > Hg 

Results of ANOVA and post-hoc testing (Table 1) revealed seasonal differences in metal levels except for 
Hg and Pb (Kruskall-W, p <0.05). Likewise, data compiled in the Table 1 also show that the concentrations of the 
heavy metals investigated were generally higher in the silty sediments (Kpondavé) than in the sandy sediments 
(Avévé) whatever the season. 
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Table 1. Heavy metal concentrations in sediment samples (mg/kg) from Mono River 

Sampling sites  Season 
  Heavy metals concentrations (µg g-1) 

Cd Fe Hg Mn Pb Zn 

Avévé  (sandy 
substratum) 

Dry  BDL 15692±126a 0.028±0.004a 
387.17 ± 

14.2a 
2.42±0.39a 12.53±0.5a 

Rainy BDL 19588±157b 0.034±0.004a 654.78 ±69b 1.5±0.5a 8.4±0.55b 

Mean   17640 0.031 520.98 1.96 10.47 

Kpondavé (silty 
substratum) 

Dry  BDL 
22805 
±106c 

0.038±0.003a 673.84±13.7c 4.67±0.31b 23.29±1.8c 

Rainy BDL 
25624 
±284d 

0.033±0.004a 1176±111d 3.72±0.88b 15.79±1.4d 

Mean   23214.5 0.036 924.92 4.60 19.54 

Reference values 

ERL      0.15   46.7 150 

TEL      0.17   35 123 

AFNOR 
standards 

  1000 0.4 300 100   

ASV   47200 0.4 850 20 95 

a,b,c: Means carrying different superscript in each row are significantly different (p˂0.05); BDL (Below Detection 
Limit). ASV-(Turekian and Wedepohl, 1961); ERL and TEL (Long et al. 1995) 

The heavy metal contents were compared to French (AFNOR) and North American (ERL for USA and TEL 
for Canada) standards. The threshold effects level (TEL) and Effects Range-Low (ERL) (Long et al. 1995) for a 
given sediment parameter are the concentrations below which adverse biological effects are expected to occur only 
rarely. Our results show that the heavy metal contents were almost all below the standards used. Only contents of 
Fe were much higher than the French standard (up to 260%). 

Table 2. Contamination factors (CF) and Pollution Load Index (PLI) of heavy metals 

 Site Season 
Contamination factors (CF) 

PLI 
Fe Hg Mn Pb Zn 

Avévé 
Dry 0.45 0.13 0.65 0.14 0.18 0.23 
Wet 0.56 0.16 1.09 0.09 0.12 0.27 

Kpondavé 
Dry 0.65 0.18 1.12 0.27 0.33 0.41 
Wet 0.73 0.16 1.96 0.27 0.22 0.42 

The average contamination factor (CF) of Fe, Hg, Mn, Pb and Zn were 0.56, 0.16, 1.20, 0.19 and 0.21 (Table 2). 
Overall, the CF for all metals were in the descending order of Mn>Fe>Zn>Pb>Hg. It follows that pollution load 
index was below 1 (PLI < 1). 
 
3.2 Heavy metals in clams 
Concentrations of six metals in whole tissue of clams depending on the season and type of sediment are shown in 
Figure 2. 

Cadmium (Cd) levels in clams collected in dry season were in concentrations below the detection limits and 
were very low in those collected during the rainy season. The highest concentration of Cd (0.097 μg/g) was found 
in small-size clams. Iron (Fe) levels in the whole clam tissue were all very high in the dry season whatever the 
substrate (silt or sand) in which the molluscs were collected. Fe concentration during that season decreased from 
1560 μg/g in small individuals to 1186 μg/g in large-size clams. Conversely, the Fe concentrations measured in 
the rainy season were all low. Mean Mn content also decreased with the mollusc size class. At Kpondavé, the 
contents of Mn in small-sized clams were 62,5 µg/g in dry season and 30,54 µg/g in rainy season while those in 
large size clams were 47,78 µg/g and 18, 77 µg/g respectively. Zinc (Zn) levels are relatively low regardless of the 
sampling site, when compared to the WHO standard of 1000 μg/g. In the dry season, mean Zn concentrations in 
the whole soft tissue decreased from 62,7 μg/g (in small-size) to 48,75 μg /g (in large-sized clams). In the rainy 
season, Zn concentrations varied little with values around 48 μg/g. 

The tendency to decrease the metal concentrations with an increase in body size class is not significant in all 
cases. Regarding Hg, concentrations were low and had changed very little in the dry season whereas on the contrary, 
during the rainy season, the metal level increases with the size of the mollusc. The small individuals contained 
0.01 and 0,015 µg/g of Hg respectively while the larger ones contained 0.22 and 0,16 µg/g. Lead (Pb) 
concentrations exhibited an irregular pattern for different sized clams at the two sites. At Kpondavé, metal levels 
in medium-size clams of both season and large-size clams of the rainy season were below the detection limit while 
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small and large size clams recorded high Pb concentration (0,39 and 0,2 µg/g respectively).  
The different clam size classes (small vs. small, medium vs. medium, and large vs. large) are compared using 

Kruskal–Wallis one-way analysis of variance. Results shows that metal concentrations were generally higher in 
the dry season than during the rainy season. Exception were observed at Avévé in the case of Hg contents in small 
size class (K-W, p-value = 0.06) and Zn levels in medium-size class (K-W, p-value= 0.66). It should also be noted 
that for Zn, the trends were contradictory; it is rather the clams harvested in the rainy season which contained 
higher contents. Likewise, slight geographic variations related to the nature of riverbed were also found in Fe, Hg, 
Mn and Zn concentrations. Indeed, the heavy metals content of clams collected at Avévé (mainly sand particle) 
had lower metal concentrations than those of Kpondavé (muddier sediments). However, observed differences were 
statistically significant only in the case of Mn and Zn (p<0.05). 

 
Figure 2. Mean concentrations of Cd, Fe, Hg, Mn, Zn in clam tissues are presented (DR: Dry season; RS: Rainy 
season) 
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3.3. Health risk assessment of clams  
As shown in Table 3, highest daily intake was calculated for iron (0.330 mg/kg bw/day), while the lowest values 
were recorded for cadmium (0-2.49x10-5 mg/kg bw/day). Meanwhile, computed target hazard quotient (THQ) 
values and hazard indexes (HI) following the consumption of different sizes class clams are given in Table 4. The 
THQ varied from 0.357-0.541 for Mn, 0.337-0.441 for Fe, 0.053-0.068 for Zn, 0.001-0.016 for Pb, 0.001-0.003 
for Hg and 0-0.017 for Cd, with highest values found with the small clams’ category regardless of the heavy metal. 
As seen from the table, THQ of the studied metals were all much lower than 1, especially for Cd, Hg, Pb and Zn. 
The overall trend of health risk of heavy metals for the consumption of clams from Mono River is Mn > Fe>Zn > 
Cd > Pb > Hg and small size clams > medium size > large size. After summation, it appears that, hazard indexes 
(total THQs) were close to 1 for medium (0.96) and large (0.84) clams and slightly above the unity for small clams. 

Table 3. Estimated daily intake (EDI) of metals via clam consumption (mg/kg/day) 

Clam category 
EDI 

Cd Fe Hg Mn Pb Zn 

Kpondavé 
Small 2.49x10-5 0.308 1.03x10-5   0.018 6.35x10-5  0.019  
Medium 1.49x10-5 0.291 2.85x10-5 0.015 5.56x10-5  0.020  
Large 1.67x10-5 0.244 4.4x10-5 0.012 6.45x10-5  0.020  

 Small  0 0.330 1.03x10-5 0.016  6,7 x10-5  0.019 
Avévé Medium  0 0.281 2.05x10-5 0.015  5,9 x10-5  0.017 
  Large  0 0.246 3.32x10-5 0.012  1.7 x10-5  0.015 

 
Table 4. Non-carcinogenic risk (target hazard quotient, THQ) and overall toxic risk (hazard index, HI) of clams 

from Mono river 

Clam category 
THQ HI 

(∑THQ) Cd Fe Hg Mn Pb Zn 

Kpondavé 
Small 0.025 0.441 0.001 0.541 0.016 0.062 1.06 
Medium 0.015 0.416 0.002 0.458 0.014 0.068 0.93 
Large 0.017 0.349 0.003 0.381 0.016 0.068 0.84 
Small 0 0.471 0.001 0.491 0.002 0.064 1.02 

Avévé Medium 0 0.402 0.001 0.445 0.001 0.056 0.91 
  Large 0 0.337 0.002 0.357 0.004 0.053 0.75 

 
4. Discussion 
4.1 Distribution of Metals in riverbed sediments  
Previous studies have shown that Mono estuary is subjected to contaminating materials capable of initiating the 
impairment of the water and sediments quality (Kunkel, 1990; Rezaie-Boroon et al. 2011). The present study 
confirmed the presence of toxic trace elements in surface sediments of main fishing grounds of G. paradoxa at 
lower tidal parts of the river. Of all the heavy metals investigated, Fe was found to be the most abundant metal in 
the sediments, ranging from 17640 to 23214 µg/g. These values were significantly higher than those observed in 
most of the sub regional rivers such as Volta in Ghana (Madkour et al. 2011), Sombreiro & Ewuru/Rara in Nigeria 
(Wokoma, 2014; Omorola et al. 2014) but are not unprecedented (Table 5); it was established that iron is the most 
widespread heavy metal in nature, making up 5.08% of the Earth’s crust (Greenwood & Earnshaw, 1998).  

The study did not observe any significant local pollution sources in the vicinity of the sites. Nonetheless, the 
occurrence of enhanced concentrations of Fe in Mono River may be related largely to the geology and 
geochemistry of southern part of Togo. Indeed, the outcropping rocks of the Precambrian-Paleozozoic crystalline 
bedrock of Togo consist of iron rich itabirites to intermediate granitoids, including enclaves of mafic igneous rocks 
and gneisses (Agbossoumonde et al. 2007). The weathering of this bedrock may have released these minerals. 
This conclusion is consistent with Thornton and Nduku (1982) who attributed the very high concentration of iron 
in the Gwebi River (Zimbabwe) to the underlying banded ironstones that traverse much of the northern part of the 
upper Manyame catchment. Likewise, high iron values in Day river (Morocco) were related in part to its iron 
calcareous-rich sediments (Barakat et al. 2012).  
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Table 5. Heavy metal concentrations (µg/g) in the sediments from Africa and worldwide 
Region Cd Fe Hg Mn Pb Zn Ref. 

Mono River BDL* 
17640-
23214 

0.031-
0.036 

520.98-
924.92 

1.96-
4.60 

10.47-
19.54 

This study 

Mono River 
0.021-
0.425 

 BDL  3.6-7.25 6.45-25.7 
Rezaie-Boroon et 
al. 2011 

Lac Zowla 
0.41-
2.91 

 0.008-
0.021 

106.15-
3426. 

7.48-
25.56 

18.6-98.2 Solitoke, 2019 

Lagoon of 
Aného  

0.10-
2.24 

 0.01-0.06 
109.82-
3426.05 

1.31-
28.48 

8.58-
124.25 

Ouro-Sama, 2019 

Lake Togo 0.96    56 450 Gnandi. 2002 

Volta River  693-2758 
0.0069-
0.024 

110-393  01-09 
Madkour et al. 
2011 

Lower Volta   56821  318 21.7 391 Biney, 1991 
Sombreiro 
River 

0.022 
340.7 ± 
106.2 

  0.474± 
0.4 

5.37±1.9 Wokoma, 2014 

Ewuru/Rara BDL 687.23  52.62 13.23 91.14 
Omorola et al. 
2014 

Nakivubo 
stream 

0.88-
1.62 

30085-
58354 

 363.47-
1467.47 

64.05-
138.64 

177.89-
442.4 

Sekabira et al. 
2010 

Day River 0.6-6.27 
15670-
36010 

  72.93-
140.36 

49.84-
149.19 

Barakat et al. 
2012 

Turag river 0.2-3.6 
10413- 
14455 

 2512- 
7964 

13.1- 
24.6 

119.4- 
548.9 

Mohiuddin et al. 
(2016) 

Drini Bardhë  0.1-1 
14515-
24430 

 220.8-
458.8 

11.6-
30.3 

38.1-99.4 
Haxhibeqiri et al. 
2015 

BDL= below the detection limits of the Atomic Absorption Spectrophotometer 
Similarly, the very high concentrations of Mn in surface sediments could derived from the natural geological 

processes of rock alteration and particle transport associated with the phenomenon of hydrated oxide precipitation 
of Fe/Mn in an aerobic environment (Singer and Stum, 1970). However, contamination of anthropogenic origin 
cannot be excluded, the Mono River catchment being an agricultural beehive, in particular cotton and oil palm 
cultivation (Mawussi et al. 2010). As such, fertilizers, insecticides and herbicides used on these crops are 
subsequently washed into the river via surface runoff. 

On the other hand, Cd, Hg and Pb were either below detection limit or present but in very low concentrations. 
Higher values of these metals have been found in previous work on sites located downstream from ours (Rezaie-
Boroon et al. 2011) and in costal lagoons (Gnandi, 2003; Ouro-Sama et al. 2014; Tanouayi et al. 2015; Solitoke 
et al. 2018). The occurrence of enhanced concentrations of heavy metals in these ecosystems had been attributed 
mainly to discharge effluents from the phosphorites processing plant situated at Kpémé on the coast. These 
effluents, rich in arsenic and cadmium, enter the coastal lagoons and the Mono River through the action of tides. 
The present results therefore suggested that the marine influence in the process of the contamination of the river 
would be limited to the lower part of the stream. 

Furthermore, obtained data showed seasonal differences in the concentrations of Fe, Mn and Zn with higher 
values in rainy season than in the dry season for the first two metals. This finding is in agreement with previous 
studies (Chouti et al. 2010; Gouin, 2016; Ouro-Sama, 2019). The contributions due to the erosion of the geological 
matrix and the introduction of leachates and effluents via run-off could explained higher concentrations of 
chemical elements in rainy season. The low Zn levels of metals observed in the dry season could also be explained 
by the diffusion of the element in the dissolved phase, due to the physicochemical conditions (high temperatures) 
and the release of the particulate material under the action of the currents (Van Den Berg, 1993). Also, sediment 
enrichment may occur during dry season when heavy metals precipitating out of water columns are deposited on 
bottom sediments (Islam et al. 2015). This study observed also that average heavy metal levels in sandy sediments 
(Avévé site) were lower than those in muddier sediments (Kpondavé site) matching with the fact that organic 
matter and grain size are important factors affecting the distribution of trace elements in sediments (Liaghati et al. 
2003; Bastami et al. 2012; Ouro-Sama, 2019).  

Comparing results of the present study with TEL and ERL values, it was observed that all the concentrations, 
excluding Fe levels in the samples, were lower than reference values. Similarly, the pollution load index (PLI) 
calculated for the two studied sites indicate that contrary to the estuary sediments (Rezaie-Boroon et al. 2011), the 
lower tidal parts of the river contain only baseline levels of pollutants. Concentration levels of all studied metals 
in both samplings locations do not exceed the world average concentration of shale (Turekian & Wedepohl, 1961). 
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Accordingly, we concluded that the two main Galatea fishing grounds are not unpolluted with Cd, Hg, Fe, Mn 
and Zn. Only baseline levels of pollutants were recorded and thus the metals content are supposed not likely to 
have adverse effects on the living organisms. 

 
4.2 Distribution of metals in clams 
The analyzed concentration of heavy metal in the studied clams gives the following sequence 
Fe>Zn>Mn>Pb>Hg>Cd, with Fe having significantly higher concentration than all others combined (89%). 
Obtained heavy metal contents in the clams were compared with data reported in the literature (Table 6). Of course, 
heavy concentrations in the tissues of G. paradoxa vary considerably among studies surely due to differences in 
metal concentration and chemical characteristics of surface sediment from which clams were sampled and 
ecological need metabolism and feeding patterns of bivalves (Weng-Xion & Lu, 2017). Nonetheless Cd, Hg, Mn, 
Pb and Zn concentrations fell within the range of values reported for many other estuarine and freshwater 
environments from Ghana (Obirikorang et al. 2009; Serfor-Armah et al. 2010; Sarfo et al. 2011) and Nigeria (Etim 
et al. 1991; Nkwabweze et al. 2012; Leizou et al. 2018). In contrast to our findings, very high content of Cd 
(2.20±2.39 mg/kg dw) and Zn (4.01±0.69 mg/kg dwt) were reported by Asare-Donkor et al. (2015) for G. 
paradoxa sampled at Ada in Volta estuary. Nevertheless, comparing the Cd results with those of Ouro-Sama et al. 
(2014) and Solitoke (2018) who worked on oysters in the coastal area of Togo, very low concentrations were 
observed in the present study, indicating that the source of Cd in the study area was relatively limited 
Table 6. Selected heavy metal concentrations (µg/g) in clams and mussels from West Africa rivers and lagoons 

Location 
  Heavy metals 

Reference 
Cd Fe Hg Mn Pb Zn 

   Galatea paradoxa (freshwater clam)   

Mono River. Togo 
0.039-
0.097 

111.57-
1556 

0.011-
0.239 

16.5-
69.68 

≤ 0.18 
32.08-
72.17 

This study 

Volta River. Ghana 0.11 71-539 
0.028-
0.074 

49-867  13-49 
Obirikorang et al. 
2009 

Lower Volta. 
Ghana 

BDL  BDL 
491.18±

7.53 
 92.29±1

3.84 
Sarfo et al. 2011 

Volta estuary. 
Ghana 

3.20-
4.70 

61.45-
165.05 

  0.05-
5.35 

 Asare-Donkor et 
al. 2015 

Cross River 
Nigeria 

0.11-0.6    0.3-3.6 96-172 Etim et al. 1991 

Warri River. 
Nigeria 

0.91-
1.349 

16.9-
49.77 

0.153-
1.3 

0.563-
4.149 

1.38-
5.383  

Nkwabweze et al. 
2012 

   Cassostrea gasar (Mangroves mussels)  

Zalive lagoon. 
Togo 

40.31 
 

0.31 
 

10.13 908.57 Solitoke, 2019 

Zowla lagoon 
Togo 

34.26 
 

0.2 
 

6.43 766.3 Solitoke, 2019 

Aneho lake. Togo 0.90    2.9  Ouro-Sama et al, 
2014 

Metal limits in soft 
tissues 

0.2 100 0.5 100 0.2-2  Weng-Xiong & 
Lu, 2017 

The amounts of iron in G. paradoxa compared to other studied heavy metals could be related to the abundance 
of this element in substrate/sediment. This hypothesis is in agreement with Regoli & Orlando (1991) who reported 
that when the environmental levels of iron are high, the metal may be absorbed in the forms of hydroxide flakes 
which are partly accumulated within endocytic vesicles and partly in inter tubular spaces. The high level of Fe 
might be also due to the major role played by this essential metal in maintaining the proper physiological functions 
of organism (Kamaruzzaman, 2010). However, the very high iron content of clams should attract attention as 
subsequent consumption of these seafood by humans can pose significant health risks. (Banner, 1986). Powers et 
al. (2003) have reported that that a high intake of Fe combined with Mn is responsible for the deposition of iron 
oxides in the case of Parkinson's disease. (Powers et al. 2003).  

In mollusks, size and weight along with age are considered as important factors which determines 
bioaccumulation. Most authors reported a reciprocal relationship between body size and the accumulation of 
aquatic contaminants in suspension-feeding bivalves (Amiard et al. 1986; Yap et al. 2009). Bilos et al. (1998) 
have suggested that the increase in metabolic rates in relation to different body sizes might affect the uptake and 
elimination of metal. With regard to G. paradoxa, Etuk et al. (2000) found significant relationships between the 
age (body size) and metal concentrations in clams: Mg, Ca, Pb and Cd increased with clam age while those of Fe 
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and Mn decreased. Asare-Donkor et al. (2015) compared different G. paradoxa size classes from Ada (Ghana) 
sampling station using one-way ANOVA and observed significant differences (p<0.05) for cadmium and copper 
concentrations in the whole tissue. In the present study, it was observed that smallest clam individuals (30-40 mm) 
contained the highest levels of Fe, Mn and Zn. The opposite result was obtained for mercury: the largest individuals 
had the highest metal concentration. This would suggest that concentration of studied trace metals in G. paradoxa 
decreased or increased depending on the metal with increasing body size. However, observed variations in the 
different size classes from both sampling stations were not statistically significant. This result agreed with Amisah 
et al. (2010) who also reported a non significant variations in metal concentrations with regard to body size of 
clams collected from the Volta River, except for mercury content. It may therefore be concluded may therefore be 
concluded that metals concentrations in G. paradoxa can increase, decrease, or remain constant with body size. 
The same contradictory results were observed for mussels due to complicating factors influencing the size 
dependence for some elements (Riget et al. 1996) 

 
4.3 Potential health risk of heavy metals through freshwater clam intake  
With regard to health risk to man, the mean concentrations of the chemical elements in the clams did not exceed 
the Federal Environmental Protection Agency (FEPA) maximum allowable limit for these elements in food. The 
concentrations of these metals in the clam were therefore, within health limits and therefore do not present an 
immediate health risk to consumers. Similarly, estimated hazard index (HI) of Fe, Mn, Zn, Pb and Cd for adults 
were found to be below (large and medium size classes) or just equal to the value of 1 (small size class). This 
means that, overall, there is no concern for potential non-carcinogenic health effects and risks. This indicates that 
the local inhabitants consuming shellfish, G. paradoxa were not exposed to possible adverse health effects. Similar 
studies conducted in the Volta River and Diebu Creek in Niger Delta have reached the same conclusions (Amissah 
et al. 2009; Obirikorang et al. 2010; Leizou et al. 2018). 
 
5. Conclusion 
The levels of six heavy metals in sediments and Galatea paradoxa were analyzed and their potential health risks 
were estimated. The results show relatively high levels of iron (Fe), and Zinc (Zn) in surface sediments of Mono 
River while cadmium (Cd), Mercury (Hg) Manganese (Mn) and Lead (Pb) content were either low or lower than 
the detection limits of the Atomic Absorption Spectrophotometer. The sources of heavy metals in the study area 
were largely natural (coming from the geological matrix) and secondarily anthropogenic (fertilizers, insecticides 
and herbicides used on crops via surface runoff). Nevertheless, when compared to a number of sediment quality 
guidelines, the concentrations of these heavy metals were found to be below the levels considered to have the 
potential to cause biological effects.  

Fe (1186-1560 μg/g) had the highest concentration in soft tissues of G. paradoxa followed by Zn (32.08-
72.17 μg/g). All other studied metals contents were low and below the maximum allowed limits. The computed 
hazard indexes for adults via ingestion pathways were found to be less or just equal to 1. It may therefore be 
concluded that the consumption of G. paradoxa, at the rate of 95 g/day/person throughout the year most probably 
does not pose a health hazard to the local populations. However, clams only accounted for a part of the human diet 
in the fishing areas. Other seafood, such as fish, crabs and shrimps might contain considerable levels of heavy 
metals, which could significantly increase the risk of ingestion of heavy metals by the local population. Therefore, 
the routine biomonitoring of the clam expanded to other shellfish for consumption should be done to ensure 
continuous food safety.  
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