Effects of Topical Application of Green Apple Extract on Excisional Wound Healing in Female Rabbits

Methaq Abd Al-Rada
Dept. of Pathology& Poultry diseases, College of Veterinary Medicine, Univ. of Basrah, Basrah, Iraq
E-mail of the corresponding author: methaq.rada @ gmail.com

Abstract
In the present study wound healing efficiency of green apple alcoholic extract of the whole fruit in the form of ointment , using one type wound model (full thickness incisional wound)was evaluated in twelve female rabbits. ethanol solvent was used to prepare the extract. chemical analysis of green apple alcoholic extract reveals the presence of alkaloid, saponin ,tannin in Flavonoid, Glycosides, polysaccharides , proteins, Triterpens and Carbohydrates. two Circular wounds were inflicted on the animals which ,divided into three groups , four animals in each group. the ointment of green apple was applied topically with 5mg twice daily. Wound area was measured and the percentage of wound reduction (wound contraction rate) per a day was calculated. The effects were studied on excissional wound were hyperemia , exudation , were percent of wound contraction and length of wound macroscopically, and infiltration of inflammatory cell (macrophage ,neutrophils),granulation tissue formation microscopically. Treated wounds induced complete wound healing in shortest period (11 days) while control wounds show non complete healing till the end of experiment (14 days).

Keywords: rabbits, wound healing, green apple

1. Introduction
Wound healing is the physiological response to the tissue injury that results in the replacement of destroyed tissue by living tissue and thus restoration of tissue integrity. The mechanism of wound repair occurs by four basic processes such as inflammation ,wound contraction, epithelialization and granulation Tissue formation. Inflammation starts immediately after the disruption of tissue integrity (1). During this process, a set of complex biochemical events takes place in a closely orchestrated cascade to repair the damage. Errors in wound healing can lead to delayed healing or formation of hypertrophic scars (2). The goal for wound treatment is fast and scarless healing.

Apple is also very nutritious. As the saying goes – an apple a day, keeps the doctor away. Green apple is a favorite fruit of many. There are almost 7000 types of apple available in the world. The red apple is very popular as well as the green apple. Usually apples are sweet, but some are sour as well. The sour apples are used for cooking, refining it for the preparation of oil , as well as making wine. The green apple falls into the latter category. Green apple has a green colored radiant skin and is sweet and sour in taste. It is very juicy also and very tasty to eat.(2).

Material and Methods
Preparation of extract
Air dried and coarsely powdered (70 gm) of green apple were placed in soxhlet extractor separately, using Diethyl ether about (300 ml) at 50 °C then successively with ethanol. The extracts were then concentrated to dryness under reduced pressure and controlled temperature, respectively and they were preserved in a refrigerator. (5).
Preparation of oil ointment

The ointment was prepared by using Vaseline base by titration method using spatula to admix the oil extract of green apple with gradual addition of Vaseline to obtain a homogenous ointment with ration of oil extract to Vaseline base was 1:3 respectively (6).

Preliminary chemical investigation

- Carbohydrates test: By use molish reagent. (7).
- Flavonoid test: By use Magnesium taringes and alcoholic Potassium hydroxide solution (8).
- Saponin test: By use aqueous mercuric chloride (5%), (HgCl₂ 5%). (9).
- Glycosides test: By use Benedict’s reagent. (8).
- Polysaccharides test: By use Iodine reagent (10).
- Triterponoides test: By use sulfuric acid & chloroform (11).
- Protein test: By use biuret Reagent. (12).
- Aldehydes and Ketone’s test: By use 2, 4 Dinitro phenyl hydrazine reagent (13).

Animal and housing

eighteenth female rabbits, weighting 1.5 – 2 Kg, were distributed into three groups of six animals each. The rabbits were housed individual cages, maintained on 24 hour light, and given free access on alfalfa and water, at room temperature.

Excision wound model

Excision wound models were used to evaluate the wound healing activity. Excision wound model was employed to have information about wound contraction and wound closure time on the three groups of animals. The back hairs of the animals were depilated by shaving. two wounds were created on the shoulder region of each standard made on both sides of shoulder regions, made by standard sharp blade the length of incision was 1.5 cm the right side was used as treated wound and the left was used as control. Fig(1). Wounds were left open and the medicine was applied topically twice a day (once in the morning and evening) on to each animal. (14). Then both treated and control wounds in each animal were treated with oil ointment and Vaseline base respectively with (0.5 g) of each, The treatment with ointment and Vaseline was continue for 14th day postoperative day, finally wounds were covered with cotton vest to prevent detachment and self infliction Fig(2).

Measurement of wound area:

The progressive changes in wound area were monitored every fourth day. The size of the wound was also measured using a scale and the wound area was calculated. Wound contraction was calculated as percentage of the reduction in wound area (15):

\[
\text{Percentage of wound contraction} = \left(\frac{\text{Initial wound area} - \text{Specific day wound area}}{\text{Initial wound area}} \right) \times 100
\]

Macroscopically

Both wounds (treated and control) were examined daily to observe the pathological changes which take place in
wounds, regarding to the severity of hyperemia (redness degree) exudation (seous, seropurulent and purulent), (16).

Wound biopsy
The animal at each intervals (3rd, 7th, and 14th) day post were euthanized under general anesthe sia with Intramuscular of a combination of Ketamin HCl (50 mg /Kg) and xylzin hydrochloride (10 mg/Kg) body weight (17). The samples taken for histopathological examinations were prepared using classical processes, and then the paraffin-embedded blocks were cut to a thickness of 5µ and stained with hematoxylin and eosin stain. The tissues were scored histopathologically in terms of re-epithelization, granulation development, collagen accumulation, inflammatory cell infiltration and angiogenesis. Granulation tissue development; progress of epithelization and presence of infection were evaluated macroscopically. Progress of wound contraction and epithelization were accepted as criteria for wound healing.

Results

<table>
<thead>
<tr>
<th>Table 1. The chemical constituents of green apple alcoholic extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Constituents</td>
</tr>
<tr>
<td>Glycosides</td>
</tr>
<tr>
<td>Flavonoides</td>
</tr>
<tr>
<td>Proteins</td>
</tr>
<tr>
<td>Polysaccharides</td>
</tr>
<tr>
<td>Saponins</td>
</tr>
<tr>
<td>Triterpenes</td>
</tr>
<tr>
<td>Carbohydrates</td>
</tr>
<tr>
<td>Aldehydes and Ketones</td>
</tr>
</tbody>
</table>

The preliminary chemical analysis of green apple alcoholic extract showed the presence of all chemical constituents that recorded in the above table.

Macroscopic evaluation

<table>
<thead>
<tr>
<th>Table 2. The effect of green apple alcoholic extract on macroscopic wound healing categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days</td>
</tr>
<tr>
<td>3rd day</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>7th day</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>14th day</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

* Note: (-) Absent, (+) Mild, (+++) Moderate, (++++) Severe

Topical applications of green apple alcoholic extract for the treated wound showed absence of hyperemia and exudation through the period of experiment, figures: (1, 2, 3) while the severity of these categories (Hyperemia and exudation) ranged between moderate at third day to severe at 7th day and reduce to be mild at 14th day postoperative day. As explained in Table (2).

The decreasing in the length of the wounds

<table>
<thead>
<tr>
<th>Table 3. The effect of green apple alcoholic extract on decrease the wound length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
</tr>
<tr>
<td>Treated</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

The above table explains the decreasing in the length of the wounds in both (treated and control wound throughout the period of the experiment.)
Table 4. The effect of green apple alcoholic extract on wound area and wound contraction of wounds

<table>
<thead>
<tr>
<th>Intervals</th>
<th>Wound Area</th>
<th>Wound Contraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd day</td>
<td>treated</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>1.54</td>
</tr>
<tr>
<td>7th day</td>
<td>treated</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>0.78</td>
</tr>
<tr>
<td>14th day</td>
<td>treated</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Figure 1. The length of treated wound was 1.1 cm at 3rd postoperative day.

Figure 2. The length of control wound was 1.4 cm at 3rd postoperative day.

Figure 3. The length of treated wound was 0.8 cm at 7th postoperative day.

Figure 4. The length of control wound was 1 cm at 7th postoperative day.
Microscopic Evaluation

Table 4. The effect of green apple alcoholic extract on microscopic categories

<table>
<thead>
<tr>
<th>Days</th>
<th>Groups</th>
<th>Neutrophils</th>
<th>Macrophages</th>
<th>Granulation tissues</th>
<th>Re-epithelialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd day</td>
<td>treated</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th day</td>
<td>treated</td>
<td>+ +</td>
<td>++</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>+ + +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>14th day</td>
<td>treated</td>
<td>-</td>
<td>+ +</td>
<td>+ + +</td>
<td>(11th day) + + +</td>
</tr>
<tr>
<td></td>
<td>control</td>
<td>+</td>
<td>+ +</td>
<td>+ + +</td>
<td>+ +</td>
</tr>
</tbody>
</table>

Note: (-) Absent, (+) Mild, (+++) Moderate, (++++) Severe

The result of the effect of green apple alcoholic extract on the histological elements of wound healing was showed in table (4) and gross figures. At 3rd day the infiltration of neutrophils was less in treated wound figure(2, 4) and still lesser in treated wound than control on 7th day figure(6,8). The infiltration became mild on 14th day in control and disappeared completely in treated wound figure(10,12).

The infiltration of macrophage was higher in treated wound than in control at 3rd and 7th and decreased in their infiltration at 14th day figure(2,4,6,8,10,12). The granulation tissue appear early at 3rd postoperative day and become obvious on 11th day. Throughout period of experiment, the progression of new epithelium to cover the wound area in the treated wound more than control wounds figures: (1,3,5,7,9).

Histopathological figures

Figure(1): treated(3rd day) mild re-epithelialization.
Hand E stain. 10x.

Figure(2): treated(3rd day) infiltration of inflammatory cells was mild (arrow). Hand E stain. 40x.
Figure (3): no re-epithelialization arrow. H and E stain. 10x.

Figure (4): control (3rd day) infiltration of inflammatory cells was severe (arrows). H and E stain. 40x.

Figure (5): treated wound moderate re-epithelialization, at 7th day postoperative. H&E stain. 10x

Figure (6): treated wound Granulation tissue was clear. at 7th day postoperative. 10x H&E.

Figure (7): control wound mild re-epithelialization till 14th day, arrow postoperative. H&E stain. 10x

Figure (8): control wound mild Granulation tissue at 7th day postoperative. H&E stain. 10x
Discussion:
In this study, topical applications of alcoholic extract showed clearance of treated wound from inflammatory elements such as hyperemia and exudates as compared with control wounds, according to chemical alcoholic extract of green apple contains important chemical constituents such as saponins which acts as an antiseptic agent (18), and this explains the clearance of treated wounds from exudates than control wound.

Wound healing is divided into three phases: inflammatory response, proliferation stage, and scar formation (19). Inflammation is an important factor affecting the outcome of wound healing (20,21). We found that treatment with alcoholic ointment of green apple reduced inflammatory cell infiltration in the wound also induced rapid closure of the wound and increased the formation of granulation tissue at 7 days post-wounding. Furthermore, re-epithelialization was accelerated following treatment with this ointment.

Wound contraction is considered an important factor in the evaluation of healing process in large open wounds (22). In our study, the typical application of alcoholic extract on full thickness excisional wounds results in more accelerated contraction of treated wounds with 100% contraction rate at 11th day post-wounding, while in control wounds the contraction rate was 78% at the end of experiment. polysaccharides in Aloe which increase collagen activity and promote wound contraction, while (22) found in his study that polysaccharides activate macrophages and stimulate the fibroblast proliferation with subsequent proliferation of myofibroblast at the periphery of the wound, and the contraction of these cells play important role in wound contraction (22, 23 and 24).

From the previous facts we discussed the result of our study, that the excisional wounds were treated with alcoholic extract of green apple accelerated the contraction rate for the treated wounds as compared with control wounds. (24). Found in their study, The wound healing process depends on the local circulation as well as formation and deposition of collagen (25).

In this work the treated wound showed more accelerated healing with complete re-epithelialization at 11th postoperative day, while control showed incomplete healing till the end of the experiment. Green apple alcoholic extract has important ingredients such as polysaccharides, triterpens, flavonoids, glycosides, which
are responsible on wound healing(18,25), found in their study that all these ingredients increase collagen activity and promote healing process.

(18) showed that alkaloids ingredient that present in *Nilumbo nucifera* (Lotus) dilate blood vessels and make more oxygen available to improve collagen formation for wound healing. During the wound healing process, epithelial cells proliferate and migrate from the edges of the wound and eventually cover the wound with new epithelium (24). In this study, the treated wounds were showed decreasing in the length of wound which become chiefly at 11th day postoperative day, this may regard to the presence of alkaloid in alcoholic extract that improve blood supply and improve the healing process (18,16).

As a result the green apple is affective topically in improvement of the healing process and decrease the length of treated wounds as compared with control wounds.

References

18) Biogeneriecs Pharma GmbH Isestrasse 123 DE. 20149, HAMBURG, 2013.

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digitial Library, NewJour, Google Scholar