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Abstract 

Soil erosion is one of the world environmental problems the world is facing in the 21
st
 century affecting human 

society and is listed amongst the top environmental issues facing the world including increasing human 

population, water shortages, loss of biodiversity, energy and human diseases. An estimated 10 million hectares 

of agricultural lands are degraded and turned into un-farmable areas due to soil erosion thus resulting in reduced 

food production for the 3.7 billion malnourished people as reported by World Health Organization. Estimation of 

soil erosion loss and evaluation of soil erosion risk has become an urgent task by many nations before 

implementing soil conservation practices. There is now a large published literature on the application of the 

Revised Universal Soil Loss Equation known as the RUSLE model in combination with GIS technology for 

predicting soil loss and erosion risks in different regions.  This review paper assesses the current literature on the 

combined application of RUSLE and GIS, examining new developments in deriving the five RUSLE 

components. The literature review shows that using the traditional RUSLE model in mapping out soil erosion in 

large watersheds poses challenges. The combined effect of RUSLE and GIS provides a useful and efficient tool 

for predicting long-term soil erosion potential and assessing soil erosion impacts. However, there is a need to 

further investigate better ways of deriving the conservation and management factor (P) in the RUSLE for better 

on future studies. Data source and quality is also another key issue in GIS application, thus great care must be 

given in checking and pre-processing GIS data, including conversion to different formats, geo-referencing, data 

interpolation and registration. Finally, validation of the soil erosion loss using reference data is also a valuable 

input towards improving the quality and correctness of the results. 
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1. Introduction 

Soil erosion is define as a process in which topsoil on the soil surface is carry away from the land by water or 

wind and transported to other surfaces. It is considered the second prevalent environmental problem the world 

faces after population growth. Pimentel et al., (2009) revealed shocking figures about the erosion phenomenon, 

that is, most of the soil from farmlands is washed away about 10–40 times faster than it is being replaced, citing 

examples that United States was losing soil 10 times faster than the regular replacement rate, China and India are 

said to be losing soil 30–40 times faster. Soil erosion trend has increased throughout the 20
th

 century. The land 

degradation in the world is about 85% which is associated with soil erosion, most of which occurred since the 

end of World War II, causing a 17% reduction in crop productivity (Angima et al., 2003).  

The extent of soil erosion shows that it’s a worldwide environmental problem with some areas such as 

Southern Europe and the Mediterranean region being extremely prone to erosion due to prolonged dry periods 

and heavy erosive rainfall, falling on steep slopes with fragile soils, causing in considerable amounts of erosion 

(Onori et al.,  2006).  Mitasovaet al., (1996) reported that in Greece, soil erosion affects 3.5 million hectares 

(26.5%) of the country’s total land area. In countries like Malaysia, heavy rainfall is a frequent occurrence which 

causes soil erosion and landslides especially in steep areas where massive development occurs due to heavy 

pressure from agricultural and urban development (Khosrokhani and Pradhan, 2013; Pradhan et al.,  2012). 

Himalayas in Southeast Asia and the Andes in South America, suffer some of the world’s highest erosion rates 

because of the mountainous regions (Ismail and Ravichandran, 2008). 

Literature has shown that eroded soils transport pesticides, nutrients, and other harmful farm chemicals 

into streams, rivers, pollute surface and groundwater resources (Gallaher and Hawf, 1997), reduce productivity 

and crop yields (Renard et al.,1997), caused air pollution through emissions of gases such as carbon dioxide 

(CO2), methane (CH4), and nitrous oxide (N2O) (Cox and Madramootoo, 1998). Due to erosion over the past 40 

years, 30% of the world’s arable land has become unproductive. The erosion occurs when soil is left exposed to 

rain or wind energy thereby raindrops hit the exposed soil with great energy and easily displace the soil particles 

from the surface. Soil erosion has three-stage process involving detachment, transport and deposition as 

mentioned by Merritt et al., (2003). The impact intensified on sloping land, where often more than half of the 

surface soil is carried away as the water splashes downhill into valleys and waterways. The rate of erosion is thus 

influenced by the soil composition, slope of the land, and extends of vegetative cover. 



Journal of Biology, Agriculture and Healthcare                                                                                                                                www.iiste.org 

ISSN 2224-3208 (Paper)  ISSN 2225-093X (Online) 

Vol.5, No.9, 2015 

 

37 

Thus, timely and accurate estimation of soil erosion loss or evaluation of risk has become imperative 

for many countries. It is also useful to make estimate of how fast the soil is being eroded before affecting any 

conservation strategies. Due to the nature of the erosion process, erosion control requires a quantifiable and 

qualitative evaluation of potential soil erosion on a specific site, and the knowledge of terrain, cropping system, 

soils, and management practices. Many researchers involved in soil erosion research for quiet long time, and 

effort was put in understanding the mechanism of soil erosion, predicting the rate of soil erosion and soil loss  

both at catchment scale or plot (Fu et al., 2004;  Fu et al., 2005; Kang et al., 2001), and at a regional scale. 

Several sediment transport and soil erosion models have been developed around the world to estimate rates of 

sediment and nutrient transport under different land use systems. There are three categories of model: the 

empirical models, the conceptual models and physically-based models as suggested by Merritt et al., (2003). 

These include the USLE and GIS based USLE, WEPP, AGNPS, LISEM and EUROSEM models. These models, 

however, vary significantly in their complexity, inputs and requirements, the processes represent and the manner 

in which these processes are represented, the scale of intended use and the types of output information they 

provide (Ismail and Ravichandran, 2008; Merritt et al., 2003). 

Universal Soil Loss Equation (USLE) has emerges as a leading model and has been broadly used both 

in United States and all over the world in both agricultural and hilly watersheds owing to its simplicity of 

obtaining parameters (Wilson and Lorang, 1999). This model was first developed by Wischmeier and Smith 

(1978) and collected soil erosion data in 21 States in United States, analyzed and assessed various dominating 

factors of soil erosion, and introduced USLE to assess soil erosion by water. The USLE predicts the long-term 

average and annual rate of erosion on a field slope based on rainfall pattern, soil type, topography, crop system, 

and management practices (Kouli et al., 2009). For many decades now, comprehensive research on soil erosion 

by water has been conducted using this model. The model was then improved and replaced by the revised 

version now known as Revised Universal Soil Loss Equation (RUSLE) by additional data and incorporating 

recent research results to further enhance its ability to predict water erosion by integrating information made 

available through research of the past 40 years Renard et al., (1997). RUSLE is still widely used, as some of the 

models such as the WEPP are difficult to use for most users. In addition, the combination of remote sensing and 

GIS techniques with soil erosion models, such as RUSLE, proved to be an effective approach for estimating the 

magnitude and spatial distribution of erosion by other researchers. GIS is a tool efficient to integrate various 

datasets and assess dynamic system such as soil erosion. 

The aim is to review the current state of erosion assessment and GIS applications in the literature. This 

will include; 1) the traditional application of the RUSLE model in assessing erosion, 2) and the application of 

GIS and remote sensing techniques in predicting and estimating the magnitude and spatial distribution of erosion 

at catchment or regional scales using RUSLE. 

 

2. Traditional Methods of Soil Erosion Loss using RULSE 

The historical background of erosion-prediction technology started with analyses as reported by Renard et al., 

(1997) to find the major variables that affect soil erosion by water. They listed three major factors: potential 

erosivity of rainfall and runoff, susceptibility of soil to erosion, and soil protection done by plant cover. Zingg 

(1940) published the first equation for calculating field soil loss as reported by Moore and Burch, (1986). They 

described mathematically the effects of slope steepness and slope length on erosion. Smith (1976) also gives 

additional factors for support practices and cropping system to the equation. The concept of specific annual soil-

loss limit and the resulting equation to develop a graphic method for selecting conservation practices for certain 

soil conditions in the Midwestern United States were added. 

Browning and associates (1947) as reported by Renard et al., (1997) added soil erodibility and 

management factors to the Smith equation and prepared extensive tables of relative factor values for different 

soils, crop rotations, and slope lengths. The approach emphasized the evaluation of slope-length limits for 

different cropping systems on specific soils and slope steepness with and without, terracing, contouring, or strip-

cropping. Moore and Burch, (1986) reported a method for estimating soil losses from fields of clay pan soils. 

Soil-loss ratios at different slopes were given for contour farming, strip-cropping, and terracing. The 

recommended limits for slope length were presented for contour farming. Also, the equation is of limited value 

since it cannot provide information on the fate of sediment once it is eroded. The USLE model is not able to 

predict deposition or the pathways taken by eroded material and sediments as it moves from hill slope sites to 

water bodies. In European context, the most important consequences of erosion are pollution and sedimentation 

downstream rather than loss of productivity on-site. Policy-makers need to know more about the location of 

sediment sources and sinks. Similarly, the design of strategies to control pollution associated with erosion runoff 

and on agricultural land requires knowledge of what happens in individual rainstorms, seldom on a minute-by-

minute basis, in order to forecast the size and timing of peak discharges of water and sediment from hill slopes to 

rivers. The USLE cannot provide this because it predicts only mean annual soil loss. The need for an alternative 

approach was recognized by improving on the USLE. 
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3. Application of GIS techniques for facilitating erosion estimation  

Traditionally, the RUSLE model was developed to assess soil erosion risk for small local-scale watersheds. 

However, with the spatial widespread occurrence and acceleration of the soil erosion process and water quality 

problems, the use of RUSLE model poses inherent drawback with respect to costs of applying it, 

representativeness of site, and on reliability of predicted results (Lu., 2004; Wilson and Lorang, 1999). Thus, 

mapping of soil erosion spatial distribution is often problematic with the traditional RUSLE model (Lu et al., 

2004).  

The advent of GIS technology stimulated an explosive increase in GIS based models applications on 

regional scale. The combination of GIS technology with erosion models such as the RUSLE has improved the 

efficiency for estimating spatial distribution and magnitude of erosion risk with reasonable costs and better 

accuracy as documented by several researchers in the literature (Dziewonski et al.,  1975; Mitasova et al., 1996; 

Cox and Madramootoo, 1998; Molnár and Julien, 1998; Millward and Mersey, 1999; Wilson and Lorang, 1999; 

Yitayew, 1999; Gibbs et al., 2003; Lewis et al et al., 2005; Fu et al., 2006; Erdogan et al., 2007; Neshat et al.,  

2014). 

 

3.1. General methods for estimating RUSLE factors in a GIS environment.  

The application of RUSLE in a GIS framework has been employed in various circumstances such as 

mountainous tropical watersheds, large scale watersheds, in agricultural dominant watersheds, in areas with 

distinct wet and dry seasons, and also in areas with dynamic changes such as in land cover patterns, agricultural 

farmlands and developments. The RUSLE model consists of three main databases: 1) Climatic and survey 

database which contains information such as monthly temperature and precipitation and contours that is required 

for the calculating the erosivity factor as well as slope length and steepness factors (LS). 2) Crop database 

contains information necessary for determining the surface cover factor (C). 3) The soil data contains soil survey 

and soil characterization data which is responsible determining the soil erodibility factor (K). 

RUSLE model calculates the average annual soil erosion loss by considering the five factors as defined 

in equation 1 (Renard et al., 1997). Based on the plethora of literature, the general methodology of applying the 

RUSLE is to estimate each of the factors in the model. Several techniques for estimating these factors have been 

developed by previous researchers ranging from use of climate data, soil and geological maps, remotely sensed 

satellite images, empirical formulas and digital elevation model (DEM) obtained from various sources. The 

techniques used to generate the model factors and the results obtained are described in the next sections of this 

article. 

 

 A = RKLSCP           1) 

 Where; 
 A = predicted	long − term	average	of	annual	sheet	and	rill	soil	loss, t	ha !yr ! 

 R = rainfall − runoff	erosivity	factor,MJ	mmha !h !yr ! 

 K = soil	erosivity	factor,Mg	h	MJ !mm ! 

 L = slope	length,m 

 S = slope	steepness,% 

 C = cover	and	management	factor 
 P = support	practice 

 

3.1.1. The rainfall erosivity factor (R) 
Rainfall erosivity is the potential ability of rain to cause soil erosion (Lal, 1990). R factor is the most important 

parameter in erosion estimation by RUSLE as suggested by several researchers and its correlation with soil loss 

is high in many region and world rainfall site stations Fu et al., 2006; Millward and Mersey, 1999; Renard and 

Freimund, 1994; Wischmeier and Smith, 1978).  

The general procedure employed by researchers in determining the erosion factor involves using 

observed historical rainfall data as well as application of several different formulas depending on the prevailing 

conditions of the area. The estimation of R factor poses a challenge in data poor areas or in situations where 

climate stations are extremely sparse. Fu et al., (2006) developed an equivalent R factor (R'() for the Inland 

Pacific Northwest (IPNW) region in the USA by relating the R factor linearly with the local annual precipitation P*, mm as shown in equation 2. 

 R'( = −823.8 + 5.21P*        2)  

Where;         

 R'( = Equivalent	R	factor	for	unique	climatic	condition 

 P* = annual	precipitation,mm 
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Millward and Mersey, (1999) also faced similar conditions of sparse climate data when assessing 

erosion risk in a particular watershed in Mexico. They employed a rather more improved technique in generating 

rainfall data. They used remote rainfall stations and rainfall was interpolated from the remote stations using 

interpolation methods such as kriging and inverse distance. Interpolation was done in IDRISI using an algorithm 

INTERPOL and the R factor was then estimated using the EI30 measurement. The technique used improved the 

results of their analysis. The simplest technique is the one used by Yitayew et al., (1999) where they converted 

on-site rain gauge data to energy intensity (EI) values and multiplying it by the maximum 30-min rainfall 

intensity expressed as I30.  

Renard and Freimund (1994) propose using the monthly and mean annual rainfall in environments with 

available long-term rainfall data, in the modified Fournier index, F, previously introduced by Sauerborn et al., 

(1999) which is defined by equation 3.  

 

F = ∑ 6789
!:;<!           3) 

 Where; 
 F = Modified	Fournier	index 

 P = mean	annual	rainfall	depth,mm 

 p; = mean	rainfall	amount	in	mm	for	month	i 
This equation was used by Kouli et al., (2009) in Crete watershed in Greece to estimate the modified 

Fournier index (MFI) for thirty five rainfall gauge stations as shown in Figure 1(a). The erosivity factor was then 

determined on the basis of the estimated MFI using the kriging interpolation method. Five classes of the R factor 

were established ranging from low to high erosivity range. Their showed high values from (3020–3687 MJ 

mm/ha year
-1

) to medium to high erosivity (2353–3019 MJ mm/ha year
-1

) in the Crete watershed area. A 

rasterized erosivity map was then constructed as in Figure 1(b) showing the spatial distribution of the rainfall 

erosivity. Pradhan et al., (2012) employed the same formula in their work of the correlation of soil erosion with 

landslide events in Malaysia. 

 

(a)                          (b) 

  
Figure1: (a) Spatially distributed rain-gauges; (b) Erosivity factor in the study area (Crete, Greece) 

 

3.1.2. Soil erodibility factor (K) 
K factor measures the erodible-ness of soil as affected by soil properties. According to Fu et al., (2006) and 

Millward and Mersey (1999), it characterizes the long term reaction of the soil to heavy erosive precipitation 

events. To measure the erodibility factor, Wischmeier and Smith (1978) proposed a simple procedure measuring 

five soil properties such as percent organic matter (OM), sand, silt, soil structure and permeability. The best 

methods in determining these soil properties as input to soil erodibility include field sampling and testing of the 

site of interest as employed by Yitayew et al., (1999). They then used the nomograph method to determine the 

erodibility factor from soil characteristics found by sampling. However, the downside of this method is its time 

consuming and laborious nature.   

The general trend by many researchers is to utilize existing soil maps in areas where soil maps are 

available from government departments in hard copy format and digitize them to produce a vector coverage map. 

The soils are then grouped into soil classes extracted from sources such as the Agricultural Handbook as 

recommended by Shamshad et al., (2008) or the FAO soil classification system as employed by Millward and 

Mersey (1999). 

A raster map was then produced by converting the vector soil map using ArcGIS tools. Ozcan et al., 

(2008) applied the USLE and GIS methodology in their study in Kazan watershed in Turkey where they 

computed soil loss from this agricultural watershed. The generated soil map of the Kazan watershed is shown in 
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Figure 2 and their results indicated high soil erodibility of about 88.9% containing textures of very fine sandy 

and silt loam soils within the watershed. 

 

 
 

Figure 2: Map of land use for Kazan watershed in Turkey 

 

To determine the soil erodibility factor for the watershed, the soil map serves as a base for deriving the 

erodibility factor layer. Erodibility factor values were assigned to corresponding soil types within the watershed. 

K factor was derived using equation 4 proposed by Römkens et al., (1995) and later by Renard et al., (1997). 

 

K = 0.0034 + 0.0405	x	exp @−0.5AlogDC + 1.659F0.7101H:I    4) 

Where;  

 K = factor	layer 
    

 DC = exp J∑ f; . ln KL7MN7OP: QR       5) 

  Where; 
 d; = is	the	maximum	diameter(mm) 
 d; ! = is	the	minimum	diameter(mm) 
 f; = is	the	corresponding	mass	fraction	for	each	particle	size	of	clay, silt, and	sand 

Kouli et al., (2009) applied this formula in their study for predicting erosion with RUSLE in a GIS 

framework in Chania watershed in Greece. A rasterized layer of K was generated as shown in Figure 3. Their 

results indicated that erodibility values range from 0.02 ton ha MJ
-1

 mm
-1

 in a large areas of sandy soils to 0.04 

ton ha MJ
-1

 mm
-1

 for the loamy and silt loamy soils of the study area. Their results also show that the highest 

values of the erodibility factor are spatially correlated with the areas which revealed quaternary and neogene 

sediments. 
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Figure 3: Soil erodibility map for Crete watershed, Greece 

3.1.3. The Topography/slope factor (LS) 
The Length and Slope factor in RUSLE model characterizes the influence of topography on erosion. Previous 

researchers in the field of soil erosion have defined slope length as the distance from the point of origin of 

overland flow to the point where either the slope gradient decreases enough where deposition begins or the flow 

is concentrated in a defined channel (Renard et al., 1997; Wischmeier and Smith, 1978). Haan et al., (1994) 

revealed that when the length of slope is increased there is a corresponding increase in erosion owing to 

increased velocity of the water flow. Thus soil loss increase proportionately with increase in length and incline 

of slope (McCool et al., 1987). The combined effects of slope length and slope incline give a good estimate of 

soil erosion rate. Rill and inter-rill erosion are the most common types of erosion and the former is as a result of 

surface runoff towards the direction of slope. The latter is a result of the impact of rain falling on the ground. The 

RUSLE represents both types of erosion and does not differentiate between these two.  

The general procedure adopted by several researchers for computing the topographic effect on erosion 

is calculating both factors (Land S) together. Nowadays with GIS technology, many researchers have adopted 

using the DEM for generating topography data. The DEM is drawn from existing or digitized contours with 

known interval. There are many formulas capable of computing topography. Several researchers have adopted 

the technique as suggested by Moore and Burch (1986). This technique requires flow accumulation and slope 

steepness as shown in equation (6). 

 

 LS = KFlow	accumulation	x U'VV	W;X'::.!Y Q
Z.[ KW;\(WV]6')Z.Z^_` Q

!.Y
     6) 

 Where;       

 LS = Slope	length	and	steepness	factor	 
Lim et al., (2005) developed a GIS integrated prototype version of the Sediment Assessment Tool for Effective 

Erosion Control (SATEEC) to provide an easy-to-use GIS interface to estimate soil erosion and sediment yield 

without additional input parameter data other than those for the USLE model. They applied the method 

suggested by Moore and Burch (1986) in the prototype SATEEC to compute the topography factor from the 

DEM by providing an upper bound of slope length of 122 m. Although the prototype was not validated in their 

study, it gave acceptable results.  

Kouli et al., (2009) applied similar technique with the RUSLE version 4 in which the Arc- Info Grid 

was used to perform the computation steps of flow path based iterative slope-length accumulation. Each slope 

value was assigned in each 20 m cell of the grid surface of the watersheds. The results as shown in Figure 6 

shows the topographic factor ranges from 0 in flatter zones to 118 at the steeper slopes. The results also indicate 

that extended areas of steep slopes are prone to severe erosion compared to smaller extents which show less 

proneness to erosion. 

Similar consistent results were also reported by Erdogan et al. (2007) in their application of USLE and 

GIS models in the Kazan watershed in Turkey. They found that the combination of steep and long slopes 
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resulted in the accumulation water with high higher erosive velocities. Overall, the application of the USLE/GIS 

methodology resulted in a consistent pattern of soil erosion for different land use purposes, slope incline, and soil 

classes. They predicted annual soil losses well showing areas that are highly susceptible to erosion due to highly 

concentrated flow in certain areas within the watershed. The topography of this particular agricultural watershed 

mostly favored less erosion. 

 
Figure 4: The topography maps covering nine subwatersheds in the Crete watershed, Greece. 

 

3.1.4. Vegetative cover and management factor (C) 
The vegetation cover and management factor represent the influence of ground cover, be it by crops in the 

agricultural environment and their corresponding management practices in reducing soil loss, as well as ground 

cover by trees and grass in non-agricultural situations (Renard et al., 1997). Ground cover tends to dissipate the 

raindrop erosive power prior to hitting the soil surface, as the vegetation cover increases, the soil loss decreases. 

Thus, vegetation cover as well as crop cover types plays an important role in controlling erosion and runoff rates. 

Soil erosion can be restricted with appropriate management of residues from vegetation and plant remnants (Lee, 

2004). According to (Benkobi et al.,  1994) in their evaluation study on refined surface in controlling erosion, 
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noted that the surface cover and slope length and steepness are crucial in controlling soil loss.  

Traditionally, the surface cover factor is derived using empirical equations based on the measurements 

of many variables related to ground covers collected in the sample plots. It can also be derived from weighted 

average soil loss ratios (SLRs) that are determined from a series of sub-factors that include prior land-use, 

canopy cover, surface cover and surface roughness (Renard et al.,  1991). Knowledge of these sub-factors can be 

obtained from various sources including site visits. However, a quick and easier technique for determining the C 

factor is estimating a constant cover management value. A cover management factor of 0.0013 was estimated by 

(Yitayew et al., 1999) in their study in which they used GIS technique for facilitating erosion estimation in the 

Walnut Gulch experimental watershed in Arizona, although they highlighted that caution should be used in 

applying this technique. 

However, the most widely used technique nowadays for deriving the surface cover factor is by 

employing remote sensing techniques in producing land use/cover classification from satellite. Lu et al., (2004) 

in their study of mapping soil erosion risk in the Brazilian Amazonia based their estimation of the surface cover 

on the fraction images from spectral mixture analysis (SMA) of Landsat ETM+ image. By using equation 7, the 

C factor was estimated on the assumption that abundant vegetation cover results in less soil loss and the 

corresponding higher losses are as a result of less vegetation cover. However, they caution that in the process of 

developing the C factor, there remains the need to calibrate obtained results using local (reference) data as 

surface characteristics is captured at the time of image acquisition. 

 

 C = abc7d
!eafgeabhiNjeafgk	abhiNj         7) 

 Where; 
 C = Vegetative	cover	and	Management	factor	 
 fW];V, fCmand	fWnoL' = values	of	soil, gree	vegetation, and	shade	endmembers 

The three fraction values of soil, green vegetation, and shade endmembers. The values 

of		fW];V, fCm, fWnoL' parameters range from 0 to 1 and their sum equals 1.  

The most commonly used remote sensing technique is the Normalized Difference Vegetation Index 

(NDVI) for deriving the C factor. This index indicates the energy reflected by the earth for various conditions of 

surface cover type and is derived from the equation (8) for LandSat-ETM. NDVI values have two bands ranging 

between -1.0 to +1.0. When the measured spectral response of the earth surface is very similar to both bands, the 

NDVI values will approach zero. A large difference between the two bands results in NDVI values at the 

extremes of the data range (Kouli et al., 2009). 

Vegetation that is actively growing represent a high reflectance in the Infrared portion of the spectrum 

(Band 4, Landsat TM), compared with the visible portion (red, Band 3, Landsat TM), thus the NDVI values for 

actively growing vegetation is positive. NDVI values for low vegetative surface cover range between -0.1 and 

+0.1, while clouds and water bodies show a negative or zero values (Kouli et al., 2009). 

         8) Where;   NDVI = Normalized	Difference	Vegetation	Index  

Kouli et al., (2009) used the NDVI technique to obtain the C factor in their soil erosion prediction study 

in Greece. The C factor surface was derived from the NDVI values using equation (7) as suggested by (Van der 

Knijff et al.,  2000). Their results looked realistic showing that forest areas had the C values nearing 0 while for 

rocky terrain approaching 1. They also showed that the predicted slope values for the arable land are affected by 

crop type and management practices. 

 

 C = e( s(K tuvw
xOtuvwQ)          9) 

 Where; 
 α	and	β	are	unitless	parameters	that	determine	the	shape	of	the	curve 

 	relating	to	NDVI	and	C	factor 
Recent work by Pradhan et al., (2012) also applied the remote sensing technique in their work on 

erosion and landslide study in Malaysia. They used SPOT 5 images of 2005 and 2010 with 10m spatial 

resolution to derive the C factor from a land cover map. The slope map was produced by assigning slope values 

to different classes as shown in Figure 5. Although their results are sufficient for general planning, they 

highlighted the need for further investigation of the C factor as it was difficult to account for actual values. 
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Figure 5: C factor layer of 2005 and 2010 of study area 

 

3.1.5. Support practice factor (P) 
Conservation and management practice factor (P) is a dimensionless ration accounting for soil loss under 

specific management practices (Renard et al., 1997; Wischmeier and Smith, 1978). Contouring and tillage 

practices can have significant impact on soil erosion as described by Millward and Mersey (1999). The general 

practice by many farmers in the agricultural sector is ploughing up and down without practicing contouring, strip 

cropping or terracing which results to higher P value. However, if conservation practices are incorporated, the P-

value tends to be lower.  

The generally followed approach for determining the conservation factor is by developing empirical 

equations. In China, Fu et al., (2005) used the Wenner method suggested by Lufafa et al., (2003) to derive the 

conservation factor values as given by the equation 8. The equation only requires slope which can be easily 

extracted from available DEM. Based on this equation, the P factor value can be applied in environments where 

there is no conservation and management practices. 

Khosrokhani and Pradhan (2013) used this equation to obtain P values which ranged from 0.2 to 2.58, 

in their assessment of soil erosion in Kuala Lumpur city. Areas with greater slope were assigned the highest 

values, while minimum values corresponded to the regions with lower (S = 0
0
) slope as shown in Figure 9. 

 

 P = 0.2 + 0.03	x	S          8) 

 Where; 
 S = slope	grade(%) 
 

 
Figure 7: P factor computed from slope map of the study area 

 
3.1.6. Overall Soil Loss 
To compute the overall loss, the five gridded surfaces of the watershed were overlaid using GIS tools to produce 
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the soil erosion potential and risk map. Typically, the map is categorized into several risk levels ranging from 

low to very high risks. The risk varies slope and surface cover. Lu et al., (2004) in their Brazilian Amazonia 

study found that the soil loss ranged from very low and low risk levels. Kouli (2009) in the Crete watershed 

found that there high correlation between steep slopes and poor surface cover within the watershed. Shi et al., 

(2004) in their application of RUSLE in the small watershed of Wangjiaqiao in China catergorized the soil loss 

into classes within the watershed as shown in Figure 9. They found that about 26 tonnes/ha of soil loss was from 

the flatter agricultural areas while 52 tonnes/ha represented cultivation occurring on steepy lands and the latter 

being the major contributor to sediment transport in the watershed. 

 
Figure10. Distribution of soil erosion loss map 

 

4. Conclusion and Recommendations  

The vast literature surveyed has shown that the RUSLE model has been applied extensively and also proven 

valuable in estimating soil losses as a result of erosion in many parts of the world. Although it is a suitable model 

for application at local (small) scale, the combination of RUSLE and GIS techniques has improved the 

assessment of spatially distributed of soil erosion in large catchment scales. Literature has shown that the five 

important components of the model can be derived from many sources (DEM, weather data, soil maps, and 

remote sensing images). Thus, the use of GIS technology allows for wider study area (large scale catchment) in 

soil erosion studies and provides the necessary tools to analyze these in order to improve the results. 

The following recommendations are worth mentioning for future soil erosion studies with RUSLE 

model in a GIS framework: 

• There is a need to further investigate better ways of deriving the conservation and management factor 

(P) for better on future studies. 

• Data source and quality is key in GIS, therefore, great care must be given in checking and pre-

processing of GIS data, including conversion to different formats, geo-referencing, data interpolation 

and registration. 

• Validation of the soil erosion loss using reference (locally available) data is also a valuable input 

towards improving the quality and correctness of the results. 

• Finally, other soil erosion models such as WEPP could also be applied with GIS to improve on their 

precision and extent of application. 
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