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Abstract 

Sorghum is one of the major food grain crops in Ethiopia, especially in the northern part of the country. The 
production and productivity of sorghum is affected by the root hemi parasite Striga hermonthica (Del.) Benth. 
(Orobanchaceae). In Ethiopia it is limited integrated control measure have been carried out to combat Striga. 

Reasons for the limited success in Striga control include prolific seed production, monocropping, close coupling 
of its life cycle to that of its host, and the fact that effective control methods are not within the reach of farmers 
practicing subsistence agriculture (Oswald A.2005). Sustainable management systems targeting Striga 
management on cereals in general or sorghum in particular might benefit from managing this symbiotic 
interaction. Agro forestry trees have the capacity to enhance AM and symbiotic relationship between sorghum 
can blocks for Striga hermonthica so as not to get any communication with its host.  
Keywords: AM symbiotic, Striga hermonthica 
 

1. Introduction  

Agrofoerstry is a land use system and practice in which forest trees, livestock, and arable land are integrated on 
the same unit of land and managed to give yield on a sustainable basis either simultaneously or sequentially. The 
integration can be linear, mixed, or even in blocks in an arrangement based on specific objectives and 
appropriate technology required for a particular place. Several traditional systems exist in Ethiopia, and there are 
new technologies started by several institutions at a national level across different land use systems. (Jiru.1990.) 
Growing Faidherbia albida as a permanent tree crop, on farmlands with cereals, vegetables and coffee 
underneath or in between, is an indigenous agro forestry system in the highlands of Eastern Ethiopia. The results 
of an investigation in to the effects of the presence of F. albida on farmlands on the yield of maize (Zea mays L.) 
and sorghum (Sorghum bicolor L.Moench) statistically significant increase in crops yields by 56% on average 
was found for the crops under the tree canopies compared to those away from the trees. In Ethiopia acute 
household energy and feed demands have caused severe environmental and socio-economic threats. 
Multipurpose tree species have considerable role in addressing such multifaceted demands in the mixed crop-
livestock production systems. Studies on AM fungi symbiosis, particularly the diversity and occurrence of the 
indigenous communities in agroforestry systems, may form the initial basis for utilization. Agroforestry trees 
may differ in their effects on fungal species diversity and occurrence (Mnyazi, 2004). Incorporation of leaf 
biomass from agroforestry trees into the system may provide favorable conditions and support a highly diversity 
of AM fungi and also investigated the vertical distribution of AM fungal spores under agroforestry. AM fungal 
spores were found in the deep soil layers of agroforestry systems than in monocultural coffee plantation soils. In 
agricultural field of standing farm trees, spore abundance found to be higher under the tree canopy than in 
monoculture crops. Pande and Tarafdar, (2003) reported spore densities of field standing neem (Azadirachta 

indica L.) trees in agroforestry systems in different agricultural zones of Rajasthan, Similarly, Zebene and 
Hultén, (2002) also reported, higher number of spores under the canopy of Cordia africana and Millettia 

ferruginea grown in sorghum fields. In general agroforestry trees plays a land mark role in creating a medium for 
AM. Symbiosis relationship between AM and Sorghum which is created as a result of Agro forestry tree is very 
common, and AM has an effect on germination, attachment and subsequent growth and development of Striga 
hermonthica. Reviewing the indirect effect of agro forestry tree on Striga (the effect of AM on growth and 
development Striga hermonthica) is the main aim of this paper.     
 
2. Agro forestry trees, sorghum and Fungi associations 

2.1 AM and plant association 

Mycorrhiza is a mutualistic symbiosis between plant and fungus localized in a root or (root-like structure) in 
which energy moves primarily from plant to fungus and inorganic resources move from fungus to plant (Allen, 
1991). Mycorrhizal associations vary widely in form and function. In the tropics, the two most common 
associations are the arbuscular endomycorrhizas (AM) formed by Zygomycete fungi, and the ectomycorrhizas 
(ECM) formed by Basidiomycetes, Ascomycetes, and a few Zygomycetes (Dell, 2002). Ectomycorrhizae (EM) 
forms a thick sheath of fungal hyphae around the plant roots, making an obvious change in the morphology of 
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the root (Wiedenhoeft and Hopkins, 2006). The diagnostic feature is the presence of hyphae between root 
cortical cells producing a netlike structure called the Hartig net (Haselwandter and Bowen, 1996), and many 
ectomycorrhizae also have a sheath, or mantle, of fungal tissue that may completely cover the absorbing root 
(usually the fine feeder roots). This mantle can vary widely in thickness, color, and texture depending on the 
particular plant-fungus combination and the mantle increases the surface area of absorbing roots and often 
affects fine-root morphology, resulting in root bifurcation and clustering, contiguous with the mantle are hyphal 
strands that extend into the soil.  Normally the fungus does not penetrate the endodermis or the stele. Under EM 
association lack root hairs and the outer cortical cells are radially elongated, suggesting a hormone interaction 
(Haselwandter and Bowen, 1996). The association of EM is mainly with trees not with agricultural crops. It is 
more important in multipurpose woodlots and taungya agroforestry practice. Arbuscular mycorrhizas (AM) fungi 
or glomeromycotan mycorrhiza, are the most widely spread and common root-fungus associations (Brundrett, 
2004). They are by far the most common mycorrhiza type, infecting the great majority (about 80%) of higher 
plants (Smith and Read, 1997). AM fungi occur ubiquitously due to its great potential of ecological adaptation 
(Kleikamp, 2002). Morphologically, these fungi have a network of hyphae that grow within the roots of plants 
and extend out into the soil. Unlike the ectomycorrhizal fungi, AM fungi actually penetrate the walls of root cells 
and form intracellular structures. AM fungi develop a highly branched arbuscule, acacia canopy shaped within 
root cortical cells, and the fungus initially grows between cortical cells, but soon penetrates the host cell wall and 
grows within the cell. Vesicles are like small bags or sacs sequestered within or between plant cells and are 
implicated in energy storage and possibly as propagules for the fungus, whereas arbuscules are small tree-like 
collections of branched hyphae that occur within the plant cells (Wiedenhoeft and Hopkins, 2006). The original  
taxonomy of  the AM fungi was based on  the morphology of  the  large  soil-borne  spores which were  found 
near colonized plant host’s  roots  (Simon et al., 1993). A number of studies have shown that agriculture reduces 
the diversity of the AM fungi community (Daniell et al., 2001; Oehl et al., 2003). This has been attributed to 
physical disturbance from tilling (Kabir et al., 1997) the effects of supplemental fertilizers (Linderman and Davis, 
2004) and the use of fungicides and soil fumigants (Menge, 1982), all of which reduce the abundance and or 
diversity of AM fungi. Generally low input and low till agricultural systems have a higher abundance and 
diversity of AM fungi than their traditional counterparts (Douds and Millner, 1999; Galvez et al., 2001). 
Similarly, returning crop residues to soil might stimulate an increased spore population, and application of 
farmyard manure increases densities of AM fungal spores, although it depends on soil types. Organically farmed 
system had a similar AM fungal diversity to nearby native grassland (Oehl et al., 2003). It has also been shown 
that the presence of agricultural weeds can increase the abundance of beneficial AM fungi in the fields (Vatovec 
et al., 2005). High spore and AM populations found during the dry season, under low input agriculture, low 
tillage agricultural systems and plant phenology (Guadarrama, 1999; Douds and Millner 1999). In the natural 
forests, high abundance and diversity of AM fungi found, where there was no disturbance on the vegetation 
cover. Tropical rain forests display high species diversity and complex community structure, and they are a 
major distribution area for AMF in the world (Zhao et al., 2001) and in the dry soil in Afromontane moist forest 
ecosystem of 14 coffee shade tree species. 
 
2.2 AM Root Colonization  

AM fungi exist in the soil as spore or as vegetative propagules in root fragments. Species of AM fungi have been 
reported to lack host specificity as a consequence of this a given fungal propagules obtained from an annual 
plant can also readily establish on a perennial plants. Similarly a given plant root system can be infected by 
different group of AM fungal species. Resting spore of the fungus, germinating or extra radical hyphae in the 
soil or hyphae associated with root fragments are infective propagules where the fungal development can start 
(Brundrett et al., 1996). Usually association starts when the soil hyphae contact a root of potential host. 
Penetration takes place between the epidermal cell and often forms an appressorium (Brundrett et al., 1996). The 
successful establishment of mycorrhiza on host root depends on the interaction between the symbiont and 
environmental factors such as soil moisture, pH and soil fertility. Manipulation of agricultural systems to favor 
AM fungi colonization must occur only if there is clear evidence that AM fungi make a positive contribution to 
yield or are vital for maintenance of ecosystem health and sustainability (Ryan et al., 2002). Mycorrhizal 
dependency of a given plant can be altered by many variables such as soil type, soil phosphorus content, 
mycorrhizal species etc. (Menge et al., 1987). As  soil  conditions  profoundly affect root growth  and  
sometimes  root  hair  production in the same species,  it is highly likely that the extent of the mycorrhizal  
response will differ from soil to soil independent of soil phosphate status (Haselwandter and Bowen, 1996). It is 
widely accepted that plants with highly branched root system (Gramineae) are less mycotrophic (less dependent 
on the fungi for normal growth) than those with coarser roots (e.g. cassava, onion) (Dodd, 2000). Root branching 
determines plant dependence on the symbiosis. Over 10% of plants (including complete plant families e.g. 
Chenopodiaciae and Brassicaceae) are non-mycorrhizal and these plants compensate by developing extensively 
branching root system architectures (Dodd, 2000). They include many of the crops used in Europe today e.g. oil 
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seed rape (canola). Root  characteristics  have  been  little  studied with  species  used  in  agro forestry  but  
many tree species  do  have  low  rooting  intensities  and  poorly developed root hairs and respond well to 
mycorrhizal infection over a wide range of soil phosphate (Haselwandter and Bowen, 1996).  Jasper et al.  
(1989a)  observed  relatively coarse  rooting  systems  and  few  root  hairs  in  Acacia  concurrens  and A. 

saligna,  attributing  their  large  mycorrhizal  responses to  this. The extent of mycorrhiza infection in root 
systems is also known to be influenced by environmental conditions; the most important being the age of the 
plants, the level of phosphate (P) in the soil relative to the requirements of the plant and the capacity of the 
population of mycorrhiza propagules in the soil to form mycorrhiza, light, temperature and others (Smith and 
Read, 1997; Smith, 2003; Azcón and Ocampo, 1981). Nevertheless, mycorrhizal infection can also be related 
with plant factors such as nutrient content in the root exudates; this parameter seems to be regulated by P 
concentration in the root (Azcón and Ocampo, 1981). Zebene and Hultén, (2002) reported, different levels of 
root colonization in the roots of Cordia africana and Millettia ferruginea grown in enset, coffee-enset and maize 
fields. Agriculturally adapted AM fungi have been shown to be slower to infect, faster to sporulate and to 
produces fewer arbuscles (Johnson, 1993;). Tillage disturbs the hyphal network, which delays the AM fungi 
infectivity rate on plant roots in the coming season (Friberg, 2001). The use of native mycorrhizal as a potential 
source of AM inoculum was considered a preferential strategy for ensuring the successful re-establishment of 
native shrub species in semi-arid degraded soil (Caravaca et al., 2003b). Bell et al. (2003) found that the 
susceptibility of Acacia seedlings to colonization by AM fungi appeared to be seasonal. Seasonal patterns in the 
formation of mycorrhiza have also been said to vary considerably from year to year (Allen et al., 1981). 
Colonization increased with increasing daytime temperatures and day length. There is generally a good 
correlation between the levels of infection of the root and the mycorrhizal response. This can be affected by 
several factors such as, differences in plant susceptibility to infection, differences in inoculum potential, the type 
of inoculum can affect the speed of infection and therefore the response (Haselwandter and Bowen, 1996) and 
AM fungi differ markedly in their response to high soil phosphate and to such factors as soil pH (Abbott and 
Robson, 1985). 
 
2.3. Association of AMF and Roles on crop growth  

There  is  a  growing  body of  evidence  that  AM  can  increase plant  growth, especially in  infertile  soils,  and  
that  such  growth-increases are  the  result  of  an  enhanced ability of  infected  roots  to  absorb  nutrients 
(Gerdemann, 1968). In so doing the hyphae of AM fungi have the potential to greatly increase the absorbing 
surface area beyond the root into the surrounding soil to improve the uptake of poorly mobile ions such as P, Zn 
and Cu where by their uptake depends on the root density per volume of soil. Investigators have developed 
improved inoculation techniques and their results tend to fit a consistent pattern. Using nonsterile soil as an 
inoculum, (Asai, 1943), demonstrated that mycorrhizal plants grew faster than non-mycorrhizal plants.  ( Peuss, 
1958), using infected roots as inoculum, obtained increases growth of mycorrhizal tobacco grown in a fallow soil 
and in a subsoil., and Meloh (1961, 1963) showed that the growth of maize and oats could be improved by AM 
fungi. Gerdemann (1964) also demonstrated improved growth in maize. (Habte and Fox 1989) found a range of 
responses of L. leucocephala to inoculation from a 1.5 times to 7 times increase in shoot growth due to 
inoculation at 48 days, depending on the soil used. Similarly, (Purcino et al. 1986) obtained a doubling of growth 
with this species from inoculation with three AM fungi, and Cornet and Diem (1982) recorded a 1.6 fold 
increase with A. raddiana and a 6.6 times increase with A. holosericea. There are notable cases of growth 
depression apparently caused by AM fungi in “non-host” species or in host’s species when phosphate availability 
is high (Mosse 1973; Peng et al. 1993). 
 
2.4. AM and Soil fertility  

Three main components are involved in AM association: 1) the soil, 2) the fungus and 3) the plant. The fungal 
component involves the fungal structure within the cell of the root and the extraradical mycelium in the soil. The 
extraradical mycelium in the soil may be quite extensive under some conditions, but does not form any 
vegetative structures (Smith and Read, 1997). Its primary function is the absorption of resources from the soil. 
The increased efficiency of mycorrhizal roots versus non-mycorrhizal roots is caused by the active uptake and 
transport of nutrients by mycorrhiza. AM have been shown to improve productivity in soils of low fertility 
(Jeffries, 2002) and are particularly important for increasing the uptake of slowly diffusing ions such as PO4

3- 
(Jacobsen et al., 1992) immobile nutrients such as P, Zn and Cu (Lambert et al., 1979; George et al., 1994; 
George et al., 1996; Ortas et al., 1996; Liu et al., 2002) and other nutrients such as Cadmium (Guo et al., 1996). 
Under drought conditions the uptake of highly mobile nutrients such as NO3

- can also be enhanced by 
mycorrhizal associations (Ázcón et al., 1996; Subramanian and Charest, 1999). In legume plants the importance 
of AM symbiosis has been attributed to high P requirements on the nodulation and N2 fixation process, which 
requires enhanced P uptake (Barea and Ázcón Aguilar, 1983). Improved P nutrition has been shown to increase 
in infertile and P fixing soils of the tropics (Dodd, 2000). Mycorrhizal fungi can also improve absorption of N 
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from NH4
+ -N mineral fertilizers, transporting it to the host plant (Ames et al., 1983; Johansen et al., 1993). Its 

transport and absorption can also increase biomass production in soils with low potassium, Calcium and 
Magnesium (Liu et al., 2002). Mycorrhizal fungi can potentially influence soil aggregation at different levels, 
namely plant communities, plant roots (individual host), and effects mediated by the fungal mycelium itself 
(Rillig et al., 2006). Interest in AM fungi has tended to focus on their role in directly influencing the growth of 
the host plant. However, they also have a direct effect on soil structure, which is especially important in an 
agricultural context, where cultivations, trafficking and low levels of soil organic matter all tend to result in 
damaged soil structure (Gosling et al., 2006). AM fungi increase soil aggregation by means of the physical 
action of the hyphae and the production of polysaccharides by the fungus or associated microfiora (Tisdall and 
Oades, 1979). Thus they add to soil stability (Tisdall, 1994) and improve the soil structure (Forster, 1990). The 
extra-radical mycelium (ERM) provides a physical structure which can entangle soil particles and lead to micro- 
then macro-aggregate production. The recent finding that a glycoprotein called ‘Glomalin’ is produced by AM 
fungi soil-based mycelium and is a major binding agent in soils adds further weight to the importance of AM 
fungi in stabilizing soils and hence ecosystems (Dodd, 2000). Whether glomalin is important or not, general 
hyphal exudation and rapid hyphal turnover provide C to other soil microorganisms indirectly promoting 
aggregate stability (Dodd, 2000). The overall effect of hyphal enmeshment and C inputs can be a significant 
increase in soil structural stability, though the range of results, from positive, to neutral and negative suggests 
dependency on the host/fungal combination (Gosling et al., 2006). The toxicity of metals depends on the 
concentrations in which they are present in the soil (Smith and Read, 1997). These metals can arise from a 
variety of sources in the form of acid rain, dust containing these metals, wash waters from polluted soils or from 
atmospheric factors produced as a result of mining, smelting, burning of fossil fuels, industrial or agricultural 
activities and incineration of municipal waste (Gaur and Adholeya, 2004). AM fungi alleviate plant stunting 
caused by toxic metals by binding to these metals in the root zone with the aid of the extra-radical mycelium and 
altering the plant cells ability to capture the metals (Smith and Read, 1997). The polyphosphates produced by 
AM fungi are proposed to be the reason behind this sequestration (Khan ,2005).   
 
2.5. Relationship between Striga hermonthica, AM and sorghum 

In the absence of AM fungal inoculation, there is higher numbers of S. hermonthica shoots emergence. 
Mycorrhizal sorghum plants also influences attachment and emergence of Striga. These results are consistent 
with (Lendzemo etal; 2005). Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica 
performance on cereal crops and has the potential to contribute to integrated Striga management. AM fungal 
inoculation reduced the number and biomass of Striga (figure 1) (Lendzemo, 2004). However, the lower in 
numbers of Striga and biomass due to AM fungal inoculation did not show in a significant increase in grain yield 
of the cereals. A further confounding factor could be that not all AM fungal species are equally effective in 
decreasing Striga performance. The multi-functionality of AM symbiosis is enhancing the performance of the 
plants through other mechanisms than increased nutrient uptake (Newsham et al., 1995b).  

 

Source (Lendzemo Etal, 2004): Figure 5emergence Pattern Of S. hermonthica Over Time Without AM 

Addition (Closed Circles) And With AM Addition (Open Circles). Observed (Points) And Those Described By 



Journal of Biology, Agriculture and Healthcare                                                                                                                                www.iiste.org 

ISSN 2224-3208 (Paper)  ISSN 2225-093X (Online) 

Vol.6, No.3, 2016 

 

161 

The Beta Growth Function (Curve).  

Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant 
parasite Striga hermonthica. AM fungi have found to be a significant influence on Striga performance with 
reduced and/or delayed germination (Lendzemo, 2004), attachment (Lendzemo, 2004), and emergence 
(Lendzemo and Kuyper, 2001; Gworgwor and Weber, 2003). On the other hand, AM fungi had a direct positive 
effect on the yield of the sorghum and compensated for the damage afflicted by Striga (Lendzemo and Kuyper, 
2001; Gworgwor and Weber, 2003). Symbiotic relationship between sorghum and AM fungi is very common 
(DeMars and boerner, 1995). When sorghum roots colonized by arbuscular mycorrhizal (AM) fungi the growth 
and development of S. hermonthica is influenced. Sorghum Colonization by AM fungi reduced attachment and 
emergence of S. hermonthica on sorghum (Lendzemo etal, 2005). The mechanisms for the lower performance of 
Striga on cereal crops upon AM fungal colonization are unknown. If the roots of cereal crops are colonized by 
AM fungi it reduces seed germination of S. hermonthica because so as to germinate Striga seeds in the soil 
require signal molecules that are exuded by the roots of their hosts, called germination stimulants. These signal 
molecules belong to the class of the strigolactones (Bouwmeester etal, 2003).  This molecule has been identified 
as signal molecules in the interaction between plant roots and AM fungi. The double role of strigolactones (it 
induces for both AM and Striga hermonthica) suggests the earliest interaction between sorghum roots and AM 
fungi blocks in order not to get communication between Striga and sorghum consequently without getting signal 
it would have not been development of haustoria formation and not any attachment for growth and development 
with host (Besserer etal,2006). 
 

Conclusion 

Agroforestry can be considered as one the best option to improve soil fertility, increase sorghum productivity and 
control striga through the enhancement of AM and AM have mechanism to control Striga hermonthica.  
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