Optimum Crop Production and Income in Brong Ahafo Region

Kwaku Fordark Darkwa ${ }^{1} \quad$ Kyegabador K. Amos ${ }^{2} \quad$ Iddrisu Wahab Abdul ${ }^{3}$
1.Mathematics Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
2.Notre Dame Girls Senior High School, Fiapre-Sunyani, Ghana
3.University of Energy and Natural Resources, Fiapre-Sunyani, Ghana

Abstract

This paper seeks to present a proposed linear programming model to determine the best hectare allocation for optimum crop production to ensure food security and reduce poverty among farmers in the region. Five selected crops in fifteen sampled communities in the Brong Ahafo Region were used for this study. The net income per hectare for each crop was used in formulating the objective function and data on available arable land, mean annual rainfall and the area cultivated constitutes the constraints. The revised simplex scheme was employed to determine optimal basic variables.

Keywords: Linear Programming Model, Optimum Crop Production, Revised Simplex Scheme.

1. Introduction

The region is endowed with a vast tract of arable land, forestry, inland fisheries and clay deposits spanning over $23,734 \mathrm{~km}^{2}$ (60% of land area) of arable land with about $9,746 \mathrm{~km}^{2}$ under rain fed agriculture.

The study area consists of 15 municipalities/districts and five selected crops namely: maize, cassava, yam, cocoyam and plantain making a total of 7,397 hectares. The objective of this proposed model is to determine the minimum hector allocation for optimum crop production and the net income generated from the cultivation of these selected crops in the Brong Ahafo Region of Ghana. This paper presents the mathematical formulation of the problem and the solution using the QM software.

Singh et al. (2001) studied the optimal cropping pattern in the command area of Shahi distributaries in Uttar Pradesh. A linear programming model was formulated giving maximum net returns at different water availability level. The objective function of the model was subjected to the following constraints; total available water and land during different seasons, the minimum area under wheat and rice cultivation for local food requirement, farmers' socio-economic conditions and preference to grow a particular crop in a specific area.

Desai (1962) used linear programming technique to explore the possibilities of increasing farm production and income in the regions of Ahamadnagar and Nasik districts of Maharashtra state. It was realized that with the existing resources and technology, farm income and production could be increased substantially.

Chambers and Chames (1961), as well as Cohen and Hammer (1967; 1972), developed a series of sophisticated linear programming models for managing the balance sheet of larger banks, while Waterman and Gee (1981) and Fortson and Dince (1977) proposed less elegant formulations which were better suited for the small to medium-sized bank.

Dantzig et al., (1954) applied the simplex method to an instance with 49 cities by solving the TSP with linear programming. One of the earliest exact algorithms is due to Dantzig et al (1954), in which linear programming (LP) relaxation is used to solve the integer formulation by suitably chosen linear inequality to the list of constraints continuously. However, Miller et al. (1960) extended the idea by applying integer programming formulation of the TSP and its computational results of solving several small problems using Gomory's cutting-plane algorithm was reported. Lambert (1960) solved a 5-city example of the TSP using Gomory cutting planes. Dacey, (1960) reported a heuristic, whose solutions to the TSP were on average 4.8 percent longer than the optimal solutions.

Kanniappan and Ramachandran (1998) optimized for maximum plant residue production as a feedstock for electricity generation. They indicated that in their base year, three tons of surplus residues per hectare were available for electricity generation, whereas the optimal residue generation was four tons per hectare. Their model suggests that the optimal cropping pattern within the district should consist of rice, jowar, groundnut, sugarcane and vegetables cultivated under irrigation, with other crops such as gram and cotton cultivated under rain-fed conditions which will contribute to the larger biomass generation potential.

Ishtiaq et al. (2004) applied a linear programming model to calculate the crop acreage, production and income of the Faisalabad division. The study was conducted on 2702 thousand acres of the irrigated areas from the three districts. Crop included in the model were wheat, Basmati rice, IRRI rice, cotton, sugar cane, maize and potato. The results showed that cotton, maize and wheat gained acreage by about $5-10 \%$, while main losers were Basmati rice, IRRI rice, sugarcane and potato. Overall optimal crop acreage increased by 1.88% while, optimal income was increased by around 2% as compared to the existing solutions.

He used one year data for his model and suggested that the model could be used in a number of situations and could be improved if at least five year average figures have been used in the model. He also added
that if more recent cost estimates were used, the model would have been more realistic. On this basis we therefore used four year average values for both the objective and constraint functions in the model to make it more realistic.

In this paper we present a proposed linear programming model for the best hectare allocation which will give optimum crop production and net income in the region. For the robustness of the Model, the coefficients for both the objective function and constraints were average values estimated using a four year period data on the five selected crops from 15 communities giving rise to 73 parameters.

2. Mathematical Formulation

The revised simplex method is a scheme for ordering the computations required of the simplex method so that unnecessary which is more efficient for execution on a computer to save computational effort.
The general linear programming model for the revised simplex method which uses matrix manipulations is given as:
Maximize: $\quad z=\mathbf{c x}$

subject to: $\quad \mathbf{A x} \leq \mathbf{b}$

and $\quad x \geq 0$
where,
$\mathbf{A}=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$
$\mathbf{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right] \mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{m}\end{array}\right], \mathbf{0}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$.
To obtain the augmented form of the problem, introduce the column vector of slack variables
$\mathbf{x}_{\mathbf{s}}=\left[\begin{array}{c}x_{n+1} \\ x_{n+2} \\ \vdots \\ x_{n+m}\end{array}\right]$
so that the constraints become
$\left[\begin{array}{ll}\mathrm{A}, \mathrm{I}\end{array}\right]\left[\begin{array}{c}x \\ \vdots \\ x_{s}\end{array}\right]=\mathbf{b}$ and $\left[\begin{array}{c}x \\ \vdots \\ x_{s}\end{array}\right] \geq \mathbf{0}$
Where \mathbf{I} is the $\mathrm{m} \times \mathrm{m}$ identity matrix, and the null vector $\mathbf{0}$ now has $n+m$ elements. Given these variables to solve for the basic feasible solution, the resulting basic solution is the solution of the m equations
$\left[\begin{array}{ll}\mathrm{A} & \mathrm{I}\end{array}\right]\left[\begin{array}{c}x \\ \vdots \\ x_{s}\end{array}\right]=\mathbf{b}$
in which the n non-basic variables from the $n+m$ elements of
$\left[\begin{array}{c}x \\ \vdots \\ x_{s}\end{array}\right]$
are set equal to zero. Eliminating these n variables by equating them to zero leaves a set of m equations in m
unknowns (the basic variables). This set of equations can be denoted by
where the vector of basic variables
$\mathbf{x}_{\mathbf{B}}=\left[\begin{array}{c}x_{B 1} \\ x_{\mathbf{B} 2} \\ \vdots \\ x_{B m}\end{array}\right]$
are obtained by eliminating the non-basic variables from
$\left[\begin{array}{c}x \\ \vdots \\ x_{s}\end{array}\right]$
and the basis matrix
$\mathbf{B}=\left[\begin{array}{cccc}\mathrm{B}_{11} & \mathrm{~B}_{12} & \cdots & \mathrm{~B}_{1 \mathrm{~m}} \\ \mathrm{~B}_{21} & \mathrm{~B}_{22} & \cdots & \mathrm{~B}_{2 \mathrm{~m}} \\ \vdots & \vdots & & \vdots \\ \mathrm{~B}_{\mathrm{m} 1} & \mathrm{~B}_{\mathrm{m} 2} & \cdots & \mathrm{~B}_{\mathrm{mm}}\end{array}\right]$
is obtained by eliminating the columns corresponding to coefficients of non-basic variables from $[\mathbf{A}, \mathbf{I}]$. (In addition, the elements of ${ }^{\mathbf{X}_{\mathbf{B}}}$ and, therefore, the columns of \mathbf{B} may be placed in a different order when the method is executed). The revised simplex method introduces only basic variables such that \mathbf{B} is nonsingular, so that \mathbf{B}^{-1} always will exist. Therefore, to solve

we multiplied by both sides \mathbf{B}^{-1} to get
$\mathbf{B}^{-1} \mathbf{B x}_{\mathrm{B}}=\mathbf{B}^{-1} \mathrm{~b}$
But
$\mathbf{B}^{-1} \mathbf{B}=\mathbf{I}$
Hence the desired solution for the basic variables is
$\mathbf{x}_{\mathrm{B}}=\mathbf{B}^{-1} \mathbf{b}$ -
Let $\mathbf{C}_{\mathbf{B}}$ be the vector whose elements are the objective function coefficients (including zeros for slack variables) for the corresponding elements of $\mathbf{x}_{\mathbf{B}}$.
The value of the objective function for this basic solution is then given by
$Z=\mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{b}-\cdots-\cdots----(5)$
Applying equation to equation (5) yields

The condition for optimality is given by:
$z_{j}-c_{j} \geq 0$ for $\mathrm{j}=1,2, \ldots, n$
$x_{\mathrm{i}} \geq 0 \quad$ for $\mathrm{i}=1,2, \ldots, m$

3. Data Collection and Analysis

The data on arable land, land allocated for the various cropping activities, annual yield of crops and annual rainfall figures for the fifteen Districts/Municipalities for the four years (2006-2010) under consideration were collected from the regional MOFA office in Sunyani.
The decision variables for the selected crops (maize, cassava, yam, cocoyam, plantain) were indexed for the various districts as $x_{\mathrm{i}, \mathrm{j}}($ for $j=1,2, \ldots, 73$ and $i=1,2, \ldots, 15)$.
The assumptions made during the formulation are:

- The contribution of each activity to the value of the objective function Z is proportional to the level of
the activity ${ }^{x_{j}}$, as represented by the $c_{j} x_{j}$ term in the objective function.
- The contribution of each activity to the left-hand side of each functional constraint is proportional to the level of the activity ${ }^{x_{j}}$, as represented by the $a_{i j} x_{j}$ term in the constraint.
- Rainfall pattern and other weather conditions will be constant.

The areas planted to the selected crops in the various districts/municipalities are figures which have been reported by the Extension officers.
The average figures for the selected crops (2006-2010) were found and summarized below.

District/ Municipality	Average Allocation per year(ha)					TOTAL
	Maize	Cassava	Yam	Cocoyam	Plantain	
Sunyani	7,410	2,450	380	727	1,355	12,322
Asutifi	1,793	2,999	40	3,275	4,333	12,440
Wenchi	3,737	2,578	2,309	496	290	9,410
Dormaa	8,766	3,123	219	1,055	900	14,063
Berekum	2,207	2,389	541	1,245	914	7,296
Tano North	1,620	1,102	100	496	887	4,205
Tano South	1,834	1,937	178	572	926	5,447
Nkoranza	8,438	2,594	2,881	126	98	14,137
Techiman	3,673	4,187	3,040	625	1,685	13,210
Asunafo N.	1,220	1,299	17	927	1,884	5,347
Asunafo S.	1,091	2,556	24	1,863	2,121	7,655
Jaman S.	1,520	995	2,355	639	257	5,766
Kintampo N.	6,187	1,132	2,062	51	7	9,439
Kintampo S.	2,841	874	1,702	83	11	5,511
Pru	675	3,647	3,075	-	-	7,397
TOTAL	53,012	33,862	18,923	12,180	15,668	$\underline{133.645}$

Source: Ministry of food and Agriculture, Sunyani -B/A
The reported yield for the various crops in the fifteen communities for the four years was collected and their averages were found, on crop basis. Under the current situation the region produces $4,847,031$ metric tons of food. The breakdown is in the table below.

District/ Municipality	Average yield per year(metric tons)					TOTAL
	Maize	Cassava	Yam	Cocoyam	Plantain	
Sunyani	50,079	139,282	8,498	23,858	37,954	259,671
Asutifi	12,156	213,532	1,891	95,514	215,330	538,423
Wenchi	35,183	122,806	145,976	9,247	9,846	323,058
Dormaa	73,605	182,483	11,778	22,902	31,292	322,060
Berekum	19,801	158,686	14,410	37,293	31,066	261,256
Tano North	14,794	53,859	3,221	15,083	34,036	120,993
Tano South	17,152	152,005	7,583	14,930	34,707	226,377
Nkoranza	68,790	135,196	179,307	2,508	2,581	388,382
Techiman	38,503	425,186	230,882	16,777	49,086	760,434
Asunafo N.	8,884	60,711	908	29,296	95,560	195,359
Asunafo S.	9,030	195,572	1,245	56,193	125,977	388,017
Jaman S.	6,939	24,203	114,062	6,376	4,499	156,079
Kintampo N.	55,043	77,014	154,844	1,274	465	288,640
Kintampo S.	23,015	60,469	135,890	2,070	720	222,164
Pru	5,792	176,349	213,977	-	-	396,118
TOTAL	438,766	2,177,353	1,224,472	333,321	673,119	4,847.031

[^0]The net revenue per hectare for each crop was estimated by dividing the net income generated from each activity by the area allocated annually as shown below.

District/ Municipality	Net income per hectare of crop (Ghc/ha)					
	Maize	Cassava	Yam	Cocoyam	Plantain	TOTAL
	9896	10,261	13,297	12,628	13,148	$\mathbf{5 9 , 2 3 0}$
Asutifi	14307	12,852	20,919	11,223	23,327	$\mathbf{8 2 , 6 2 8}$
Wenchi	4,593	8,598	27,975	7,174	15,937	$\mathbf{6 4 , 2 7 7}$
Dormaa	423,797	10,547	4,096	8,353	16,320	$\mathbf{4 6 3 , 1 1 3}$
Berekum	11,786	11,989	4376	11,526	15,955	$\mathbf{5 5 , 6 3 2}$
Tano North	4,455	8,822	14,254	11,701	18,012	$\mathbf{5 7 , 2 4 4}$
Tano South	9,562	8,850	14,165	10,044	17,594	$\mathbf{6 0 , 2 1 5}$
Nkoranza	3,977	9,407	27,540	7,660	12,361	$\mathbf{6 0 , 9 4 5}$
Techiman	5,113	18,330	33,607	10,329	13,674	$\mathbf{8 1 , 0 5 3}$
Asunafo N.	3,552	8,436	23,622	12,161	23,809	$\mathbf{7 1 , 5 8 0}$
Asunafo S.	4,037	13,811	22,959	11,607	27,880	$\mathbf{8 0 , 2 9 4}$
Jaman S.	2,227	4,391	21,432	3,839	8,217	$\mathbf{4 0 , 1 0 6}$
Kintampo N.	4,340	31,148	33,229	9,612	12,280	$\mathbf{9 0 , 6 0 9}$
Kintampo S.	3,952	30,703	35,330	9,598	12,488	$\mathbf{9 2 , 0 7 1}$
Pru	4,186	8,728	30,792	-	-	$\mathbf{4 3 , 7 0 6}$
TOTAL	$\mathbf{5 0 9 , 7 8 0}$	$\mathbf{1 9 6 , 8 7 3}$	$\mathbf{3 2 7 , 5 9 3}$	$\mathbf{1 3 7 , 4 5 5}$	$\mathbf{2 3 1 , 0 0 2}$	$\mathbf{1 , 4 0 2 , 7 0 3}$

Estimated based on FAO quoted food prices for years under review.

This data is used to formulate objective function. The number of hectares to be allocated for the $j^{t h}$ activity in the $i^{\text {th }}$ Districts/Municipalities for optimum production and income. Since Z is the total net return the resulting linear programming model for this problem is:
Maximize $\mathrm{Z}=\sum_{\mathrm{i}=1}^{15} c_{\mathrm{i}, \mathrm{j}} x_{\mathrm{i}, \mathrm{j}} \quad$ for $j=1,2, \ldots, 73$
Subject to the following constraints
a) Arable land:

$$
\sum_{\mathrm{i}=1}^{15} a_{\mathrm{i}, \mathrm{j}} x_{\mathrm{i}, \mathrm{j}} \leq \mathrm{L}_{\mathrm{i}} \quad \text { for all } j
$$

b) Mean rainfall:

$$
\sum_{\mathrm{i}=1}^{15} w_{\mathrm{ij}} x_{\mathrm{ij}} \leq \mathrm{W}_{\mathrm{i}} \quad \text { for all } j
$$

c) Hectare allocation :
$\sum_{\mathrm{i}=1}^{15} a_{\mathrm{ij}} x_{\mathrm{ij}} \leq \mathrm{H}_{\mathrm{i}} \quad$ for all j
$x_{\mathrm{ij}} \geq 0, \quad$ for all $i=1,2, \ldots, 15$
and all $\mathrm{j}=1,2, \ldots, 73$. Where
$c_{\mathrm{ij}}=$ Net income (Gh $\phi /$ hectare) on the $j^{\text {th }}$ activity in the $i^{\text {th }}$ district/municipality.
$x_{\mathrm{ij}}=$ optimum hectares for $j^{\text {th }}$ activity in the $i^{\text {th }}$ district/municipality.
$a_{\mathrm{ij}}=$ the arable land allocated for $j^{\text {th }}$ activity in the $i^{\text {th }}$ town.
$w_{\mathrm{ij}}=$ the amount of water required for the $j^{\text {th }}$ activity in the $i^{\text {th }}$ town.
$\mathrm{W}_{\mathrm{i}}=$ the total amount of water available in the $i^{\text {th }}$ district/municipality.
$\mathrm{L}_{\mathrm{i}}=$ the arable land available in the $i^{\text {th }}$ district/municipality.
$\mathrm{H}_{\mathrm{i}}=$ the total hectares allocated for all activities in the $i^{\text {th }}$ district/municipality. Thus we

$$
\begin{aligned}
& \text { MaximizeZ }=\left(9896 x_{1,1}+10261 x_{1,2}+13297 x_{1,3}+12628 x_{1,4}+13148 x_{1,5}\right) \\
& +\left(14307 x_{2,1}+12852 x_{2,2}+20919 x_{2,3}+11223 x_{2,4}+23327 x_{2,5}\right) \\
& +\left(4593 x_{3,1}+8598 x_{3,2}+27975 x_{3,3}+7174 x_{3,4}+15937 x_{3,5}\right) \\
& +\left(423797 x_{4,1}+10547 x_{4,2}+4096 x_{4,3}+8353 x_{4,4}+16320 x_{4,5}\right) \\
& +\left(11786 x_{5,1}+11989 x_{5,2}+4376 x_{5,3}+11526 x_{5,4}+15955 x_{5,5}\right) \\
& +\left(4455 x_{6,1}+8822 x_{6,2}+14254 x_{6,3}+11701 x_{6,4}+18012 x_{6,5}\right) \\
& +\left(9562 x_{7,1}+8850 x_{7,2}+14165 x_{7,3}+10044 x_{7,4}+17594 x_{7,5}\right) \\
& +\left(3977 x_{8,1}+9407 x_{8,2}+27540 x_{8,3}+7660 x_{8,4}+12361 x_{8,5}\right) \\
& +\left(5113 x_{9,1}+18330 x_{9,2}+33607 x_{9,3}+10329 x_{9,4}+13674 x_{9,5}\right) \\
& +\left(3552 x_{10,1}+8436 x_{10,2}+23622 x_{10,3}+12161 x_{10,4}+23809 x_{10,5}\right) \\
& +\left(4037 x_{11,1}+13811 x_{11,2}+22959 x_{11,3}+11607 x_{11,4}+27880 x_{11,5}\right) \\
& +\left(2227 x_{12,1}+4391 x_{12,2}+21432 x_{12,3}+3839 x_{12,4}+8217 x_{12,5}\right) \\
& +\left(4340 x_{13,1}+31148 x_{13,2}+33229 x_{13,3}+9612 x_{13,4}+12280 x_{13,5}\right) \\
& +\left(3952 x_{14,1}+30703 x_{14,2}+35330 x_{14,3}+9598 x_{14,4}+12488 x_{14,5}\right) \\
& +\left(4186 x_{15,1}+8728 x_{15,2}+30792 x_{15,3}\right) \text {. }
\end{aligned}
$$

Subject to the following constraints

1. Arable land available in each district/municipality.

$7410 x_{1,1}$	+	$2450 x_{1,2}$	+	$380 x_{1,3}$	+	$727 x_{1,4}$	+	$1355 x_{1,5}$	\leq	7350000
$1793 x_{2,1}$	+	$2999 x_{2,2}$	$+$	$40 x_{2,3}$	+	3275x ${ }_{2,4}$	+	$4333 x_{2,5}$	\leq	9843700
$3737 x_{3,1}$	+	$2578 x_{3,2}$	+	$2309 x_{3,3}$	+	496x ${ }_{3,4}$	+	$290 x_{3,5}$	\leq	31232500
$8766 x_{4,1}$	+	$3123 x_{4,2}$	$+$	$219 x_{4,3}$	+	$1055 x_{4,4}$	$+$	$900 x_{4,5}$	\leq	8674000
$2207 x_{5,1}$	+	$2389 x_{5,2}$	$+$	$541 x_{5,3}$	+	$1245 x_{5,4}$	+	$914 x_{5,5}$	\leq	15430000
$1620 x_{6}$	+	$1102 x_{6}$	$+$	$100 x_{6,3}$	+	$496 x_{6,4}$	$+$	$887 x_{6,5}$	\leq	7221500
$1834 x_{7,1}$	+	$1937 x_{7,2}$	$+$	$178 x_{7,3}$	+	$572 x_{7,4}$	+	$926 x_{7,5}$	\leq	10623100
$8438 x_{8,1}$	+	$2594 x_{8,2}$	+	$2881 x_{8,3}$	+	$126 x_{8,4}$	$+$	$98 x_{8,5}$	\leq	31140200
$3673 x_{9,1}$	+	$4187 x_{9,2}$	+	$3040 x_{9,3}$	+	$625 x_{9,4}$	+	$1685 x_{9,5}$	\leq	6674300
$1220 x_{10,1}$	+	$1299 x_{10,2}$	+	$17 x_{10,3}$	+	$927 x_{10,4}$	+	$1884 x_{10,5}$	\leq	10551500
$1091 x_{11,1}$	+	$2556 x_{11,2}$	+	$24 x_{11,3}$	+	$1863 x_{11,4}$	+	$2121 x_{11,5}$	\leq	30237000
$1520 x_{12,1}$	+	995x $\mathrm{l}_{12,2}$	$+$	$2355 x_{12,3}$	+	$639 x_{12,4}$	$+$	$257 x_{12,5}$	\leq	6437500
$6187 x_{13,1}$	+	$1132 x_{13,2}$	+	$2062 x_{13,3}$	+	$51 x_{13,4}$	+	$7 x_{13,5}$	\leq	51025400
$2841 x_{14,1}$	+	$874 x_{14,2}$	+	$1702 x_{14,3}$	+	$83 x_{14,4}$	$+$	$11 x_{14,5}$	\leq	16530400
$675 x_{15,1}$	+	$3647 x_{15,2}$	+	$3075 x_{15,3}$					\leq	19344200

2. Water availability in each district/municipality

$860 x_{1,1}$	+	$1291 x_{1,2}$	+	$1291 x_{1,3}$	+	$1291 x_{1,4}$	+	$2581 x_{1,5}$	\leq	18173475
$948 x_{2,1}$	+	$1422 x_{2,2}$	+	$1422 x_{2,3}$	+	$1422 x_{2,4}$	+	$2844 x_{2,5}$	\leq	20214188
$703 x_{3,1}$	+	$1054 x_{3,2}$	+	$1054 x_{3,3}$	+	$1054 x_{3,4}$	+	$2109 x_{3,5}$	\leq	11339351
$875 x_{4,1}$	+	$1313 x_{4,2}$	+	$1313 x_{4,3}$	+	$1313 x_{4,4}$	+	$2625 x_{4,5}$	\leq	21094125
$823 x_{5,}$	+	$1234 x_{5,2}$	$+$	$1234 x_{5,3}$	+	$1234 x_{5,4}$	+	$2468 x_{5,5}$	\leq	10286303
$890 x_{6}$	+	$1334 x_{6,2}$	$+$	$1334 x_{6,3}$	+	$1334 x_{6,4}$	+	$2669 x_{6,5}$	\leq	6410719
890	+	$1334 x_{7.2}$	$+$	$1334 x_{7,3}$	+	$1334 x_{7,4}$	+	$2669 x_{7,5}$	\leq	8307438
$583 x_{8}$	+	$875 x_{8,2}$	+	$875 x_{8,3}$	+	$875 x_{8,4}$	+	$1750 x_{8,5}$	\leq	14135750
$846 x_{9,}$	+	$1269 x_{9,2}$	+	$1269 x_{9,3}$	+	$1269 x_{9,4}$	+	$2538 x_{9,5}$	\leq	19154863
$875 x_{10,1}$	+	$1313 x_{10,2}$	$+$	$1313 x_{10,3}$	+	$1313 x_{10,4}$	+	$2625 x_{10,5}$	\leq	8020500
$875 x_{11,1}$	+	$1313 x_{11,2}$	+	$1313 x_{11,3}$	$+$	$1313 x_{11,4}$	+	$2625 x_{11,5}$	\leq	11481000
$423 x_{12,1}$	+	$634 x_{12,2}$	+	$634 x_{12,3}$	$+$	$634 x_{12,4}$	+	$1269 x_{12,5}$	\leq	4179988
$933 x_{13,1}$	+	$1400 x_{13,2}$	+	$1400 x_{13,3}$	$+$	$1400 x_{13,4}$	+	$2800 x_{13,5}$	\leq	15101600
$642 x_{14,1}$	+	$963 x_{14,2}$	+	$963 x_{14,3}$	+	$963 x_{14,4}$	+	$1925 x_{14,5}$	\leq	6061550
$933 x_{15,1}$	+	$1400 x_{15,2}$	+	$1400 x_{15,3}$					\leq	11835600

3. Maximum hectares allocated in each district/municipality.

$7410 x_{1,1}$	+	$2450 x_{1,2}$	$+$	$380 x_{1,3}$	+	$727 x_{1,4}$	+	$1355 x_{1,5}$	\leq	12321
$1793 x_{2,1}$	+	$2999 x_{2,2}$	+	$40 x_{2,3}$	+	$3275 x_{2,4}$	+	$4333 x_{2,5}$	\leq	12440
$3737 x_{3,1}$	$+$	$2578 x_{3,2}$	$+$	$2309 x_{3,3}$	+	$496 x_{3,4}$	+	$290 x_{3,5}$	\leq	9410
$8766 x_{4}$	+	$3123 x_{4,2}$	+	$219 x_{4,3}$	+	$1055 x_{4,4}$	+	$900 x_{4,5}$	\leq	14063
$2207 x_{5,1}$	+	$2389 x_{5,2}$	+	$541 x_{5,3}$	+	$1245 x_{5,4}$	+	$914 x_{5,5}$	\leq	7295
$1620 x_{6,}$	+	$1102 x_{6,2}$	$+$	$100 x_{6,3}$	+	$496 x_{6,4}$	+	$887 x_{6,5}$	\leq	4204
$1834 x_{7,1}$	+	$1937 x_{7,2}$	+	$178 x_{7,3}$	+	$572 x_{7,4}$	+	$926 x_{7,5}$	\leq	5448
$8438 x_{8,1}$	+	$2594 x_{8,2}$	+	$2881 x_{8,3}$	+	$126 x_{8,4}$	+	$98 x_{8,5}$	\leq	14136
$3673 x_{9,1}$	+	$4187 x_{9,2}$	+	$3040 x_{9,3}$	$+$	$625 x_{9,4}$	+	$1685 x_{9,5}$	\leq	13210
$1220 x_{10,1}$	+	$1299 x_{10,2}$	+	$17 x_{10,3}$	+	$927 x_{10,4}$	+	$1884 x_{10,5}$	\leq	5347
$1091 x_{11,1}$	+	$2556 x_{11,2}$	+	$24 x_{11,3}$	+	$1863 x_{11,4}$	+	$2121 x_{11,5}$	\leq	7654
$1520 x_{12,1}$	+	$995 x_{12,2}$	+	$2355 x_{12,3}$	+	$639 x_{12,4}$	+	$257 x_{12,5}$	\leq	5766
$6187 x_{13,1}$	+	$1132 x_{13,2}$	+	$2062 x_{13,3}$	+	$51 x_{13,4}$	+	$7 x_{13,5}$	\leq	9439
$2841 x_{14,1}$	+	$874 x_{14,2}$	+	$1702 x_{14,3}$	+	$83 x_{14,4}$	+	$11 x_{14,5}$	\leq	5511
$675 x_{15,1}$	+	$3647 x_{15,2}$	+	$3075 x_{15,3}$					\leq	7397

4. Results and Discussion

The QM software was used to generate the optimal solution from which the net income is calculated. The best crop allocation in hectare for the region is presented in the table below.
Table 4.8: Best crop allocation

District/ Municipality	Index		Optimal crop allocation ($\mathrm{x}_{\mathrm{i}, \mathrm{j}}$)	Net income per hectare $\left(\mathrm{c}_{\mathrm{i}, \mathrm{j}}\right)$	Expected Net income per year	Expected crop yield per year
	No.	Crop	(ha)	(Ghd/ha)	(Gh¢)	(tons)
Sunyani	1	$\operatorname{yam}\left(\mathrm{x}_{1,3}\right)$	32.42	13,297.00	275,505.16	431,088.74
Asutifi	2	$\operatorname{yam}\left(\mathrm{x}_{2,3}\right)$	311.00	20,919.00	588,101.00	6,505,809.00
Wenchi	3	plantain($\mathrm{x}_{3,5}$)	32.45	15,937.00	319,502.70	517,155.65
Dormaa	4	maize($\mathrm{x}_{4,1}$)	1.60	423,797.00	117,768.00	678,075.20
Berekum	5	plantain($\mathrm{x}_{5,5}$)	7.98	15,955.00	247,906.68	127,320.90
Tano North	6	$\operatorname{yam}\left(\mathrm{x}_{6,3}\right)$	42.04	14,254.00	135,410.84	599,238.16
Tano South	7	$\operatorname{yam}\left(\mathrm{x}_{7,3}\right)$	30.61	14,165.00	232,115.63	433,590.65
Nkoranza	8	plantain($\mathrm{x}_{8,5}$)	144.24	12,361.00	372,283.44	1,782,950.64
Techiman	9	cocoyam($\mathrm{x}_{9,4}$)	21.14	10,329.00	354,665.78	218,355.06
Asunafo N.	10	$\operatorname{yam}\left(\mathrm{x}_{10,3}\right)$	314.53	23,622.00	285,593.24	7,429,827.66
Asunafo S.	11	$\operatorname{yam}\left(\mathrm{x}_{11,3}\right)$	318.92	22,959.00	397,055.40	7,322,084.28
Jaman S.	12	plantain($\mathrm{x}_{12,5}$)	22.44	8,217.00	100,957.56	184,389.48
Kintampo N.	13	plantain($\mathrm{x}_{13,5}$)	1,348.43	12,280.00	627,019.95	16,558,720.40
Kintampo S.	14	plantain($\mathrm{x}_{14,5}$)	501.00	12,488.00	360,720.00	6,256,488.00
Pru	15	$\operatorname{yam}\left(\mathrm{X}_{15,3}\right)$	2.41	30,792.00	515,684.57	74,208.72
Optimal Value (Z)			3,131.21	651,372.00	49,120.850	4.930.289.95

In the current situation the region observes $4,847,023$ tons of yield and Gh申 $1,402,701$ per year. Given that the rainfall is constant and the required hectares as prescribed above are allocated and managed properly, the region would observe a yield of $4,930,290$ and Gh\& $49,120,850$ per year. This would improve the food security and poverty situations in the region. In other to obtain optimum production and income for the region, some variables [yam $\left(\mathrm{x}_{1,3}\right)$, plantain $\left(\mathrm{x}_{3,5}\right)$, maize $\left(\mathrm{x}_{4,1}\right)$, plantain $\left(\mathrm{x}_{5,5}\right), \quad \operatorname{yam}\left(\mathrm{x}_{6,3}\right), \quad \operatorname{yam}\left(\mathrm{x}_{7,3}\right), \quad$ cocoyam $\left(\mathrm{x}_{9,4}\right)$, plantain $\left(\mathrm{x}_{12,5}\right)$, plantain $\left(\mathrm{x}_{13,5}\right)$] lost some hectares whiles other variables [yam $\left(\mathrm{x}_{2,3}\right)$, $\operatorname{yam}\left(\mathrm{x}_{10,3}\right)$, $\operatorname{yam}\left(\mathrm{x}_{11,3}\right)$, yam $\left(\mathrm{x}_{15,3}\right)$, plantain $\left(\mathrm{x}_{8,5}\right)$, plantain $\left(\mathrm{x}_{14,5}\right)$] gained additional hectares.
Meaning that if we want to achieve optimum production and income, we need to increase the number of hectors allotted to the production of these crops which gained additional hectors.

References

Chambers, Chames. (1961). Inter-temporal Analysis and optimization of bank portfolios, Management Science II, July 1961.
Cohen and Hammer, (1967:1972). Linear programming and optimal Bank Asset Management Decision.Journal of Finance vol 22, No. 2 (May pp.147-165).
Dacey, M.F. (1960). -Selection of an Initial Solution for the Traveling-Salesman Problem". Operations Research.8: 133-134. Darwin C. (1859).On the origin of spacies,1st edition (facsimile-1964),Harvard University Press, MA
Dantzig G. B. (1963): Linear Programming and Extension, Princeton University Press.
Dantzig, G.B., Fulkerson, D.R., and Johnson, S.M. (1954). "Solution of a Large-Scale Traveling-Salesman Problem". Operations Research. 2: 393-410.
Desai, D.K. (1962). Budgeting and programming in Management. Indian J. Agri. Eco.: 196-205.

Dince, R. R., and Fortson, J. C, (1977). An Application of Goal Programming to the Management of a Country Bank, Journal of Bank Research. Vol. 7,No. 4 (Winter) ,pp.311-319.
Kanniappan P.and T. Ramachandran. (1998). Optimization model for energy generation from agricultural residue. International Journal of Energy Research 22, 1121-1132.
Lambert, F. (1960). "The Traveling-Salesman Problem". Cahiers du Centre de Recherche Opérationelle. 2:180191.

Miller, D. and Pekny, J. (1991),Exact Solution of Large Asymmetric Traveling Salesman Problems, Science, 251: 754-761.
Singh, D.K., Jaiswal, C.S., Reddy, K.S., Singh, R.M. and Bhandarkar, D.M., (2001). Irrigation and Drainage Engineering, Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal Madhya Pradesh, India. Agricultural Water Management, (pp. 1-7).
T.C. Koopmans. Concepts of optimality and their uses. Nobel Memorial Lecture $-11^{\text {th }}$ December, 1975. Mathematical Programming (1976), 11:212-228.
Waterman, R. H. and Gee, R. E.,(1981). An Application of Linear Programming to Bank Financial. The Institute of Management Sciences. Vol. 11, No. 5, pp. 77-83.

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.
Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/
Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

[^0]: Source: Ministry of food and Agriculture, Sunyani -B/A

