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Abstract 

Sarcopenia, the loss of muscle mass and strength that occurs with aging, has a crucial role in development of 
frailty. Although sarcopenia and other muscle-related traits are heritable, the underlying genetic variation 
contributing to the development of sarcopenia is unclear. Our aim was to assess whether there is a relationship 
between >700 single nucleotide polymorphisms (SNPs) total in 27 genes (14 genes identified from C. elegans 
and 13 genes in the mevalonate and ubiquinone pathways) and six traits related to sarcopenia using data from the 
HealthABC cohort. No SNPs were statistically significant at the experiment-wide p-value (p< 0.00001). SNPs in 
the locus MAGOHB were associated with THIMF, THMUSD, and TOTPF in European Americans, whereas 
SNPs in CYP3A5 were associated with these traits in African Americans (p<0.01 for all). Furthermore, SNPs in 
GOLGA4 (P<0.01) and RALGABP (P<0.001) were associated with TOTPF in African Americans, and SNPs in 
RALGABP were also associated with THIMF and TOTLEAN in African Americans. The results indicate that 
variation in some genes related to development of muscle-wasting in an animal model, C.elegans, may have 
pleiotropic effects on traits related to sarcopenia in older men and women.  
Keywords: Sarcopenia, C.elegans, association, Health ABC  
 
1. Introduction 

Sarcopenia is characterized by a progressive loss of muscle quantity and quality and muscle mass with aging 
(Evans, 1995). The prevalence of sarcopenia ranges from 8 to 40% of people over 60 years (Van, 2009). The 
consequences of sarcopenia are decreased energy expenditure, reduced insulin sensitivity, reduction in muscle 
mass and strength, and increased physical disability, falls, and mortality. 

Sarcopenia has a complex and multifactorial etiology that changes with age. Between ages 20 and 40 years, 
as a result of a decline in physical activity and a type II muscle fiber size, the sprinting capacity becomes lower. 
Between ages 40 and 60 years, as a result of the rapid decline in the motor units, decline in physical activity and 
increase in body fat, there is a decline in aerobic capacity and muscle protein synthesis. At the ages of 60-70 
years, the physical activity is deficient, and body fat is very high. Thus the declines in muscle protein synthesis 
are huge. After the age of 70 years, there is a further reduction in physical activity that causes increased muscle 
protein breakdown. There is some evidence about the possible mechanisms of sarcopenia including, a decrease 
in muscle self-repair ability (Collins et al. 2005), inactivity, decreased protein intake, loss of α-motor neurons, 
hormonal changes, inflammatory effects (increased IL-6), altered caloric intake, and changes in muscle cell 
physiology. However, the primary mechanism of sarcopenia is still unclear (Volpi, 2004). This lack of 
knowledge regarding mechanisms also limits the effective treatment of sarcopenia. Thus, there is a need to 
develop new model systems to understand the mechanism of sarcopenia with subsequent follow-up studies in 
humans. Results from these studies could lead to the development of new pharmacological agents for the 
effective treatment of sarcopenia.  

The non-parasitic soil nematode C.elegans has become a robust model system in various areas of biology 
including molecular biology, genetics, developmental biology and neurobiology in recent years (Baumeister, 
1997). C. elegans has a variety of experimental advantages including (1) it can be quickly and cheaply cultured 
in the lab, (2) it has a short lifespan, (3) it has a completely sequenced genome, and (4)  the ability to use RNA 
interference ( Timmons,1998). Under laboratory conditions, worms develop from egg to adult in 3 days and 
reproduce at 4 or 5 days. The adult C.elegans has 12 to 18 days lifespan. C.elegans has also been used commonly 
for genetic studies of longevity (Glenn, 2004). Using genetic studies, investigators determined that longevity in 
C. elegans is regulated by genes involved in the insulin and insulin-like growth factor (IGF) signaling pathway 
(Kimura, 1997). The Insulin-like pathway includes the daf-2 gene that encodes a protein similar to vertebrate 
insulin and IGF-I receptors (Kimura et al., 1997). Insulin-like pathways are found to be evolutionarily conserved 
in C.elegans (Tatar et al., 2001).  

As in humans, C.elegans also develops sarcopenia that is characterized by muscle loss that starts in midlife, 
increases with advancing age, and results in decreased mobility (Herndon et al., 2002, Glenn et al. 2004). The 
sarcopenia observed during aging has significant effects on worms. Because of the structural changes in the 
muscles, there is decreased mobility in the affected worms (Herndon et al.2002). Worms at young ages have 
increased physical activity that includes sinusoidal swimming on the agar plate. With the aging of worms, there 
is an apparent physical decline in the physical activity (Herndon et al., 2002). The reductions in the mobility of 
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worms were irreversible (Herndon et al., 2002). The reduced movement is due to disorganized myofibrils and 
decreased myosin filaments (Herndon, 2002). Sarcopenia does not only affect the mobility of worms, but it also 
a significant predictor of mortality during aging (Herndon et al., 2002). 

Herdon and colleagues reported that aging in C.elegans is associated with sarcopenia (Herndon et al., 2002). 
Other investigators reported that animals with specific mutations in daf-2 pathway are resistant to the 
development of sarcopenia (Duhon and Johnson, 1995). Using RNA interference in muscle, Kashyap and 
colleagues subsequently identified 18 genes which are required for the delay in the onset of sarcopenia in daf-2 
mutations (Kashyap et al., 2010). The identified genes included splicing factors, vacuolar sorting proteins, 
transcription factors, and metabolic enzymes.  

Two most commonly studied sarcopenia-related phenotypes are muscle mass and muscle strength. Muscle 
mass and muscle strength have multiple factors that differ among individuals. Although genetic factors primarily 
determine the variation among individuals, the specific genes that control these phenotypes are mostly unknown 
(Tan et al., 2010). 

Results of segregation analyses have identified several loci that influence variation in whole body lean mass 
(Rice et al., 1992). Segregation analyses in Chinese (Liu et al.2004a) and other populations (Borecki et al., 1994, 
Karasik et al., 2008) have confirmed that there are many genes with moderate effects that determine variations in 
whole body lean mass. 

There is significant evidence that many traits related to muscle strength have high heritability (h2). The 
heritability of hand grip strength (GS), quadriceps strength (QS) and lower limb muscle strength (LLMS) were 
estimated as 30-52%(Arden and Spector 1997; Fredericksen et al., 2002), 31-78%( Tiainen et al.,2008) and 42-
64% (Fredericksen et al.,2002) based on twin studies. 

There is only one linkage study performed on older people.  Investigators performed linkage analyses using 
397 microsatellites genotypes in 217 twin pairs from the Finnish Twin Study who were 66-75 years of age. They 
detected a significant linkage between knee extensor isometric strength and a QTL on chromosome 8 (Tiainen et 
al.2008). Candidate gene studies of possible associations with sarcopenia have included a limited number of 
genes and have only analyzed a few SNPs within these genes. The results of the candidate gene studies have 
reported inconsistent results, probably because of population stratification, ethnic variability, sample size 
differences and gender differences (Tan et al.,2012). 

The number of linkage studies for sarcopenia-related phenotypes is deficient. Based on the results of two 
studies, only 7q21, 7q32, 7p15.3, 15p13, and 20q13 were significant (Tan et al.,2012) 

There are a few genes identified that are related to variation in skeletal strength or skeletal mass. Based on 
the results of two or more studies, the ACE, ACTN3, MSTN, CNTF and VDR genes have been found to be 
associated with skeletal strength and skeletal mass (Tan et al.,2012). The substantial genetic contribution of 
MSTN gene to variation in skeletal muscle phenotypes was confirmed by association studies, linkage studies, 
and expression studies. The IGF1 and IL-6 are also potentially significant genes that were supported by linkage 
and association studies. Identification of genes that influence sarcopenia-related phenotypes could lead to the 
development of new pharmacological interventions (Tan et al.,2012). 

Our aim of this study was to assess whether SNPs in a total of 27 genes (including 14 that are human 
homologs of C.elegans muscle function genes and 13 that are mevalonate and ubiquinone pathway genes) 
influence muscle-related traits in the Health, Age and Body Composition (HealthABC) cohort. We also analyzed 
data available on the following muscle-related traits include isokinetic leg muscle maximum torque (KCTMAX), 
thigh intermuscular fat area (THIMF), thigh intermuscular fat area (THMUS), thigh total muscle density 
(THMUSD), total lean mass (TOTLEAN,) and total percent fat (TOTPF).  

 
2. Subjects and methods 

2.1. Subjects 

We used data from Health, Aging and Body Composition Study (Health ABC). Briefly, the HealthABC study 
population consists of 3,075 well-functioning people from both sexes, who were 70-79 years old at baseline. 
Data on similar numbers of each sex by ancestry group were available, although slightly more women (N=1584) 
than men (N=1491) were recruited (Table 1). Health ABC subjects were recruited from Pittsburgh, PA (N=1527) 
and Memphis, TA (N=1548) in March 1997- July 1998. The University of Pittsburgh and University of 
Tennessee institutional review board approved the protocol and all participants gave informed consent. Height 
was measured by a stadiometer and weight was measured by a calibrated balance-beam scale. Subjects’ height 
and weight were measured while they were wearing a hospital gown and no shoes. Body mass index was also 
one of the body composition measures. Intermuscular fat area of the left thigh and right thigh were measured by 
CT.  

DXA was used to measure total lean mass ( Goodpaster et al.,2006) and computed tomography was used to 
measure thigh muscle cross-sectional area (Goodpaster et al., 2006).  
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2.2. Phenotypes examined in this study 

The summary of phenotypes is found in Table 2. Genotype data were available on a total of 1737 SNPs across 14 
genes, which are human homologs of C. elegans muscle function genes and 13 mevalonate and ubiquinone 
pathway genes. 
Phenotypes examined in this study are; 

1. KCTMAX: isokinetic leg muscle maximum torque (NM): 80-40deg 

2. THIMF: mean of right and left thigh intermuscular fat area (cm sq) 
3. THMUS: mean of right and left  thigh total muscle area (cm sq) 
4. THMUSD: mean of right and left thigh total muscle density (HU) 
5. TOTLEAN: total lean (gm) 
6. TOTPF: total percent fat 

2.3. Genotyping and Imputation 

Whole genome genotyping of the HealthABC individuals was conducted by the Center for Inherited Disease 
Research (CIDR) by the Illumina Human 1M-Duo BeadChip system. Three quality control measures were 
applied by the Wake Forest team:  

data from individual samples were eliminated from the data, if sample genotyping the was not successful at 
all (<97% SNPs genotyped), if the first-degree relatedness was identified by the single-nucleotide polymorphism 
(SNP) data or if the chromosome sex did not pair with the reported sex. Specific SNPs retained if the SNP had a 
minor allele frequency (MAF) >1, was called with >97% and had a Hardy-Weinberg equilibrium (HWE) test p 
value >10-6 (Minster, 2011).  Genotyping of 1,151,215 autosomal SNPs was performed in 1.663 individuals of 
European American ancestry and were promoted to imputation (Minster, 2011). 

Imputation was conducted by MACH 1.0.16 (Li et al. 2010b) and the HapMap II phased haplotypes (Frazer 
et al.2007) as the reference. The number of available genotypes were 914,263 SNPs based on the HapMap 
Centre d’Étude du Polymorphisme Humain (CEPH) reference panel (rel. 22, b36). 2,543,887 genotyped and 
imputed autosomal SNPs were available for analysis of the “HapMap SNP” set (Minster, 2011). 

African Americans and European Americans’ quality control protocols were similar to each other; samples 
were eliminated from the data, if the genotyping was not successful, if the first-degree relatedness was identified 
by the SNP data or if the chromosome sex did not pair with the reported sex. 1,151,215 SNPs were successfully 
genotyped in 1,139 African American individuals (Minster 2011). SNPs with an MAF > 1%, a call rate > 97% 
and a HWE test p value > 10-6 were used for imputation. 3,021,329 SNPs were available for analysis in the 
African Americans and were carried forward to imputation. Imputation was conducted by MACH 1.0.16 (Li et 
al. 2010b) and the HapMap II phased haplotypes (Frazer et al.2007) as the reference (Minster, 2011). 

For the single SNP-single trait association analysis whole genome genotyping data were available on 1794 
European American and 1281 African Americans. We included all SNPs (both assayed and imputed) that were 
located within the 27 genes of interest, plus all SNPs that were within ±5kb of the 5’ and 3’ untranslated regions 
of the 27 genes. The number of assayed plus imputed SNPs available (for the 27 genes of interest) was 736 for 
European Americans and 999 for African Americans. For the association analyses in the current study, SNPs 
with the minor allele frequencies less than 0.05 were excluded. After MAF less than 0.05 removals, there were 
627 SNPs in European American and 778 SNPs in African Americans. The number of SNPs within each gene 
after removal of MAF and the results are given in Supplementary Table 1. 

 
2.4. Statistical Methods 
All statistical analyses were done using the R 2.11.1 [R Development Core Team 2010]. First, the distribution of 
the six muscle-related traits was analyzed to assess the outliers and deviations from normality. If necessary, the 
traits were transformed to reduce non-normality and values that were ±4sd were removed prior to subsequent 
analyses. Next, linear regression analyses were performed to identify the effects of significant covariates, such as 
age, and sex. Because unknown admixture among individuals can bias results of population-based association 
studies, the measures of admixture using principle components of admixture derived by the Wake Forest team 
were also included. Based on the results of these linear regression analyses, the effects of significant covariates, 
including admixture were removed. All subsequent analyses were performed using these residual, transformed 
traits. Correlation among traits was estimated using the residuals. Finally, because some of the genotypes 
contained imputed data, the genotype data was represented as “probable allele dosage”. In other words, the 
genotype score ranged from 0 – 2. Single SNP-single trait analysis were done using PLINK (Whole genome 
association analysis toolset) 1.07 (Purcell et al., 2007). To control for multiple testing, results were not 
considered to be statistically significant unless the p-value was approximately ≤ 5×10-5. Multiple testing is one of 
the most important concerns in association tests (Yongchao et al.2003). Single SNP-single trait association tests 
require many tests.  Bonferroni method correction is one of the methods to decrease the concerns about multiple 
testing (Simes 1986). In our study, we used 6 traits and approximately 1400 SNPs and we are performing 8400 
tests. Thus, by chance, at p value 0.05, we expect 410 false positive results. If we adjusted for multiple testing in 
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our association study, we would need a p value= 0.05/8400 which is approximately 5×10-5. With Bonferroni 
method, we reduced the number of false positives in our study. Effects of possibly significant SNPs on the traits 
were plotted using box and whiskers plots. Finally, for genes with multiple, potentially significant SNPs, 
LocusZoom 1.1 was used (Pruim et al., 2010) to assess the location of the significant SNPs and linkage 
disequilibrium among the SNPs. 
 

3. Results 

3.1. Phenotype characterization 

All six phenotypes underwent quality control procedures including transformations to normality and outlier 
removal. KCTMAX, THMUS, THMUSD and TOTLEAN were transformed by square roots. TOTPF was not 
transformed. THIMF was transformed by natural logarithms. Observations were called as outliers if they are 
more than four standard deviations and they were removed from the study. Values that were ±4sd were removed 
prior to subsequent analyses. In the HealthABC cohort, only one observation was removed from THIMF, 
THMUSD and KCTMAX. No other observation was removed from THMUS, TOTLEAN, and TOTPF. 

We analyzed effect of covariates (age, sex, and measures of admixture) and they were included in the 
regression models (Supplementary Table 2). To be conservative, including these results as well as information 
from the literature, we removed the effects of age, sex, and admixture in European and African Americans 
separately. The characteristics of residuals are given in Supplementary Table 3 and 4. These residuals were used 
in all subsequent analyses. 
 
3.2. Correlation among traits 

Phenotypic correlations were computed in order to assess the co-variation among the muscle-related traits. Traits 
with high correlations may show similar results from the subsequent association analyses. All analyses were 
done overall and within European Americans and African Americans. The highest phenotypic correlations were 
between KCTMAX, TOTLEAN, and THMUS (Table 3). The correlations between KCTMAX and TOTLEAN, 
KCTMAX and THMUS, and TOTLEAN and THMUS were 0.72, 0.75 and 0.90 (all p-value < 00001), 
respectively. THIMF and THMUSD were significantly, but negatively correlated (r=-0.61, p< 0.0001). Although 
significant, correlations between the remaining phenotypes were moderate and low. The phenotypic correlations 
among muscle-related phenotypes for European Americans and African Americans were similar (Table 4 and 
Table 5), however, overall correlations were higher for European Americans. In African Americans, correlations 
between THIMF and THMUSD, THMUS-KCTMAX, THMUS-TOTLEAN, and KCTMAX-TOTLEAN were 
0.61, 0.70, 0.87, and 0.634, respectively (all p-value <0.0001). Similarly, in European Americans, correlations 
between THIMF-THMUS, THMUS-KCTMAX, THMUS-TOTLEAN, and KCTMAX-TOTLEAN were 0.60, 
0.79, 0.92, and 0.77, respectively (all p-value <0.0001).  
 

3.3. Single SNP-single trait association results 

We performed the single SNP-single trait association analyses using PLINK in the European American and 
African American cohort separately. Although a total of 1735 SNPs from 27 genes were initially available, 221 
SNPs were excluded in African Americans and 109 SNPs were in European Americans due to low minor allele 
frequencies (MAF<0.05). A summary of the most significant results are given in Table 5 and 6. As described 
above, based on the number of tests, a significant result required p ≤ 5×10-5. In Figure 2, the -log10p-value for the 
SNP in each gene is plotted for each trait. The SNPs are plotted by chromosome and base-pair position, and the 
horizontal line marks p= 0.01. None of the SNPs achieved experiment-wide significance with any trait in either 
European or African Americans. The most significant association (P <0.00015) was between SNP (rs805554) in 
RALGABP and TOTPF in African Americans (Figure 1 and Table 7). 

Although no SNPs achieved experiment wide significance, several genes had multiple SNPs that were 
associated with a muscle-related trait at p<0.01. To investigate these results further, we tallied the number of 
SNPs within each gene had p-values 10-2 for each trait in European Americans and African Americans and also 
listed the most significant p-value for each gene (Table 7 and 8). Although several genes contained SNPs that 
were associated (at p< 0.01) with several traits, there was no overlap between European American and African 
American results. That is, the same SNPs did not affect the same traits in the two groups.  

 
3.4. Association Results in European Americans 

In European Americans, there was minimal clustering of associations within genes or across traits (Table 6). 
However, three SNPs (#rs11053877, #rs10845181, and #rs1026462) within MAGOHB locus on chromosome 12 
are associated with THIMF (p= 3.062×10-3, 8.433×10-3, and 2.282×10-3, respectively). In addition, 2 of these 
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SNPs (#rs1026442 and #11053877, p= 2.237×10-3 and 2.582×10-3, respectively) were associated with variation 
in thigh muscle density (THMUSD) and 1 SNP (rs12811247) was associated with total percent fat (TOTPF). 
These three traits are moderately correlated with each other (see table 4 and table 5: Phenotypic Correlations). 
These results may indicate that variation in MAGOHB has pleiotropic effects on multiple traits. There was no 
apparent clustering among the remaining results with p-values <0.01. 
 

3.5. Association Results in African Americans 

In African Americans, there were several clusters of p-values within genes and across traits (Table 7). As 
mentioned above, a SNP (rs805554) located in RALGAPB (KIAA1219) is significantly associated with total 
percent fat (TOTPF) in African Americans (p value= 1.517×10-4). RALGAPB (is on chromosome 20 and codes 
for the Ral GTPase activating protein, beta subunit (non-catalytic). Five additional SNPs (rs1115600, rs1295992, 
rs12625459, rs805559, and rs805552) in RALGAPB are also associated with TOTPF (p= 8.404×10-3, 5.133×10-3, 
3.33×10-3, 5.305×10-3, and 4.658×10-3, respectively). In addition, eight SNPs (rs2185594, rs805554, rs130577, 
rs1315305, rs1303571, rs11699660, rs41812025, and rs2206783) in the RALGAPB locus are associated with 
thigh intermuscular fat, of which rs805554 is the same as the associated with total percent fat. Finally, two SNPs 
(rs9941745 and rs9941761) in the RALGAPB locus are associated with total lean mass.  

Variation in total percent fat (TOTPF) in African Americans was also associated with SNPs in other genes 
including: (1) four SNPs (rs1652344, rs1631685, rs1652348, and rs1788781) within the NPC1 locus on 
chromosome 18 (p=8.776 ×10-3, 7.433 ×10-3, 6.498 ×10-3, and 4.256 ×10-3, respectively); (2) six SNPs 
(rs6800842 , rs11129756, rs6550470, rs7639447, rs4635655, and rs17266090) in the GOLGA4 locus on 
chromosome 3 (p= 5.149×10-3, 2.606×10-3, 2.438×10-3, 2.528×10-3, 2.488×10-3, and 4.71×10-3, respectively); and 
(3) three SNPS (#rs10242455, # rs4646457, and # rs776746) in the CYP3A5 locus on chromosome 7 (p= 
1.325×10-3, 5.09×10-3, and 5.395×10-3, respectively). Of particular interest, genotypes at SNP rs10242455 in 
CYP3A5 were also associated with both thigh intermuscular fat (p= 4.768×10-3) and thigh muscle density 
(p=6.564×10-3). Thus, this latter SNP may have pleiotropic effects on multiple traits. 

SNPs in additional loci were associated (P< 0.01) with other muscle-related traits, but there were no 
apparent clusters among the remaining results. 

 
3.6. Linkage disequilibrium and mean effects of SNPs in genes of interest 

As we described previously, single SNP-single trait analysis revealed several loci associated with specific 
phenotypes within each ancestry cohort, although none of these results achieved experiment-wide significance. 
However, to further assess the strength of some of the associations, we plotted regional significant association 
results from single gene-single trait association results using the LocusZoom 1.1 tool (Pruim et al., 2010). 

In European Americans, multiple SNPs within MAGOHB were associated with thigh intermuscular fat, 
thigh muscle density, and total percent fat. Figure 2 is a plot of the physical position of all tested SNPs within 
this chromosomal region by the –log10p values for association with thigh intermuscular fat (THIMF). 
Recombination hotspots (blue solid line) are at 10.63 Mb and 10.68 Mb. The purple diamond represents the SNP 
with the lowest p value (rs1026442). The colors of the other SNPs represent their correlation with the most 
significant SNP. Yellow circle shows the 0.6 < r2 < 0.8 and green circle shows the 0.4 < r2 < 0.6. Blue circle 
shows the 0.2 < r2 < 0.4.  As can be seen, the two SNPs with the most significant p-values, rs1026442 (purple 
diamond) and rs11053877 (red circle) are in high LD with each other.   Thus, although these SNPs are 10.37kb 
apart, the significant associations with THIMF and THMUSD likely represent the same “true” signal.  In 
addition, other SNPs within MAGOHB and KLRA1 show no evidence for association and are not correlated 
with the two most significant SNPs. 

In African Americans, multiple SNPs within RALGPB were associated with thigh intermuscular fat, total 
lean, and total percent fat. Figure 3 is a plot of the physical position of all tested SNPs within this chromosomal 
region by the –log10p values for association with total percent fat (TOTPF) using SNP rs805554 and rs805552 as 
the index SNPs. As can be seen, multiple SNPs across the RALGAPB locus are associated with the TOTPF.  
However, when rs805554 is used as the index SNP, several SNPs are not in high LD with this SNP – which 
could indicate that variation in more than one region of RALGAPB may influence the muscle-related traits. 
Although the “true” causal variant or region is not clear, when rs805552 is used as the index SNP, 4 SNPs across 
the gene are in high LD with the index SNP (These two SNPs are 4.234 kb apart from each other). These results 
may indicate that variation in possibly two regions within RALGAPB influence muscle-related traits. Figure 4 is 
a plot of the physical position of all tested SNPs within this chromosomal region by the –log10p values for 
association with total lean (TOTLEAN) using SNP rs9941761 as the index SNP. When rs9941761 (which is near 
the 3’ end of RALGABP) is used as the index SNP, two SNPs across the gene are in high LD with the index SNP 
and one of these SNPs is near the middle of RALGABP. From all of these results it is not clear whether there is 
more than one ‘true’ signal for RALGABP, nor is it clear where the signal might be located. 
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In African Americans, multiple SNPs within CYP3A5were associated with thigh intermuscular fat 
(THIMF), thigh total muscle density (THMUSD), and total percent fat (TOTPF). Figure 4 is a plot of the 
physical position of all tested SNPs within this chromosomal region by the –log10p values for association with 
total percent fat (TOTPF) using SNP rs10242455 as the index SNP. When rs10242455 (which is in the 3’ UTR) 
is used as the index SNP, 2 SNPs across the gene are in high LD with the index SNP, one of which is near the 5’ 
end.  These results may indicate that variation in possibly this region within CYP3A5 influences muscle-related 
traits, although the location of a ‘true’ causal variant is unclear. 

In African Americans, multiple SNPs within GOLGA4 were associated with thigh total percent fat 
(TOTPF). Figure 5 is a plot of the physical position of all tested SNPs within this chromosomal region by the –
log10p values for association with total percent fat (TOTPF) using SNP rs6550470 as the index SNP.  When 
rs6550470 is used as the index SNP, 2 SNPs across the gene are in high LD with the index SNP, but others are 
not. These results may indicate that variation in possible multiple regions within GOLGA4 influences muscle-
related traits. 

 
4. Discussion 

Advancing age results in major changes in body composition, including decreases in skeletal and muscle mass. 
Sarcopenia, the loss of muscle mass and strength that occurs with aging, plays a crucial role in frailty and results 
in increased morbidity and mortality among older individuals.  The loss of muscle mass and function varies 
greatly among older individuals, however the underlying causes and mechanisms of this variation are unclear. 
Because sarcopenia and measures of muscle mass and strength are heritable, many genetic studies, including 
large genome-wide association consortium studies, have been done to identify genes that influence traits related 
to sarcopenia, such as total lean mass and obesity (e.g., BMI).  These studies have identified several genes that 
influence lean mass and BMI, but these genes do not account for all of the known heritability of the trait.  In 
addition, few studies have been performed in older individuals or using traits more strongly associated with 
sarcopenia, such as muscle function and muscle density.   In order to better understand the genetic basis of 
sarcopenia, I performed the single SNP-single trait association analysis using genotype data on 778 SNPs in 27 
candidate genes and phenotype data on 6 measures of muscle function and density (KCTMAX, TOTLEAN, 
TOTPF, THIMF, THMUS and THMUSD) from 3075 men and women aged 70-79 years in the HealthABC 
cohort. The muscle density measures of THIMF, THMUS, and THMUSD were calculated as the average of the 
measurements from left and right thigh. Analyses were performed separately in the European American 
(n=1794) and African American (n=1281) cohorts separately. 

Overall, none of the associations in either ancestral group achieved the experiment-wide significance level 
(p<10-5). The most significant result was an association in African Americans between total percent fat and SNPs 
in the RALGAPB locus (minimum p-value = 1.5×10-4). I further investigated all tests that achieved a more liberal 
significance level (p-value < 10-2). Interestingly, even at this more liberal significance level, there was minimal 
overlap in results from analyses in the European Americans versus African American cohorts; only three genes 
showed an association <10-2 in both cohorts (MAGOHB, MVK, and NPC1) but the associations were between 
different SNPs and different traits (Tables 6 and 7). This result indicates that at least some of the variation in 
these muscle-related traits is influenced by different genes between the two groups. Such an observation is not 
surprising because of known phenotypic and genetic differences in body composition traits between individuals 
of predominantly African versus European ancestry (Shaffer et al., 2007). 

One of most promising results was the association in African Americans between multiple SNPs within 
RALGAPB locus in African Americans and variation in total percent fat, thigh intermuscular fat, and total lean 
mass. The genomic location of RALGAPB in humans is on 20q11.23. The LD between two SNPs, rs805554 and 
rs805552, with the most significant association results is high and equals 0.797. These SNPs are also in moderate 
to high LD (0.6 < r2 < 0.9) with other associated SNPs in RALGAPB (Figure 3).  Because the LD among all of 
the SNPs is not uniformly high (e.g, LD>0.80), it is not clear whether one or more variants potentially influence 
variation in total percent fat, thigh intermuscular fat, or total lean mass. Furthermore, it is not clear where in 
RALGAPB the potentially ‘causal’ variants are located because associated SNPs are located across the gene. 
Both SNP rs805554 (T>A) and SNP rs805552 (C>G) are located in the intron 1 region of RALGAPB, and are 
unlikely to be causal. Variants in introns can have causal effects because introns have many short sequences 
which are significant in effective splicing. Acceptor and donor sites at both ends of the intron are important in 
proper splicing. It was found that introns affect the expression level of host gene (Chorev and Carmel, 2012). 
Introns also enhanced the gene expression by intron-mediated enhancement (Jonsson et al.,1992). However, we 
do not know whether these two SNPs are causal or whether they are in high LD with another, unassayed but 
causal variant. 

The two most significant SNPs in RALGAPB   were associated with variation in total percent fat and thigh 
intermuscular fat. Total percent fat and total intermuscular fat have a phenotypic correlation (r) equal to 0.47 (r2 
= 0.22). Total lean mass has a positive, but low correlation with thigh intermuscular fat (r = 0.28), and a 
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negative, moderate correlation with total percent fat (r = 0.42). The mean effects of genotypes at the rs805554 
locus on THIMF and TOTPF are consistent with the phenotypic correlation among the traits. Thus, the 
association results may indicate that polymorphisms within RALGAPB have pleiotropic effects on the two 
muscle-related traits. 

RALGAPB, the homolog of KIAA1219, is a Ral GTPase activating protein, beta subunit (non-catalytic) and 
is a non-catalytic subunit of the heterodimeric RalGAP1 and RalGAP2 complexes that act as GTPase activators 
for the Ras-like small GTPases RALA and RALB. RALGAPB gene is the homolog of a putative gene D.2085.5 
that is located on chromosome II of C.elegans. How variation in RALGAPB may influence muscle-related traits 
(and sarcopenia) is unclear. However, a RalGAP complex is involved in insulin–stimulated glucose trafficking in 
muscle and adipose tissue (Chen et al., 2011). As stated earlier, insulin-signalling pathways are associated with 
longevity, thus the involvement of Ral GAP and other members of this pathway in insulin signaling makes it a 
reasonable candidate for future study.  Furthermore, another member of this pathway, the Ras-like small G 
protein, RalB, may be involved in the activation of the autophagosome in the presence of nutrient deprivation 
(Bodemann, et al. 2011). Thus, further study of this pathway may provide novel insights into the development of 
sarcopenia. 

Another potentially interesting result is the association with SNPs within MAGOHB locus and thigh 
intermuscular fat, thigh muscle density, and total percent fat in European Americans. The chromosomal location 
of MAGOHB in humans is 12p13.2. The two SNPs, rs1026442 and rs11053877, with the strongest association 
results are in high LD with each other (LD= 0.97), thus the association between SNPs and MAGOHB and the 
muscle-related traits is likely due to a single, ‘causal’ variant. However, the location of the potentially causal 
variant is unclear because rs1026442 is located within the first intron whereas rs11053877 is located in the 3’ 
untranslated region. As stated above, variants in introns may affect protein function and expression. 
Furthermore, 5' UTR and 3' UTR have roles in mRNA stability, translational efficiency and mRNA localization. 
3' UTR influences regulation of transcript stability (Laroia et al., 1999). In addition, SNPs on 3' UTR influence 
microRNA function (Hu and Bruno, 2011). To determine whether these associated SNPs may be causal or 
whether they are in high LD with an unassayed variant will require additional analyses. 

Both SNPs in MAGOHB were associated with variation in two correlated traits: THIMF and THMUSD 
density. Total percent fat and thigh intermuscular fat have a phenotypic correlation (r) equal to 0.47 (r2 = 0.22), 
whereas thigh intermuscular fat is negatively correlated (r=-0.61) with thigh muscle density.   The genotypic 
means of the three traits for SNP rs1026442, rs11053877, and rs12811247 in MAGOHB (Table 6) reflect the 
phenotypic relationship among the traits. Thus, variation in MAGOHB likely has pleiotropic effects on the 
correlated traits. MAGOHB (mago-nashi homolog B) is involved in mRNA splicing and in the nonsense-
mediated decay (NMD) pathway  (Roignant and Treisman, 2010) and has not been previously identified as 
potential candidate genes for development of sarcopenia, although control of RNA splicing could definitely have 
effects on muscle-related traits. Recent reports also indicate that Magoh, as a component of the exon junction 
complex, regulates division of neural stem cells (Silver et al., 2010). Given the connection between peripheral 
nerve function and muscle strength (Strotmeyer et al, 2009), members of this pathway also are reasonable 
candidates for further study of the development of sarcopenia. 

 
5. Conclusion 

To identify genes that may influence development of sarcopenia, I performed association analyses between 
several muscle-related traits and SNPs in 27 candidate genes that were homologs of genes that influence the 
onset of sarcopenia in C. elegans. None of these candidate genes have been associated with lean mass or obesity 
(measured as BMI) in (mostly) middle-aged adults in studies from large consortia 
(http://www.genome.gov/26525384). However, none of the consortia studies have identified all of the genes that 
influence lean mass and BMI. Furthermore, lean mass and BMI in middle-aged adults are only crudely 
correlated with sarcopenia in older individuals and no large studies of sarcopenia or measures of muscle mass 
and function have been done, especially in older adults.  

Although none of the results of this study were statistically significant at an experiment-wide level, several 
of the results were suggestive. In particular, variants in MAGOHB may influence fat infiltration into muscle 
among individuals with European ancestry, whereas variants in RALGABP may influence fat infiltration among 
individuals with African ancestry. Neither of these genes, or biological pathways, has been previously identified 
as playing a role in sarcopenia, but further studies may potentially lead to novel insights regarding development 
of sarcopenia. Replication in other populations is necessary, as well as additional bioinformatic and mechanistic 
studies, but these are beyond the scope of this thesis. However, these results indicate the potential usefulness of 
animal models to generate hypotheses for further study in men and women. 
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Table 1. HealthABC Characteristics 

 
 

RACE 

GENDER 

 Male Female Total 

White 939 855 1794 
Black 552 729 1281 
Total 1491 1584 3075 

 
Table 2. Health ABC summary of phenotypes across both sexes and ancestral groups 

Phenotypes  Min 1
st
 Qu. Median Mean 3

rd
 Qu. Max N 

KCTMAX (nm) 12.30 78.91 100.60 106.30 132.40 461.70       2646 
THIMF (cm sq) 0.100 6.048  8.955 10.310 13.030 91.250 3011 
THMUS (cm sq) 

THMUSD (HU) 

47.77 
2.425 

89.93 
31.110 

109.00 
36.600 

111.40 
35.380 

130.50 
40.270 

226.20 
70.060 

3011 
3011 

TOTLEAN (gm) 247.50 406.60 483.90 89.50 565.40 839.80 3075 
TOTPF (%) 

Weight (kg) 

Height (cm) 

13.10 
33.50 
1370 

28.90 
65.50 
1590 

34.60 
75.20 
1658 

34.99 
75.81 
1662 

41.20 
85.00 
1732 

56.00 
141.00 
2007 

3075 
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Table 3. Phenotypic correlations (r) among muscle-related traits (transformed and adjusted for significant 
covariates) 

 
Table 4. Phenotypic correlations (r) among muscle-related traits (transformed and adjusted for significant 
covariates) in European Americans 

 

  logTHIMFsqrtTHMUSsqrtTHMUSDsqrtKCTMAX sqrtTOTLEANnumericTOTPF
   

logTHIMF 

 1 .215**
-.603

** .102** .287** .421**

Sig. (2-
tailed) 

 
.000 .000 .000 .000 .000

  

sqrtTHMUS 

 1 .044 .791
**

 .922
** -.484**

Sig. (2-
tailed) 

 
.064 .000 .000 .000

  

sqrtTHMUSD 

 1 .155** .001 -.488**

Sig. (2-
tailed) 

 
.000 .981 .000

  

sqrtKCTMAX 

 1 .773
** -.493**

Sig. (2-
tailed) 

 
.000 .000

  

sqrtTOTLEAN 

  1 -.479**

Sig. (2-
tailed) 

 
 

.000

  

numericTOTPF

  1
Sig. (2-
tailed) 

.  
 

  
**. Correlation is significant at the 0.01 level (2-tailed). 
a. RACE = European 

 logTHI
MF 

sqrtTHM
US 

sqrtTHMU
SD 

sqrtKCT
MAX 

sqrtTOTLE
AN 

numericTO
TPF 

logTHIMF 
 1 .214** -.614** .039* .275** .465** 
Sig. (2-tailed)  .000 .000 .046 .000 .000 
       

sqrtTHMUS 
 . 1 .061** .746

** .901
** -.418** 

Sig. (2-tailed)   .001 .000 .000 .000 
       

sqrtTHMUSD 
   1 .205** .015 -.505** 
Sig. (2-tailed)    .000 .422 .000 
       

sqrtKCTMAX 
    1 .716

** -.464** 
Sig. (2-tailed)     .000 .000 
       

sqrtTOTLEAN 
     1 -.415** 
Sig. (2-tailed)      .000 
       

numericTOTPF 
      1 
Sig. (2-tailed)       
       

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Table 5. Phenotypic correlations (r) among muscle- related traits (transformed and adjusted for significant 
covariates) in African Americans 

  logTHIMFsqrtTHMUSsqrtTHMUSDsqrtKCTMAX sqrtTOTLEANnumericTOTPF
   

logTHIMF 

 1 .138**
-.610

** -.048 .235** .522**

Sig. (2-
tailed) 

 
 

.000 .000 .121 .000 .000

  

sqrtTHMUS 

 1 .139**
.706

**
 .876

** -.375**

Sig. (2-
tailed) 

 
.000 .000 .000 .000

  

sqrtTHMUSD 

 1 .280** .059* -.523**

Sig. (2-
tailed) 

 
 

.000 .038 .000

  

sqrtKCTMAX 

 1 .634
** -.435**

Sig. (2-
tailed) 

 
.000 .000

  

sqrtTOTLEAN 

   1 -.355**

Sig. (2-
tailed) 

  
 

.000

  

numericTOTPF

  1
Sig. (2-
tailed) 

.  
 

  
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
a. RACE = African 

Table 6. Genes with SNP associations p < 10-2  by trait in European Americans 
 TRAITS                            

                                

                              Total                         Total                                                  Total                                                     Total 

             

GENE 

 KCTMAX SNPs 

(#sig) 

THIMF SNPs 

(#sig) 

THMUS THMUSD SNPs 

(#sig) 

TOTLEAN TOTPF      SNPs 

(#sig) 

            
      

MAGOHB 

 -  2.8×10-3 46(3) - 2.2×10-3 46(2) - 9.7×10-3 46(1) 

      MVK  4.8×10-3 32(1) -  - -  - -  
     NPC1  -  3.1×10-3 40(2) - -  - -  
 SLC27A4  -  -  - 3.3×10-3 9(2) - -  
              

 
Table 7. Genes with SNP associations p < 10-2 by trait in African Americans 
  TRAITS  

Total 

  

Total 

  

Total 

  

Total 

  

Total 

 

 

 

Total 

GENE  KCTMAX SNPs 

(#sig) 

THIMF SNPs 

(#sig) 

THMUS SNPs 

(#sig) 

THMUSD SNPs 

(#sig) 

TOTLEAN SNPs 

(#sig) 

TOTPF SNPs 

(#sig) 

ADCK3  9.9×10-3  -  -  -    -  
COQ2  -  -  5.4×10-3 15(1) -    -  
CYP3A5  -  4.7×10-3 25(1) -  6.5×10-3 24(1)   1.3×10-3 27(3) 
FDPS  3.5×10-3 7(2) -  -  -    -  
GOLGA4  -  -  -  -    2.4×10-3 68(6) 
JUP  -  -  -  -  8.0×10-3 23(1) -  
MAGOHB  -  -  2.5×10-3 62(1) -  3.4×10-3 59(1) -  
MVK  -  -  1.8×10-3 26(1) -    -  
NPC1  -  -  -  -    4.2×10-3 59(4) 
PDSS1  -  8.7×10-3 63(3) -  -    8.2×10-3 70(2) 
RALGABP  -  3.1×10-3 81(6) -  -  4.1×10-3 91(2) 1.5×10-4 84(6) 
SAC1ML  8.5×10-3 75(1) -  -  -    -  
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Figure 1. Plot of –(log10p-value) and location (in bp) for TOTPF in AA 

The - log10p-value for the SNP (rs805554) in RALGABP is plotted for TOTPF.rs805554 SBP is plotted by 
chromosome and base-pair position. 

 
 
Figure 2. Association between THIMF and SNPs around MAGOHB (rs1026442) on 12p13.2 in European 
Americans 

Figure 2 is a plot of the physical position of all tested SNPs within this chromosomal region by the –log10p 
values for association with thigh intermuscular fat (THIMF). Recombination hotspots (blue solid line) are at 
10.63 Mb and 10.68 Mb. The purple diamond represents the SNP with the lowest p value (rs1026442). The 
colors of the other SNPs represent their correlation with the most significant SNP. Yellow circle shows the 0.6 < 
r2 < 0.8 and green circle shows the 0.4 < r2 < 0.6. Blue circle shows the 0.2 < r2 < 0.4. 
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Figure 3. Association between TOTPF and SNPs near RALGBP in African Americans using SNPs rs805554 and 
rs805552 as the index SNP. 
Figure 3 is a plot of the physical position of all tested SNPs within this chromosomal region by the –log10p 
values for association with TOTPF. Recombination hotspots (blue solid line) are at 36.45 Mb and 36.6 Mb. The 
purple diamond represents the SNP with the lowest p value (rs805554 and rs805552). The colors of the other 
SNPs represent their correlation with the most significant SNP. Yellow circle shows the 0.6 < r2 < 0.8 and green 
circle shows the 0.4 < r2 < 0.6. Blue circle shows the 0.2 < r2 < 0.4. 
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Figure 4. Association between TOTLEAN and SNPs near RALGBP in African  Americans using SNP 

rs9941761 as the index SNP. 
Figure 4 is a plot of the physical position of all tested SNPs within this chromosomal region by the –log10p 
values for association with TOTLEAN. Recombination hotspots (blue solid line) are at 36.55 Mb and 36.7 Mb. 
The purple diamond represents the SNP with the lowest p value (rs9941761). The colors of the other SNPs 
represent their correlation with the most significant SNP. Blue circle shows the 0.2 < r2 < 0.4. 

 
Figure 5. Association between THIMF and SNPs near CYP3A5 in African Americans using SNP rs10242455 as 
the index SNP. 

Figure 5 is a plot of the physical position of all tested SNPs within this chromosomal region by the –log10p 
values for association with THIMF. Recombination hotspots (blue solid line) are at 99.05 Mb and 99.11Mb. The 
purple diamond represents the SNP with the lowest p value (rs10242455). The colors of the other SNPs represent 
their correlation with the most significant SNP. Blue circle shows the 0.2 < r2 < 0.4.  
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Appendix 

Supplementary Table 1. List of Candidate Genes (and number of SNPs for African Americans and European 
Americans) used in the current study 

Genes African Americans 

                 Total number of  SNPs= 778 

European Americans 

        Total number of SNPs =627 

ADCK3 45 41 
CFL2 6 5 
COQ2 15 12 
COQ3 24 23 
COQ4 7 4 
COQ5 17 16 
COQ6 26 24 
COQ7 11 9 

CYP3A5 24 8 
FDPS 7 7 

GOLGA4 64 35 
HMGCR 12 17 

IDI1 23 23 
JUP 22 18 

MAGOHB 62 46 
MVD 10 13 
MVK 27 32 
NPC1 47 40 
PDSS1 62 53 
PMVK 14 13 

RALGAPB 81 30 
SACM1L 74 73 
SLC27A4 6 5 
TBC1D24 9 9 

TBP 34 34 
TOP1 42 36 

VPS33A 13 12 
 
Supplemantary Table 2. Effects of covariates (beta-values) on the muscle-related traits in European and African 
Americans 
  KCTMAX 

sqrt (nm) 

TOTLEAN 

sqrt (gm) 

THIMF 

log (cm sq) 

THMUS 

Log (cm sq) 

THMUSD 

sqrt (HU) 

TOTPF 

(%) 

European 

Americans 

            

      Sex -0.704** -0.823** -0.034(NS) -0.789** -0.197** 0.705** 
      Age -0.130** -0.056(NS) -0.002(NS) -0.082** -0.089** -0.051(NS) 
      PC1 0.083** 0.064(NS) 0.159** -0.005(NS) -0.136** 0.051(NS) 
      PC2 -0.037** -0.001(NS) 0.010** -0.005(NS) -0.003** -0.017(NS) 
              
African 

Americans 

            

      Sex -0.613** -0.704** 0.160** -0.666** -0.314** 0.746** 
      Age -0.113** -0.100(NS) -0.039(NS) -0.134** -0.111** -0.062(NS) 
      PC1 -0.057 (NS) -0.102** -0.043(NS) -0.101** -0.040(NS) 0.093** 
      PC2 -0.029(NS) -0.055** -0.025(NS) -0.035** -0. 019(NS) 0.035** 
** p< 0.00 
Supplementary Table 3. Summary of residuals of transformed traits in European Americans 
 Min. 1

st
 Qu. Median Mean 3

rd
 Qu. Max 

SqrtKCTMAX(nm) -5.186 -0.739 0.095 0.00 0.802 9.600 
SqrtTOTLEAN(gm) -39.69 -9.47 -0.58 0.00 8.74 56.58 
LogTHIMF(cm sq) -2.67 -0.33 0.03 0.00 0.36 2.37 
LogTHMUS(cm sq) -2.59 -0.53 0.01 0.00 0.53 2.85 
SqrtTHMUSD(HU) -3.22 -0.31 0.04 0.00 0.39 2.57 
TOTPF (%) -1374 -228.3 -14.61 0.00 234.5 1477 


