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ABSTRACT 
One of the main features that distinguish split-plot experiments from other experiments is that they involve two 

types of experimental errors; the whole plot (WP) error and the split-plot (SP) error. This research paper 

compared the effectiveness of split-plot design (SPD) over randomized complete block design (RCBD). The data 

used for comparison is a 2
1
 x 5

2
 split-plot experiment with three replicates. It is been carried out to evaluate the 

threshing efficiency of an improved sorghum thresher; the three factors considered in the experiment are the feed 

at two different rates, moisture content at five different levels and speed at five different rates. The data is 

analyzed as split-plot and as randomized complete block design and their ANOVA results and relative efficiency 

(RE) statistic values were compared. The result reveals the effectiveness of split-plot design over randomized 

complete block design. 
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1. INTRODUCTION 
Experiments performed by investigators in virtually all field of inquiry, are usually, to discover 

something about a particular process or system. Literally, an experiment is a test (Montgomery, 2005). The 

choice of experimental unit has been one of the signifying problems for various types of experiments. In field 

experiments the size and shape of plot and the size and shape of block are of great influence and the choice on 

these matters are of two types: statistical and others. Under statistical considerations we include topics such as 

effect of size and shape of plot on error variance and accuracy of estimation while the non-statistical 

considerations include such matters as the feasibility of particular sizes and shapes of plot from the point of view 

of experimentation. 

Most field (agronomic) experiments are large and the choice of a suitable experimental unit may have 

some scope of ingenuity. The experimenter have to make the division of the experimental material into blocks in 

such a way that the plots within blocks are as homogeneous as possible, that is, block should remove as much 

trends in the material as possible. Kempthorne (1952) stated that if an inappropriate design for an experiment is 

used it faces considerable defects and it may not be easy to find a reasonably homogeneous area of dimensions 

of the experiment. In addition, column effects at one end of the experiment may be very different from column 

effects at the other end and such an effect would result in lower efficiency. 

Cox (1958) stated that in a randomized complete block design (RCBD) the effects of certain sources of 

variation reduced by grouping the experimental units or by the use of adjustments based on a concomitant 

variable, the remaining variation convert into effective random variation by randomization. He further discussed, 

an agricultural field trials in the form of factorial experiments arranged in randomized complete block design the 

treatments must not be too large if these design is to be effective: often the number of treatments needs to be less 

than 20 for randomized complete block design, and sometimes the limit is lower than this. When the numbers of 

treatments exceed this limit, the blocks or rows and columns tend to become too heterogeneous resulting in a 

high residual standard deviation. He concluded that the grouping of the material into blocks eliminates the effect 

of constant differences between blocks and the randomization allows us to treat the remaining variation between 

units as random variation, so far as assessing treatment comparisons is concerned. The success of the 

randomized complete block design depends on a good grouping of the units into blocks, and the general idea of 

grouping into blocks is of fundamental importance and is not only frequently used in simple experiments but also 

forms the basis for most of the more complicated designs. 

Cox (1958) again argued that the use of split-plot design is necessarily not when the whole plot 

treatments are likely to be compared with less precision than the subplot treatments because the whole plot 

treatments need not be restricted to a single factor but may consist of all combinations of the levels of several 

factors. He stated that the split-plot principle is applied to experiments on processes in which there are several 

stages and it may then be convenient to work with large batches of material at the first stage, dividing into 

smaller batches for the application of the treatment at the second stage. 

Cochran and Cox (1956) stated that the chief practical advantage of the split-plot arrangement is, it 

enables factors that require relatively large amount of materials and factors that require only small amount of 

materials to be used. In addition, factors of second type can often be included at very little extra cost, and some 

additional information obtained very cheaply. They summarized that , the split-plot design is advantageous if the 
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sub-plot (B) treatment and the interaction of the whole plot (A) and sub-plot (B) treatment effects are of greater 

interest than the whole plot treatment (A) effect, or if the whole plot (A) effect cannot be tested on small amount 

of materials. They gave two disadvantages mentioned by experimenters, which are; sometimes the whole-unit 

error is much larger than the sub-unit error. It may occur at times that the effect of whole-plot (A), though large 

and exciting, is not significant, whereas that of sub-plot (B), which is too small to be of practical interest, is 

statistically significant. The experimenter tends to be uncomfortable in reporting results of this type. Secondly, 

the fact that different treatment comparisons have different basic error variances makes the analysis more 

complex than with randomized complete block design, especially if some unusual type of comparison is being 

made. They commended that the split-plot Latin square eliminates error variation, which arise from two types of 

grouping, and is preferable to randomized complete block design (RCBD). They cited an example presented by 

Yates (1935) where he summarized 22 field experiments in Latin squares where the plots were split into halves, 

he found a substantial net increase in precision over randomized complete block design, and the superiority was 

so pronounced that even the whole-plot comparisons would have been less precisely determined  in randomized 

complete block design. 

Montgomery (2005) stated that the incorrect testing of effects for running an experiment in a 

completely randomized fashion instead of the split-plot design is because the error associated with the hard-to-

change factor inflates the variance of the regression coefficient for the easily changed factor. Jones and 

Nachtcheim (2009) stated that when an industrial experiment, is prescribed wrongly it lead to incorrect analysis, 

which inflates the Type I, error rate for whole plot sub factors, as does the Type II error rate for split plot sub 

factors and whole plot by split-plot interactions. Therefore, one way to avoid these mistakes is to plan the 

experiment as a split-plot design in the first place. Not only does this avoid mistakes, it also leverages the 

economic and statistical efficiencies. Besides the less expensiveness of running the split-plot design, it is often a 

more statistically efficient design compared to other experimental designs because it handles large data with less 

error. Bisgaard et al. (1996) discussed this issue and stated that if a split-plot experiment is wrongly analyzed as 

a completely randomized experiment, some factors may be declared significant when they are not and vice versa. 

Kowalski and Potcner (2003) stated that when a designed experiment uses blocks such as days or 

batches, the analysis of the experiment includes a term for these blocks. When a designed experiment is 

performed by fixing a factor and then running the combinations of the other factors, using different sized 

experimental units or using a different randomization for the factors (a split-plot design), the analysis should 

incorporate these features. They analyzed 23 factorial treatments design with two replicates using the split-plot 

approach. The responses were first analyzed incorrectly as if they came from a completely randomized design 

and then ran correctly as a split-plot design. It was observed that some treatment effects were declared 

significant for the completely randomized design and not for the split-plot design and vice versa. They stated that 

the cause is, in the completely randomized design, all factors effect use the mean square error as the estimate of 

experimental error. In a split-plot experiment, however, there are two different experimental error structures: one 

for the WP factor and one for the SP factor. They concluded that it is because of the two separate randomizations 

that occur when running the experiment.  

2.  MATERIALS AND METHODS 

A 2
1
 x 5

2
 split-plot experiment with three replicates was carried out to evaluate the threshing efficiency 

of an improved sorghum thresher. The three factors considered in the experiment are the feed (whole plot factor) 

at two different rates, moisture content (first sub-plot factor) at five different levels and speed (second sub-plot 

factor) at five different rates. The data will be analyzed as split-plot design and as randomized complete block 

design, this is to check the effectiveness of the split-plot design over randomized complete block design. Their 

respective models are as follows; 

2.1 Split-Plot Design Model 

The model is a linear additive model, it is given as; 

ijkljlilijljikkiijklY ℓℓ +++++++++= )()()( βηαηαβηβγαµ …………………… (1) 

where: Yijkl is the response; µ is a constant; iα is the WP factor; kγ is the block effect; ikℓ is the WP error, NID 

~ (0,
2σ ); jβ  is the first SP factor; lη  is the second SP factor; ij)(αβ , il)(αη , jl)(βη  are the interaction 

factors; ijklℓ is the SP error, NID ~ (0,
2σ );  i = 1, 2, 3, …, a (levels of WP factor),  j = 1, 2, 3, …, b (levels of 

SP factor), k = 1, 2, 3, …, r (number of replicates or blocks). Note, the model did not include the three-factor 

interaction.                                    
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Table I: Sketch of the ANOVA Table for Split-Plot Design Model 

Source Df Sum of Square Mean Square Fcal 

   Block     r – 1  SSBLOCK MSBLOCK MSBlock/MSMPE 

     A     a – 1  SSA MSA MSA / MSMPE 

Main plot error      (r – 1)( a – 1) SSMPE MSMPE  

     B     b – 1  SSB MSB MSB / MSSPE 

     C     c – 1  SSC MSC MSC/MSSPE 

   AB (a – 1)( b – 1) SSAB MSAB MSAB / MSSPE 

   AC (a – 1)( c – 1) SSAC MSAC MSAC / MSSPE 

   BC (b – 1)( c – 1) SSBC MSBC MSBC / MSSPE 

Split-plot error a(r-1)( b – 1)(c – 1 ) SSSPE MSSPE  

TOTAL     abcr-1 SSTOTAL   

Source: Jones and Nachtcheim (2009) 
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abcr

a

i

b

j

c

l

r

k

ijkl

2

....2 Υ
−Υ∑∑∑∑ , SSBLOCK =∑

Υ
−

Υr

k

k

abcrabc

2

....

2

...
, SSA =∑

Υ
−

Υa

i

i

abcrbcr

2

...

2

...
,               

SSMPE =∑∑ ∑ ∑
Υ

+
Υ

−
Υ

−
Υa

i

r

k

a

i

r

k

kiki

abcrabcbcrbc

2

....

2

...

2

...

2

..
, SSB =∑

Υ
−

Υb

j

j

abcracr

2

....

2

...
, SSC = ∑

Υ
−

Υc

l

l

abcrabr

2

....

2

...
 

SSAB = ∑∑ ∑ ∑ +−−
a

i

b

j

a

i

b

j

jiij

abcr

Y

acr

Y

bcr

Y

cr

Y 2

....

2

...
2

...

2

..
 , SSAC = ∑∑ ∑ ∑ +−−

a

i

c

l

a

i

c

l

lili

abcr

Y

abr

Y

bcr

Y

br

Y
2

....

2

...

2

...

2

..
and   

SSBC = ∑∑ ∑ ∑ +−−
b

j

c

l

b

j

c

l

ljjl

abcr

Y

abr

Y

acr

Y

ar

Y 2

....

2

...

2

...

2

..
  hence, the split-plot error will be,                                                              

 SSSPE = SSTOTAL – SSBLOCK – SSA – SSMPE – SSB – SSC – SSAB – SSAC – SSBC    

2.2 Randomized Complete Block Design Model (RCBD) 

Three models can be identified from a randomized complete block design, they are; 

1. RCBD model without replication within blocks and one observation per cell. 

ijjiij ℓ+++=Υ βαµ         (2) 

where; 

Yij is the response yield; µ is the overall mean; αi is the effect of the i
th

 row (treatment); βi is the effect of the j
th

 

column (block) and 
ijℓ is the experimental error which is NID ~ (0,

2σ ); i = 1, 2, 3,…, p          j = 1, 2, 3,…, b. 

2. RCBD model with replication within blocks but no interaction between treatments. 

lijkkijiijkl )()( ℓ++++=Υ δβαµ              

(3) 
where; 

Yijkl is the response from the l
th

 experimental unit in block i, the k
th

 randomization and given the j
th

 treatment; µ

is the overall mean; iα  is the i
th

 block effect; 
jβ  is the j

th
 treatment effect; ki)(δ  is the k

th
 restriction error within 

the i
th

 block (i.e. Df for ki)(δ  is zero) and 
ijkℓ  is the experimental error, NID~ (0,

2σ ).  

3. RCBD model with replication within blocks and interaction between treatments. 

ijkljlilijljkiijkl ℓ++++++++=Υ )()()( βηαηαβηβδαµ ……………………….. (4) 

where; 

Yijk, is the k
th

 response from the i
th

 and j
th

 effects; µ , is the overall mean constant; iα , is the i
th

 effect of 

treatment A; kδ , is the block effect; 
jβ , is the j

th
 effect of treatment B; lη , is the l

th
 effect of treatment C; 

ij)(αβ , il)(αη , jl)(βη  are the interaction of the i
th

, j
th 

and l
th

 effect of treatment A and B, A and C, B and C; 
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ijkℓ , is the random error caused by the k
th

 response from the  j
th

 effect of B and l
th

 effect of C in the i
th

 effect of 

A, NID ~ (0, 
2σ ); i = 1, …, a,  j = 1, …, b, l = 1, …, c, k = 1, …, n.  

The third model is the adopted model for this research in comparison with the split-plot design model 

also; the three-factor interaction was not included in the model just to obtain adequate degree of freedom for 

error to estimate the interaction effect adequately. 

Table II: Sketch of the ANOVA Table for the Third RCBD Model 

Source Df Sum of Square Mean Square Fcal 

   Block       r-1 SSBLOCK MSBLOCK MSBlock/MSE 

     A       a-1 SSA MSA MSA / MSE 

     B       b-1 SSB MSB MSB / MSE 

     C       c-1    

   AB (a-1)(b-1) SSAB MSAB MSAB / MSE 

   AC (a-1)(c-1)    

   BC (b-1)(c-1)    

Error  (abc-1)(r-1) SSE MSE  

TOTAL     abcr-1 SSTOTAL   

Source: Montgomery (2005).     

where, 
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hence, the sum of square error will be;    

SSError = SSTOTAL – SSBLOCK – SSA – SSB – SSC – SSAB – SSAC – SSBC    

2.3 Efficiency of Split-Plot Design Relative to RCBD 

According to Hinkelmann and Kempthorne (2008), experimenters utilize the split-plot design in many 

instances and circumstances for technical reasons. Under most circumstances, the split-plot design is been used 

for purely technical and practical reasons, as the levels of some factor can be applied only to large experimental 

units, which can then be “split” into smaller experimental units for application of the levels of the other factor. 

This includes also the distinction between hard-to-change and easy-to-change factors in industrial 

experimentation. It is, however, of interest to evaluate the efficiency of the split-plot design relative to the RCBD 

with r blocks. The question then is given that we have carried out a split-plot experiment, what would have been 

MSE for the RCBD? This, of course, determines how much information would have been available for all 

treatment comparisons. Using the pooled treatment sums of squares with appropriate error sum of squares, that 

r (ab – 1) MSE = r (a – 1) MSWPE + ra(b – 1)MSSPE  

divide through by r we have 

E΄ = 
1

)1()1(

−

−+−

ab

MSbaMSa SPEWPE
 …………………………………………………… 5                

where MSE = E΄ = is a weighted average of mean square WP error and mean square SP error; MSWPE, is the 

mean square WP error; MSSPE, is the mean square split-plot error; a, is the number of levels of WP factor; b, is 

the number of levels of SP factor. 

From equation (1) and equation (4) the information on all treatment comparisons would then have been 

proportional to 1/ E΄. The information on WP treatments from the split-plot experiment relative to randomized 

complete block design is then E΄/MSMPE that is less than 1. For SP treatments and interaction effects from the 

split-plot experiment relative to the randomized complete block, design is E΄/MSSPE that is greater than 1. These 

results express the obvious: that the arrangement of split-plot treatments together within a whole plot results in a 

lower accuracy on whole plot treatment comparisons and an increased accuracy on other treatment comparisons, 

the formulas enable a quantitative evaluation of these effects. Recourse should be taken to a split-plot design 
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when experimental conditions necessitates the special arrangement, or when the experimenter is more interested 

in one factor, which he/she arranges within whole plots, than in the other (Hinkelmann and Kempthorne, 2008). 

Equation (5) above as presented by Hinkelmann and Kempthorne (2008) is inadequate for our designed 

models since its applicability is for two factors only. Hence, for a three-factor design the relative efficiency of 

the split-plot design over RCBD will be obtained from Table I and II, using the pooled treatment sums of squares 

with appropriate error sums of squares, that 

r(abc – 1)MSE = r(a – 1)MSWPE + ra(b – 1)(c – 1)MSSPE  

divide through by r we have 

E΄ = 
1

)1)(1()1(

−

−−+−

abc

MScbaMSa SPEWPE
 ………………………………………………. 6 

The interpretations for the two factors as given by Hinkelmann and Kempthorne (2008) and their respective 

conclusions hold for the three factors too.                

3. RESULT 

Table III: ANOVA Table for the Split-Plot Model 

Source Df SS MS FCAL P- Values 

Blocks 2 8.972 4.486 30.73 <.0001 

FR 1 75.69 75.69 22.15 0.0423 

Mp error 2 6.834 3.42 23.41  

GM 4 52.68 13.17 90.22 <.0001 

BFS 4 6.905 1.726 11.83 <.0001 

FR*GM 4 15.12 3.78 25.90 <.0001 

FR*BFS 4 1.62 0.40 2.77 0.0305 

GM*BFS 16 0.224 0.014 0.10 1.000 

SP Error 112 16.35 0.146   

Total 149 184.394    

Source: Author’s computation 

Table IV: ANOVA Table for the RCBD Model  

Source Df SS MS FCAL P- Values 

Blocks 2 8.97         4.49       22.06   <.0001 

FR 1 75.69       75.69      372.16    <.0001 

GM 4 52.68  13.17 64.76     <.0001 

BFS 4 6.90           1.73 8.49 <.0001 

FR*GM 4 15.12          3.78 18.59 <.0001 

FR*BFS 4 1.62        0.405 1.99     0.1005 

GM*BFS 16 0.224        0.014 0.07     1.0000 

Error 114 23.18 0.203   

Total 149 184.39    

Source: Author’s computation 

4. DISCUSSION   

From equation (5) the weighted mean square error, E΄ is estimated as,  

E΄ = 0.165142857.  

Hence, the information on WP treatment from the split-plot experiment relative to randomized complete block 

design is then,  

(E΄/MSMPE ) = 0.165142857/3.42 

        = 0.0483 < 1 

While the information on SP treatments from the split-plot experiment relative to randomized complete block 

design is then  

(E΄/MSSPE ) = 0.165142857/0.146 
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        = 1.131 > 1 

Table III and IV above shows the ANOVA result for the split-plot design and the randomized complete block 

design respectively. From observation on table III, at α = 5% significance level, all the main effects FR, GM and 

BFS are significant since, their p-values are less than α = 5% significance level. While for the interaction effects 

FR*GM, FR*BFS and GM*BFS it is observed that GM*BFS is not significant since its p-value of 1.000 is 

greater than α = 5% significance level. Likewise, from table IV all main effects are significant while for the 

interaction effects it is observed that FR*BFS and GM*BFS are not significant since their p-values of 0.1005 

and 1.000 respectively are greater than α = 5% significant level. This is an evidence of the split-plot design 

superiority over the randomized complete block design. Hence, for a complete proof of the ANOVA results the 

relative efficiency of the split-plot design over the RCBD was been computed. It was clear when the efficiency 

of the WP treatment relative to the RCBD computed using equation (6) the value (0.0483) obtained is less than 

one and that of the sub-plot treatments relative to the RCBD show that the value (1.131) obtained is greater than 

one. Hence, we can agree on the superiority of the SPD over the RCBD. This result obtained is not far from that 

obtained by Kowalski and Potcner (2003) though they observed the efficiency of SPD relative to complete 

randomized design (CRD) using ANOVA results only. The difference between the RCBD and CRD is the block 

factor besides; the issue of blocking is to improve the design and to remove every element of heterogeneity as 

much as possible. Hence, the SPD is not an exception, its form of design is to develop an adequate and precise 

design that can reduce cost, remove heterogeneity and study factors of less and important interest together. 

5. CONCLUSION  

This research is an attempt to compare the effectiveness of SPD over RCBD. The result obtained clearly 

put the SPD ahead of the RCBD since from the ANOVA table result for the interaction of the feed rate by the 

machine blowing fan speed (FR*BFS) is significant from the SPD ANOVA model but not significant from the 

RCBD ANOVA model at 5% significance level. Likewise, the relative efficiency statistic computed was to 

compare the two designs and the values obtained also reveal that the SPD model is more efficient relative to the 

RCBD model. Before embarking on the plan and design of experiment, experimenters should adequately study 

the type of factors for their experiments to know how important they are for achieving their experimental goals. 

Because the results from this research shows that the SPD will be more efficient than the RCBD especially when 

one or some of the factors to be studied are of less importance or is hard-to-change as in the industrial 

experiments. Instead of avoiding the SPD due to computational complexities as viewed by some experimenters 

and scholars, a professional should be contacted it will go a long way in reducing biased results in estimating 

factors significant contribution to the experimental response.     
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