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SUMMARY 

Viral metagenomics or full-length genome sequencing of enriched viral particle preparations has been frequently 

applied for viral discovery resulting in the genetic characterization of numerous human and animal viruses. The  

non- specific nature of viral metagenomics endows it with great potential as a unversal virus detection assay. 

Historical methods includes, electron microscopy, cell culture, inoculation in suckling mice and serology. Many 

viruses cannot be cultivated, excluding the use of cell line isolation and serologic techniques, and can only be 

characterized by molecular methods. The molecular-based techniques provide sensitive and rapid means of virus 

detection and identification. Most of these tests are designed to be virus-specific that makes them unsuitable for 

detection of unexpected and/or completely new viruses, as well as novel viral variants that poses great challenge 

due their re-emrgince property. The recently developed approaches of viral metagenomics provide an effective 

novel way to screen samples and detect viruses without previous knowlege of the infectious agent, thereby enabling 

a better diagnosis and disease control. The basic steps involved in viral metagenomics include preparation of viral 

nucleic acid that is free from host and contaminating nuceic acids, sequence-independent amplification of viral 

nucleic acid,sequencing and use of bioinformatics tools for analysis of sequnce generated. Viral metagenomics 

aims to provide the genetic composition of the complete viral population of a sample in an unbiased and culture-

independent manner. Viral metagenomics has been successfully used to investigate viral populations in different 

environments such as seawater, gastreointestinal tracts, and respiratory samples and have demonstrated that there 

is a high diversity among viruses. Many potential emerging viruses of concern might already be infecting humans, 

domestic animals or wlidlife but awailt their detection by disease surveilla-nce which can be possible through 

application of viral metagenomics. This review aims to de-scribes the different possible steps of a viral 

metagenomics and its future application in viral zonootic and arboviral disease surveillance. 

Keywords: Arboviral disease, Bioinformatics,  Emerging infectious disease, Sequencing, Surveillance, Viral 

metagenomics. 

 

1. INTRODUCTION 

Viral infections are a major global health concern, and new infectious diseases continue to emerge from year to 

year (Dong et al., 2008). Due to intensive globalization, climatic changes, and viral evolution, among other factors, 

contributes for the emergence of viruses and new viral diseases in the last decades. Animal pathogens, in particular, 

viruses are considered to be a significant source of emerging human infections (Cleaveland et al., 2001). The 

identification and optimal characterization of novel viruses affecting both domestic and wild animal population is 

central to protecting both human and animal health. In this situation, it is crucial to apply powerful methods for 

broad-range detection and identification of the emerging viruses. According to a recent statistical estimate, there 

are at least 320,000 mammalian viruses that are yet discovered (Anthony et al., 2013). 

Viruses can be identified by a wide range of techniques, which are mainly based on comparisons with known 

viruses. Historical methods of virus identification include electron microscopy, cell culture, inoculation in suckling 

mice and serology. The major limitation of the historic viral identification is that, it doesn’t identify viruses that 

cannot be cultivated which are only characterized by molecular methods. In combination with classical methods, 

the molecular-based techniques provide sensitive and rapid means of virus detection and identification. However, 

most of these diagnostic tests are designed to be virus-specific or aimed at a limited group of infectious agents. 

This makes them unsuitable for the detection of unexpected and/or completely new viruses, as well as novel viral 

variants (Belak et al., 2009).  

Viral metagenomics is the recent and advanced science used to sequence all viral genomes in a given sample 

without previous knowledge about their nature. This is done by experiments in which all nucleic acids in a certain 

sample are sequenced. Next-Generation Sequencing (NGS) techniques make it possible this advanced science to 

the discovery of completely new viral species (Luisa, 2011). For bacteria, historically, the diversity of a sample 

used to be expressed by performing phylogenetic analyses based on 16S ribosomal RNA (Handelsman, 2004). 

However, since viruses lack such a universally conserved motif, viral metagenomics refers to the attempt to recover 

full and partial genomes of all viruses present in the sample (Nieuwenhuijse and Koopmans, 2017). 

Viral metagenomics analysis protocols generally start with procedures to remove host and bacterial cells 

followed by purification of viral nucleic acids, then sequence independent amplification of viral nucleic acid, 

sequencing and finally use of bioinformatics tools for analysis of sequences generated. Viral metagenomics 
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circumvents limitations associated with other virus characterization methods, such as PCR or microarrays, and the 

power of this method resides in targeting total viral nucleic acids without the need for a prior knowledge of the 

viral types present in a sample (Edwards and Rohwer, 2005). 

Viral metagenomics or sequencing of nucleic acids from enriched viral particle preparations has been 

frequently applied for viral discovery (Chiu et al., 2013), resulting in the genetic characterization of numerous 

human and animal viruses (De Vlaminck et al., 2013), particularly its non-specific nature endows it with potential 

as a universal virus detection assay. This procedure aims to provide the genetic composition of the complete viral 

populations of a sample in an unbiased and culture-independent manner and it has been successfully used to 

investigate viral populations in different environments such as seawater (Breitbart et al., 2002), gastrointestinal 

tracts (Victoria et al., 2009), and respiratory samples (Allander et al., 2007) and have demonstrated that there is a 

high diversity among viruses, and that there is a vast number of viruses that are yet to be discovered. Surveillance 

and monitoring of viral pathogens circulating in humans and wildlife and the identification of emerging infectious 

disease (EID) at an early stage is challenging. Many potential emerging viruses of concern might already be 

infecting humans or animals but await their detection by disease surveillancewhich can be possible through viral 

metagenomics (Temmam et al., 2014). Emerging infectious diseases are a tremendous burden on economies and 

public health, and because many cases arise with no known etiology, there is a high demand for advances in viral 

diagnostic methods (Jones et al., 2008). 

Therefore the objectives of this seminar paper are: 

� To review available literature on viral metagenomics. 

� To indicate the anticipated application of viral metagenomics in viral zoonotic and arboviral disease 

surveillance. 

 

2. HIGHLIGHT OF VIRAL IDENTIFICATION TECHNIQUES 

Classically, virus discovery from clinical samples was based on filtration (to remove host cells and other larger 

microbes), inoculation of the cell free filtrate in suitable cell cultures followed by purification of the viruses from 

cultures and their characterization (Lipkin and Firth, 2013). Morphological changes in the cultured cells, 

collectively known as cytopathic effect, such as formation of syncytia, cell rounding, lysis, detachment, or 

inclusion bodies, indicate the presence and successful infection of the virus (es) in the cells. Virus isolate(s) are 

purified from the cultured cells or culture supernatant using density gradient and other high speed centrifugal 

techniques. This is followed by structural characterization of viral particles, antigens, nucleic acids, through 

different biophysical and biochemical methods (Dong et al., 2008). Although classical methods are sometimes 

considered as time-consuming, tedious and need significant experimental basis, but the cell inoculation method 

still remains an exceptional source of enriched viral particles required for serological, molecular characterization 

and other purposes (Neill et al., 2014). 

Clinical virology field shows a gradual substitution of the traditional virus discovery methods with novel 

molecular biology technology. With the progresses of molecular biology, polymerase chain reaction (PCR)-based 

methods became the main techniques for virus discovery and allowed the detection of uncultivable viruses, but 

these techniques required prior knowledge of closely related viral genomes (Fernando, 2012). A great challenge 

With respect to molecular tools is that, viruses lack a universally conserved genetic marker to target, and PCR 

assays directed towards conserved sequences within viral groups can only identify close variants of those groups 

(Staheli et al., 2011). Sequence dependent and sequence independent methods are being used for the molecular 

detection of viruses. Sequence dependent methods, including PCR using consensus primers and hybridization 

methods such as microarray, require the knowledge of the nucleic acids for the detection of novel viruses (Fawaz 

et al., 2014). Viral metagenomics provides superior capability to detect known and unknown viruses than the 

traditional and molecular sequence-dependent and sequence-independent methods (Pozzetto, 2002). 

 

3. VIRAL METAGENOMICS 

Metagenomics as the name implies is different from genomics in that it takes into account all the genomes of all 

the microorganisms present in the study environment whether it be a water body like sea, human body or  the 

intestine  of an animal at  a community  level (Eisen, 2007).The 16S rRNA gene of the metagenome is sequenced 

to ascertain the microbial diversity since this gene is highly conserved across species. However, since viruses lack 

such a universally conserved motif, viral metagenomics refers to the attempt to recover full and partial genomes 

of all viruses present in the sample (Simmonds, 2015). Viral metagenomics is a sequence, and culture-independent 

approach that has proven to be a valuable tool for the investigation not only of diseases of unknown etiology but 

also of the complete viral flora of different reservoirs and vectors. By providing insights into a wide range of 

unknown potential pathogens and revealing novel aspects of biodiversity, metagenomics is able to detect and 

characterize novel pathogens (Tang and Chiu, 2010). 

Viral metagenomics methods have evolved significantly since they were first developed in 1998 (Handelsman 

et al.,1998). The process of sample preparation has since been streamlined and the sequencing speed increase with 
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the advent of high throughput sequencing technologies. The replacement of cloning with high throughput methods 

has revolutionized viral metagenomics. Compared to other viral discovery methods, it is less biased. Potentially, 

any viruses in the samples, culturable or unculturable, known or novel can be readily detected with the viral 

metagnomic approach (Mokili et al., 2012). An excellent and very important example for the practical applicability 

of viral metagenomics is the recent detection of Schmallenberg virus, a novel orthobunyavirus in Europe, with 

large epizootiological importance (Hoffmann et al., 2012). 

The basic steps involved in viral metagenomics include preparation of viral nucleic acid that is free from host 

and contaminant nucleic acids, sequence independent amplification of viral nucleic acid, sequencing and finally 

use of bioinformatics tools for analysis of sequences produced (Alavandi and Poornima, 2012). 

 

3.1.  Sample preparation for viral metagenomics 

New generation sequencing (NGS) metagenomics has emerged as the most promising tool for the detection and 

discovery of novel infectious agents in clinical sample (Barzon et al., 2011). However, being unbiased method of 

sequencing, NGS metagenomics is greatly affected by very low virus-to-host genome ratios in clinical samples 

(He et al., 2013). 

As obligate intracellular organisms, viral preparations are usually heavily contaminated by host nucleic acid 

and it is wise to remove this is as practical in order to ensure as many of the resulting sequence readings of viral 

rather than host origin. Hence, enrichment of pathogen genetic material or depletion of host genetic materials is 

essential to maximize sensitivity for discovery of novel viruses in clinical samples (Whon et al., 2012). 

3.1.1. Isolation of viral particles 

Several approaches have been developed for viral particle concentration includes various size selection filtrations, 

gradients, differential ultracentrifugation, and chemical and enzymatic pretreatments (Tatiana et al., 2012). These 

steps serve to concentrate viral particles for more efficient nucleic acid extraction and also help to remove 

contamination by no-viral cells, maximizing the amount of viral sequence obtained. A fast, simple, and reliable 

high-yielding method for viral particle recovery is tissue homogenization and cell disruption by freezing and 

thawing followed by filtering the samples through 0.22µm and 0.45µm pore-size discs (Figure 1). Most viruses 

are smaller than bacteria and filtration using a 0.22µm filter is a common procedure for removing bacteria when 

searching for viruses (Thurber et al., 2009). However, in recent years, a number of viruses have been discovered 

that are as large as bacteria (Van Etten et al., 2010) and these would be lost using this procedure. The viral particles 

can also be separated from other components by density centrifugation using sucrose or cesium chloride gradients 

(Thurber et al., 2009). 

3.1.2.  Removal of non-viral nucleic acid 

After homogenization of tissues, cells are disrupted by three freeze-thaw phases while leaving the nucleus intact. 

Nuclei are then pelleted by centrifugation and supernatants are treated by a cocktail of nucleases (RNase, DNase, 

and Benzonase) to remove cellular nucleic acids and non-particle protected viral nucleic acids (Daly et al., 2011). 

The presence of the viral capsid surrounding the nucleic acid can be exploited by the use of nucleases. Nuclease 

treatment is an enrichment method for viral nucleic acid which can be applied directly to the filtered material or 

could be used as complement to ultracentrifugation. The mechanism for this effect is related to the relative 

sensitivity of free-host DNA to DNAse treatment and to the relative insensitivity of virus capsid-protected DNA 

to DNAse treatment. The capsid protects the viral genome while degrading all the external nucleic acids (Allander 

et al., 2001).The application of these technique in a clinical setting will require that any virus enrichment methods 

are simple to perform, fast, robust, effective, standardized and do not require significant capital expenditure. The 

material extracted after nuclease treatment are normally much smaller that amplification is normally required 

before sequencing (Hall et al., 2014). 
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Figure 1: A schematic representation of the different steps involved in NGS based virus metagenomics and 

discovery.  

Source: (Datta et al., 2015). 

 

3.2.  Amplification of nucleic acids 

The amount of total nucleic acids isolated from viral particles is often too low for sequencing, and may require 

amplifying viral nucleic acid depending on the sequencing technology used. The viral genomes present in the 

nucleic acid sample are simultaneously amplified independent of their sequences (Ambrose and Clewley, 2006). 

Consequently, after purification, viral nucleic acid needs to be amplified to generate sufficient amounts of 

DNA for most sequencing platforms. RNA viruses have to be reverse-transcribed before amplification. For viral 

metagenomics and virus discovery, viral genomes need to be amplified without prior viral sequence knowledge. 

Currently,different sequence-independent methods have been developedfor amplification purposes including; 

degenerate PCR, sequence independent single primer amplification (SISPA),degenerate oligonucleotide primed 

(DOP)-PCR, random PCR, and rolling circle amplification (RCA) (Bexfield and Kellam, 2011). Random PCR, 

SISPA, and RCA methods are more widely used in viral metagenomics (Alavandi and Poornima, 2012). 

3.2.1.  Sequence-independent single primer amplification (SISPA) 

SISPA involves the partial cleavage of DNA by the endonuclease enzyme, followed by a directional ligation of an 

asymmetric adaptor to both ends of the DNA molecule. Djikeng et al. (2008), develops Reverse-priming (RP)-

SISPA adapted from SISPA to generate whole genome shotgun libraries of virus communities. In RP-SISPA, 

which is a combination of SISPA and random PCR, the cDNA is synthesized from RNA with a mixture containing 

two primers. These SISPA and RP-SISPA amplification methods are widely used to characterize viruses from 

tissue samples, clinical biopsies and for viral metagenome analyses (Rosseel et al., 2012). 

This strategy and modifications, such as DNase-SISPA and VIDISCA (van der Hoek et al., 2004), have 

successfully been used to identify a number of viruses, such as new Anello- and Parvoviruses in humans (Jones et 

al., 2005) and Bungowannah virus in pigs with porcine myocarditis syndrome (Kirkland et al., 2007). 

The advantages of sequence-independent amplification are simplicity and relative speed and the ability to 

identify and sequence hundreds of viruses simultaneously thereby allowing detection of new or previously 

unrecognized viruses that are highly divergent from already described ones (Bodewes et al., 2014). 

3.2.2.  Random PCR 

Another method of amplification technology is random PCR (rPCR), which requires neither the digestion of the 

DNA/cDNA nor the ligation of adaptors (Froussard, 1992). Random PCR for viral DNA and RNA library 
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constructions uses two different primers: a first primer with a defined sequence at its 5’ end, followed by a 

degenerate hexamer or heptamer sequence at the 3’ end to randomly prime DNA synthesis, and a second primer 

complementary to the 5’ defined region of the first primer (Allander et al., 2005). Random PCR is an established 

method for analyzing viromes, finding novel viruses and detecting the presence of known viruses (Wylie et al., 

2012). This strategy has been widely used for the investigation of viral metagenomes, and a number of novel 

viruses have been discovered using this strategy in combination with sequencing. The detection of Astrovirus in 

the brains of both humans and minks (Blomstrom et al., 2010), Bocavirus in human, and Bornaviruses in parrots 

with proventricular dilatation disease (Honkavuori et al., 2008) are a few examples of viruses that have been 

discovered with rPCR in combination with sequencing. 

3.2.3.  Rolling circle amplification 

One of the efficient amplification strategy is the use of random primers in combination with a displacement 

polymerase. The RCA method is an isothermal multiple displacement amplification (MDA) that uses phi29 DNA 

polymerase. This polymerase possesses several features, such as strand displacement activity, proof-reading 

activity and generation of very long synthesis products, which make it most suitable for the efficient amplification 

of circular DNA molecules from complex biological samples (Johne et al., 2009).As multiply-primed RCA enables 

the detection of circular DNA viral genomes without the need of specific primers, the technique have become a 

powerful tool for the detection of unknown viruses. It employs random hexamer primers that bind to multiple sites 

on the virus DNA genome and is based on the strong strand displacement activity of the phi29 DNA polymerase. 

Viral DNA is exponentially amplified to generate micrograms of DNA (Erlandsson et al., 2011). But phi29 DNA 

polymerase cannot amplify RNA or short fragments such as cDNA. To overcome this, the method of Whole 

Transcriptome Amplification (WTA) has been combined with MDA. It includes a ligation step before the 

amplification, resulting in cDNA that are linked and then amplified by phi29 DNA polymerase (Cheval et al., 

2011).  

This strategy has been successful in studying different viral metagenomes, and several novel viruses haven 

been discovered by this method, such as a fibropapilloma virus in sea turtles, Anellovirus in harbor seals (Ng et 

al., 2011), Bocavirus in pigs (Blomstrom et al., 2009), and Papillomaviruses in humans (Rector et al., 2004). 

 

3.3.  Nucleic acid sequencing 

3.3.1.  Sanger sequencing method 

To identify the viral nucleic acid in a sample, sequencing is often utilized (Breitbart and Rohwer, 2005). One 

approach is to construct viral shotgun libraries and sequence these by a standard sequencing technology such as 

Sanger sequencing (Sanger et al., 1977). This approach creates high-quality sequence data and can nowadays 

produce sequence reads of up to almost 1000 nucleotide. But as this approach is highly laborious in comparison 

to its yield, the use of new high-throughput sequencing technologies is often replacing Sanger sequencing for 

metagenomic studies (Jason et al., 2015). For viral metagenomics, this enables the detection of viruses with low 

copy numbers. Even though a variety of methods are used to reduce the host and other contaminating nucleic acids, 

a vast amount still remains and has the potential of masking the viral nucleic acids. Therefore, high-throughput 

sequencing is often required in the viral metagenomics screening although Sanger sequencing is still often used in 

the follow-up studies due to its capacity to produce longer sequencing reads (Kircher and Kelso, 2010). 

3.3.2.  High-throughput sequencing 

Metagenomic sequencing technologies differ in library preparation methods and the length of reading frames 

produced. The next generation high-throughput pyrosequencing by 454 Life Sciences provide greater amounts of 

sequence data compared to Sanger’s sequencing method, enabling detection of even low number of viruses present 

in the sample (Metzker, 2010) with no need of cloning. Even higher throughput technologies such as 

Solexa/Illumina and SOLiD systems are now available, which can provide data of as much as 3–6 giga base pair 

per run. However, the average read length obtained with these systems is about 50–100 base pair (Pareek et al., 

2011). The Illumina/Solexa and Roche 454 next generation sequencing platform are the most used platforms for 

viral metagenomics (Luo et al., 2012). 

The Illumina/Solexa method is based on sequencing by synthesis chemistry using fragments of the sample 

DNA ligated to oligonucleotide adapters. The adapters on a solid support act as primers for DNA polymerase to 

incorporate reversible terminator nucleotides each labeled with a different fluorescent dye (Mokili et al., 2012). 

The current market leader, Illumina, manufactures instruments capable of generating billions of 150 base pair 

paired end reads per run, with read lengths of up to 300 base pair. The Illumina short read platform is widely used 

for analyses of viral genomes and metagenomes, and, given sufficient sequencing coverage, enables sensitive 

characterization of low frequency variation within viral populations (Li et al., 2014).Novel bat viruses of the 

genera mamastro, boca, circo, ifla and orthohepadna in bats from Myanmar (He et al., 2013), three novel group 1 

coronaviruses from three North American bats (Donaldson et al., 2010), are examples of viruses discovered using 

Illumina/ Solexa sequencing platform.  

The 454 platform is based on pyrosequencing and while it produces the longest reads, 400 nucleotide, 
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compared to the others, its throughput is less (0.4 to 0.6 gigabase/run). For seque-ncing, DNA is fragmented and 

ligated to biotinylated specific linkers. The complex DNA/linkers fragment is attached to streptavidin-coated beads 

that anchor the DNA inside a droplet of water and PCR reagents in oil emulsion. Each fragment is first amplified 

to produce the template for sequencing reaction. Sequencing is carried out by annealing primers to the linker 

portion of the template complex, followed by the incorporation of nucleotides by DNA polymerase, which 

facilitates the extension of the complementary DNA. The pyrophosphate released by this process is measurable by 

the production of light (Meyer et al., 2008).  The Roche 454 system measures the pyrophosphate released as the 

result of nucleotide incorporation during DNA synthesis mediated by DNA polymerase. The amount of light 

released is proportional to the intensity of the light signal captured by a charge-coupled device camera, which then 

converts light signals into digital data (Meyer,2007).  

 

3.4.  Bioinformatics 

Bioinformatics analyzes of viral metagenomes attempts to answer three questions: how many viruses are there 

(diversity), ‘what are they (taxonomy), and what are they doing (function)? (Willner, 2010). Bioinformatic tools 

compare the viral sequences generated with known sequences maintained in an annotated database such as 

National Center for Biotechnology Information(NCBI) using the programmes such as Basic Local Alignment 

Search Tool (BLASTn) and to assign taxonomy (by comparing with known viral sequences and indicate divergent 

ones) and function to metagenomic sequences (Blomstrom, 2011). 

One of the challenges in viral metagenomics can be found in the analysis of the vast amount of sequencing 

data produced. Unlike re-sequencing of viral genomes with high-throughput sequencing by which it is possible to 

map the reads into an existing genome, the datasets from metagenomics studies are complicated by the fact that 

they contain a mixture of different species (Blomstrom, 2011). Also, the genomes in the datasets are usually 

incomplete with some cases wherein there are only a few numbers of short fragments belonging to each genome. 

Furthermore, some reads display a high divergence compared to sequences that are deposited in databases. For 

these reasons, a number of de novo assembly algorithms are being evaluated for their suitability to this specific 

task, and more are sure to be developed (Bao et al., 2011). 

Recently several programs and platforms have been developed that can help with both the analysis of the data 

as well as with the visualization of the sequencing results.  Such programs includes, MEtaGenome Analyzer 

(MEGAN) (Huson et al., 2009), PathSeq (Kostic et al., 2011), Community Cyberinfrastructure for Advanced 

Microbial Ecology Research and Analysis (CAMERA) (Sun et al., 2011), and Galaxy (Goecks et al., 2010). 

Table 1: Summary of a number of viral metagenomics studies and viral discoveries related to veterinary science. 

Application Sample type Virus Method Reference(s) 

Etiology- PMC 

Etiology-

proventricular 

Dilatation disease in 

parrot 

 Sera 

 Brain 
 

Bungowannah virus 

Bornavirus 

SISPA  

Microarray 
 

rPCR and 454 

sequencing 

Kirkland et al., 

2007 

Kistler et al., 

2008 

Honkavuori  et 

al., 2008 

Etiology-

fibropapillomatosisin 

sea turtle 

Fibropapilomas   Sea turtle Tornovirus 1 
 

Phi29 and 

shotgun 

sequencing 

  Ng et al., 2009 

Etiology-shaking 

mink syndrome 

Brain 
 

Astrovirus 
 

rPCR and 454 

sequencing 

Blostrom  et al., 

2010 

     

Complex disease-

PMWS in pigs 

Lymph nodes torque teno virus, 

porcine Bocavirus 

Phi29,454 

sequencing 

Blostrom et al., 

2009) 

Viral flora- honey  

bee colony collapse 

Bee 
 

Chronic bee paralysis 

virus, sac brood virus, 

Israeli acute virus 

rPCR,454 

sequencing 

Cox-Foster  et 

al., 2007 

Viral flora-bats Fecal 

Fecal and  oral 

Parvovirus, coronavirus,  

Circovirus 

Circovirus, flavivirus 

rPCR,454 

sequencing 

SISPA,454 

seq. 

Li  et al., 2010 

Donaldson  et 

al.,2010 

Viral flora-monkeys Fecal 
 

Sera 

chimpanzee stool-

associated circular virus 

simian hemorrhagic 

fever virus 

rPCR and 

Sanger 

sequencing 

rPCR,  

454 

sequencing 

Blinkova  et al., 

2010 

Lauck  et al., 

2011 
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4. FUTURE PERSPECTIVE IN METAGENOMICS BASED SURVEILLANCE PROGRAM 

The future perspectives in virology appear that, the metagenomic approach will generate a plethora of genetic 

information from unknown and potentially infectious agents, some of which could be associated with human 

diseases.  The discovery of viruses will start to precede the characterization of the diseases they cause, well before 

the pathogenicity of these agents is defined (Mokili et al., 2012). 

Viruses make up over two-thirds of all new human pathogens, a highly significant overrepresentation given 

that most current human pathogen species are bacteria, fungi or helminthes (Woolhouse and Gaunt, 2007). There 

are 219 viral species (belonging to 23 families) that are known to infect humans, among which more than two-

thirds are of zoonotic origin (Woolhouse et al., 2012). 

A high percentage of novel EIDs in humans are zoonoses caused by viruses of animal origin, and as humans 

expand their geographical range and come closer into contact with wildlife reservoirs, the likelihood of new 

diseases in domestic animals and humans increases (Jones et al., 2008). Providing high-level epidemiological 

monitoring of viral diseases is undeniably a global public health ambition, and despite rapid progress in the 

development of diagnostic methods in recent years, improvements are needed for better cost, size (Frey et al., 

2014). 

The recent development of viral metagenomics, i.e., the characterization of the complete viral diversity 

isolated from an organism or an environment using high-throughput sequencing technologies, is promising for the 

surveillance of emerging viral  zoonotic diseases and can be accomplished by analyzing the viromes of selected 

animals and arthropods that are closely in contact with humans (Temmam et al., 2014). 

 

4.1. Viral metagenomics in zoonotic and arboviral disease surveillance programs 

Zoonotic and arboviral disease surveillance programs have recently integrated entomology and veterinary 

medicine. To prevent emerging infectious diseases in humans, surveillance programs now focus on the early 

detection of new or re-emerging infectious agents in hematophagous arthropods and wild or domestic animals, 

before viral adaptation to human hosts (Figure 2).Viral metagenomics are well-adapted tools for these surveillance 

programs because they allow the detection of all viral genomes in a given sample without previous knowledge of 

their nature (Temmam et al., 2014). 

Because they are easy to sample, arthropods may be used as targets for emerging arbovirus disease 

surveillance. Recent metagenomics analyses focused on mosquito arthropods have demonstrated the richness of 

the mosquito virome, including viruses that reflect the nectar or blood meals (Junlen and Drosten, 2013). Because 

arboviruses are transmitted to vertebrate hosts via the saliva of arthropods, a simple way to determine if emerging 

viral pathogens may be transmitted to humans is to selectively analyze the virome of the salivary glands of the 

arthropod, even though dissection is difficult for extremely small arthropods. However, metagenomic studies 

targeting the entire body of the bloodsucking arthropod not only allow for the description of the viral flora within 

the arthropod, which highlight the emerging infectious agents or insect-specific viruses as tools for vector 

population control, but they also allow for the study of interactions between viral and bacterial communities that 

may result in viral interference (e.g, Wolbachia endosymbiont and Dengue virus interactions (Bian et al., 2010). 

Wild fauna are other appropriate target animals for emerging zoonoses surveillance. Because of the many 

restrictions on studying endangered wild animals (such as bats), non-invasive sampling procedures may be used 

such as collecting urine or feces. Moreover, humans are more frequently in contact with feces or urine of wild 

animals in their shared environment, rather than with tissues or blood, with the exception of the consumption of 

bushmeat. As a consequence, most metagenomic studies conducted on wildlife have involved the feces or urine of 

wild animals (Smith and Wang, 2013). 

Recent studies searching for the reservoir of Middle-East Respiratory Syndrome-Coronavirus (MERS-CoV) 

have shown the potential role of camels in the transmission of MERS-CoV to humans. Camels are not the usual 

targets of zoonotic surveillance programs, but these recent examples highlight the interest of focusing future viral 

metagenomic studies on other animal species interacting with humans if one considers their ability to transmit 

human infectious agents by crossing the species barriers between animals and humans (Briese et al., 2014). 
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Figure 2: The origins of zoonotic human infections 

Source: (Temmam et al., 2014). 

 

4.2. Viral metagenomics on blood-feeding arthropods as a tool for human and animal disease surveillance 

Many potential emerging viruses of concern might already be infecting humans or wildlife but await their detection 

by disease surveillance. The problem is, in remote and under developed regions of the world, often no attention is 

paid towards possible infectious disease cases until a threshold of serious cases and deaths appears in a cluster and 

certain epidemic properties are reached (Carroll et al., 2015). Metagenomic sequencing can be used as a promising 

solution for surveillance purposes as it detects all viruses in a single protocol, delivers additional genomic 

information for outbreak tracing, and detects novel unknown viruses. Surveillance and monitoring of viral 

pathogens circulating in humans and wildlife, together with the identification of EIDs, are critical for the prediction 

of future disease outbreaks and epidemics at an early stage. In this sense viral metagenomics is well suited in the 

detection and response to viral pathogen outbreaks (Rosario and Breitbart,2011).  

An effective strategy in virus surveillance would need to survey simultaneously a wide range of viral types 

in a large number of human and wildlife individuals in order to detect viruses before spreading. In order to identify 

new EIDs before they emerge or re-emerge, wildlife animals that are likely to carry viruses with zoonotic potential, 

e.g., bats, rodents, birds and primates, are sampled frequently (Temmam et al., 2014). 

However, collecting swabs or blood from sufficient numbers of wildlife individuals and the subsequent 

identification of viruses is challenging. The solution for overcoming this challenge might be presented by the 

vector itself. Blood feeding arthropods feed on blood from a wide range of hosts including humans, animals and 

birds. In doing this, they act as syringes sampling numerous vertebrates and collecting the viral diversity over 

space, time and species (Figure 3) (Molaei et al., 2006). Recent development in NGS metagenomics introdu-c-es 

a term known as Xenosurveillance, which refers to the identification of viral pathogens from total nucleic acids 

extracted from mosquito blood meals, either by next-generation sequencing metagenomics or conventional PCR 

assays (Grubaugh et al., 2015). 
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Figure 3: Vector-enabled metagenomics as a tool for virus surveillance. 

Source: (Brinkmann et al., 2016). 

4.2.1. Mosquitoes as ‘’Flying Syringes’’ for virus surveillance 

Recently, done studies on mosquitoes by using metagenomics, demonstrates that mosquitoes could be used as 

biological syringes to accurately quantify viremias in animals (Kading et al., 2015). In fact, two recent field studies 

have demonstrated that vertebrate viral pathogens that are not vector-borne could be detected in the bloodmeals of 

Culicidae mosquitoes (Barbazan et al., 2015). 

These findings suggest that hematophagous insects, specifically mosquitoes, could make sample acquisition 

and pathogen surveillance more tractable in remote tropical locales. Novel NGS technologies have led to the 

discovery of numerous mosquito-borne viruses replicate within the mosquito, but can also be transmitted 

biologically to vertebrates and infect vertebrate cells (Manzin et al., 2013). The majority of mosquito-borne viruses 

belong to the families Togaviridae, Flaviviridae and Bunyaviridae, comprising highly pathogenic viruses such as 

Chikungunya virus, Dengue virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus and Rift Valley 

fever virus (Zacks and Paessler, 2010). 

Most studies on mosquito viruses focus on mosquito-infecting viruses or mosquito-borne viruses, neglecting 

the presence of vertebrate viruses originating from the blood of  the mosquitoes’ host that have accumulated in the 

mosquitoes’ intestine during blood feeding. Example of such viruses in the metagenomic survey on viral 

abundance in mosquitoes (Culex tritaeniorhynchus, Anopheles sinensis, Armigeres subalbatus and Culex fatigans) 

shows 3.6% of all viruses found in the metagenomics survey were neither mosquito infecting nor mosquito-borne, 

but assumed to be of vertebrate origin (Shi et al., 2015). These viruses were closely related to torque teno sus virus 

1 (family Anelloviridae, genus Iotatorquevirus) which is widely distributed in pigs (Liu et al., 2013). In addition, 

sequences belonging to the genus Parvovirus were identified that were closely related to porcine parvovirus. Since 

mosquitoes are not known to be vectors of torque teno sus virus 1 and porcine parvovirus, it is likely that the 

mosquito had ingested viremic blood during blood feeding on diseased pigs (Brinkmann et al., 2016). 

The combination of using mosquitoes as “flying syringes” and NGS for virus surveillance was recently 

introduced using the term vector enabled metagenomics. Metagenomics sequencing of mosquito samples from 

different sites in California showed that a broad range of already known and highly diverse DNA viruses, including 

anelloviruses, herpesviruses, poxviruses and Papillomaviruses (Ng et al., 2011). These viruses infect a wide range 

of hosts including humans, mammals and birds and are not assumed to be transmissible by mosquito-es. Viruses 

of possible human origin were human papillomavirus 23, human herpes virus 1 and human Papillomavirus type 

112. It is possible that both Papillomaviruses and herpes virus have been transferred from the human skin to the 

mosquito during feeding. Anelloviruses, infection of humans,vertbrates and marine mammals, also identified in 

blood meal of mosquitoes (Biagini et al.,2007). 
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5. CHALLENGES IN USING VIRAL METAGENOMICS 

Metagenomics is a promising tool for the detection of new viral species that could potentially be a threat for human 

and animal health. However, it yet suffers several pitfalls when considering new/highly divergent viral genomes. 

A critical challenge in viral metagenomes assembly is the lack of a ubiquitous marker, analogous to bacterial 16S 

rRNA, to identify viral particles and estimate their diversity within ecological niches. Additionally, viral 

phylogeny based on sequences is impaired by extensive horizontal gene transfer and genome modularity within 

taxa, which is further complicated by the large numbers of viral particles within environmental samples. This 

makes it very difficult to find homologous sequences in reference database (Jorge et al., 2014). 

One key aspect specific to whole metagenomic study strategies is requirement for ever greater amounts of 

input genomic material for comprehensive metagenomic studies (Petrosino et al.,2014). This is an important 

limitation when the starting material is limited, as in paleogeno-mics (Tringe and Rubin, 2005). 

Another crucial issue is the process of DNA extraction. By definition, in a microbial community there are 

many different species and phylogenetic groups and as a consequence the DNA is encapsulated in cells with 

different properties. The techniques that are used to lyse cells might also affect the composition of environmental 

DNA libraries, as the harsh lysis methods that are necessary to extract DNA from every organism will cause 

degradation of the DNA from some organisms (Tringe and Rubin, 2005). Another challenging issues concerns, 

the gene reference catalogue. The main difficulty is that the gene reference catalogue needs to be representative 

enough for each studied sample. Finally, one of the biggest challenges that can be faced is the lack of an adapted 

statistical framework. The immense dimensionality of the data with millions of variables along with the very 

particular sparse nature of such data (due to the absence of species and thus genes among samples), make the use 

of classical statistics unsuitable (Rebecca et al., 2016) 

Lastly, those developing countries are waiting for developed countries to make advances in science and 

technology that they later import at great cost has recently been challenged (Alain et al., 2011). 

Table 2: Important bioinformatics challenges associated with application of next-generation sequencers in 

diagnosis of viruse by viral metagenomics and the proposed action to overcome the challenges. 

Bioinformatics challenges associated 

with application of NGS in viral 

diagnostics 

Proposed action to overcome the challenges 

 

Generation of  huge volumes of data by 

NGS platforms-“data deluge” 

Advancement in storage and computation facilities, availability of 

computer with greater storage and highly powerful processors, 

cluster/grid computing and cloud computing. Computation facilities 

needs to be updated with emergence of newer platforms delivering 

larger datasets 

  

Challenges in uploading data for 

submission to databases and 

supercomputing servers for analysis 

Requirement of uninterrupted and extremely fast networks 

 

Challenges in storage, public archival 

and ease of access 

Creation of specialized data archive such as the Sequence Read 

Archive by National Instute of Health (NIH) and ENA (European 

nucleotide Archive) by Europian Bioinformatics Institute (EBI). 

Sharing of data within the two major databases (NIH, EBI and) for 

public accessibility 

Challenges in analysis and visualization 

of large volumes of data, beyond the 

scope of computation facilities available 

in molecular biology laboratories 

Creation of metagenomic or NGS data analysis pipelines and 

integrated tool kits, such as those available at NIH-NCBI, Genome 

Browser, and  availability of cloud computing based servers such as 

Galaxy 

  

Challenges in alignment, de novo 

assembly, gene prediction and 

phylogenetic analyses NGS datasets, 

especially short read datasets 

Availability of alignment algorithms/programs such as Bowtie, 

Cloudburst, Zoom, Burrows-Wheeler Aligner Short Read Mapping 

Package(SHRiMP), Maximum Oligonucleotide Mapping (MOM), 

SeqMap, Metagene, Velvet, FragGeneScan, BLAST,Avadis, Eagle 

View 

Interpretation of huge amount of data 

generated in metagenomic analyses by 

NGS platforms 

Proper interpretation of analyzed data is of utmost importance to 

identify newer pathogens as well as their clinical significance 

Source: (Datta et al., 2015).  

 

6. CONCLUSION AND RECOMMENDATION 

Viruses are abundant biological entities on earth and the emergence of viral pathogens has become a serious threat 
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to animals and humans worldwide Over 60% of these emerging pathogens are zoonotic in origin. The knowledge 

on the diversity of viruses in healthy and disease situations becomes important for understanding their role on the 

health of human and animal species. Viral metagenomics has proven to be useful for understanding viral diversity, 

describing novel viruses in new diseases and recognized as an important tool for discovering novel viruses in 

human and veterinary medicine. The techniques of viral metagenomics open novel possibilities for the direct 

comparative analysis of the genetic compositions of various clinical samples and for the detection of new, 

emerging viruses. Achievements obtained by viral metagenomics show significant advantages over traditional 

methods of identifying a viral pathogen, including no need of sequence information for that pathogen, identifying 

multiple pathogens in a single assay and eliminating the need for time-consuming culturing or antibody laboratory 

tests. The future of the field is promising, with emerging technologies showing potential to eliminate certain 

challenges and this is of paramount in emerging and re-emerging viral disease surveillance. 

Based on the above conclusion, the following recommendations are pinpointed: 

� Monitoring and surveillance of the viral diversity of wildlife and humans in today’s rapidly changing 

ecosystems can be the key to predicting EIDs before they spread. 

� The present high demand for advances in viral diagnostic methods, should be fulfilled through 

revolutionized viral metageniomics. 

� Viral meta-genomics is an area which has opened the black box of viruses, so the technology should be 

devolved among developing country like Ethiopia and be taught to students and young scientists.  

� There should be further developments in virus-specific nucleic acid extraction methods, bioinformatics 

data processing applications, and unifying data visualization tools that are needed to gain insightful 

surveillance knowledge from suspect samples. 

� As the detection and characterization of novel viruses are of paramount importance in the forecasting of 

future outbreaks of viral diseases in humans and animals, the advancement of viral metagenomics should 

be encouraged.  

� There should be high motivation, creativity and expertise increment to handle some bottleneck of viral 

metagenomics. 
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