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ABSTRACT 

 A comprehensive study of thermal radiation on a steady two-dimensional laminar flow of a viscous 
incompressible electrically conducting micropolar fluid past a stretching surface embedded in a non-Darcian 
porous medium is analyzed numerically. The governing equations of momentum, angular momentum, and 
energy equations are solved numerically using Runge- Kutta fourth order method with shooting technique. The 
effects of various parameters on the velocity, microrotation, and temperature field as well as skin friction 
coefficient, and Nusselt number are shown graphically and in tabulated. It is observed that the micropolar fluid 
helps in the reduction of drag forces and also acts as a cooling agent. 
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1. INTRODUCTION  

  Micropolar fluids are fluid with microstructure. They belong to a class of fluids with nonsymmetric 
stress tensor that we shall call polar fluids. Micropolar fluids may also represent fluids consisting of rigid, 
randomly oriented (or spherical) particles suspended in a viscous medium, where the deformation of the particle 
is ignored. This constitutes a substantial generalization of the Navier-Stokes model and opens a new field of 
potential applications. The attractiveness and power of the model of micropolar fluids come from the fact that it 
is both a significant and a simple generalization of the classical Navier-Stokes model. The theory of micropolar 
fluids developed by Eringen [1] and has been a field of very active research for the last few decades as this class 
of fluids represents, mathematically, many industrial important fluids such as paints, body fluids, polymers, 
colloidal fluids, suspension fluids, animal blood, liquid crystal, etc among the various non-Newtonian fluids 
model. Eringen[2] has also developed the theory of thermomicropolar fluids by the extending the theory of 
micropolar fluids. A thorough review of the subject of the application of micropolar fluid mechanics has been 
given by Lukaszewicz [3] and Arimanm et al [4]. Ahmadi [5] obtained a similarity solution for micropolar 
boundary layer flow over a semi-infinite plate. Jena and Mathur [6] further studied the laminar free convection 
flow of thermomicropolar fluids past a non-isothermal vertical plate.  

Boundary-layer flow and heat transfer over a continuously stretched surface has received considerable 
attention in recent years. This stems from various possible engineering and metallurgical applications such as a 
hot rolling, wire drawing. Metal and plastic extrusion, continuous casting, glass fiber production, crystal 
growing, and paper production. The continuous surface concept was introduced by sakiadis [7,8]. Rajagopal et al 
[9] studied a boundary layer flow a non-Newtonian over a stretching sheet with a uniform free stream. Hady [10] 
studied the solution of a heat transfer to a micropolar fluid from a non- isothermal stretching sheet with injection. 
Na and Pop [11] investigated the boundary layer flow of micropolar fluid due to a stretching wall. Hassanien et 
al [12] studied a numerical solution for heat transfer in a micropolar fluid over a stretching sheet. Desseaux and 
Kelson [13] studied the flow of micropolar fluid bounded by stretching sheet. In all the above studies, the 
authors have taken the stretching sheet to be an oriented in horizontal direction. However, of late the effects of 
MHD to the micropolar fluids problem are very important. Abo – Eldahab and Ghonaim [14] investigated the 
convective heat transfer in an electrically conducting micropolar fluid at a stretching surface with uniform free 
stream. Pavlov [15] studied the boundary layer flow of an electrically conducting fluid due to a stretching of a 
plane elastic surface in the presence of a uniform transverse magnetic field. Chakrabarti and Gupta [16] extended 
Pavlov’s work to study the heat transfer when a uniform suction is applied at the stretching surface. 
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Many processes in engineering areas occur at high temperatures and knowledge of radiating heat 
transfer becomes very important for the design of the pertinent equipment. Nuclear power plants, gas turbines 
and the various propulsion devices for aircraft, missiles, satellites and space vehicles are examples of such 
engineering areas. Abo-Eldahad and Ghonaim [17] analyzes the radiation effects on heat transfer of a micropolar 
fluids through a porous medium. Ishak [18] studied the thermal boundary layer flow over a stretching sheet in a 
micropolar fluid with radiation. Gnaneswar [19] studied the heat generation and thermal radiation effects over a 
stretching sheet in a micropolar fluid. Olanrewaju et al. [20] found radiation effects on MHD flow of micropolar 
fluid towards a stagnation point on a vertical plate. 

However the interaction of radiation effect of an electrically conducting micropolar fluid past a 
stretching surface has received little attention. Hence an attempt is made to investigate the radiation effects on a 
steady free convection flow near an isothermal vertical stretching sheet in the presence of a magnetic field, a 
non-Darcian porous medium. The governing equations are transformed by using similarity transformation and 
the resultant dimensionless equations are solved numerically using the Runge-Kutta fourth order method with 
shooting technique. The effects of various governing parameters on the velocity temperature, skin-friction 
coefficient and Nusselt number  are shown in figures and tables and analyzed in detail.  

 

 MATHEMATICAL FORMULATION 

                               

                                            Fig. 1. Sketch of the physical model. 

Let us consider a steady, two-dimensional laminar, free convection boundary layer flow of an electrically 
conducting and heat generating/absorbing micropolar fluid through a porous medium bounded by a vertical iso-
thermal sheet coinciding with the plane y = 0, where the flow confined to y > 0. Two equal and opposite forces 
are introduced along the x′ - axis so that the sheet is linearly stretched keeping the origin fixed (see Fig.1). A 
uniformly distributed transverse magnetic field of strength B0 is imposed along the y′ – axis. The magnetic 

Reynolds number of the flow is taken to be small enough so that the induced distortion of the applied magnetic 
field can be neglected. The viscous dissipative heat is also assumed to be negligible. It is also assumed that 
microscopic inertia term involving J (where J is the square of the characteristic length of microstructure) can be 
neglected for steady two – dimensional boundary layer flow in a micropolar fluid without introducing any 
appreciable error in the solution. Under the above assumptions and upon treating the fluid saturated porous 
medium as continuum, including the non-Darcian inertia effects, and assuming that the Boussinesq 
approximation is valid, the boundary layer form of the governing equations can be written as (Willson [21] 
,Nield and Bejan [22])              

 0
u v

x y

′ ′∂ ∂+ =
′ ′∂ ∂                        (1) 
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Subject to the boundary conditions: 

,u bx′ =    0,v′ =    ,wT T′ ′=      0σ =    at  y  = 0, 

,u u∞′ ′→ ,T T∞′ ′→ 0σ = asy → ∞                                                                     (5)                                   

where x′ and y′  are the coordinates along and normal to the sheet. u′  and v′  are the components of the 

velocity in the x′  and y′ - directions, respectively. 1,kσ   and G1 are the microrotation component, coupling 

constant, and microrotation constant, respectively. , , ,ek C K T′  are the effective thermal conductivity, 

permeability of the porous medium, transport property related to the inertia effect, fluid temperature respectively. 

, ,Uβ ∞   and g are the coefficient of thermal expansion, coefficient of concentration expansion, volumetric rate 

of heat generation, free stream velocity, and acceleration due to gravity, respectively. 0, ,σ ρ ν  and pc are the 

electrical conductivity, density, apparent kinematic viscosity, and specific heat at constant pressure of the fluid, 
respectively. 

By using the Rosseland approximation (Brewster [23]), the radiative heat flux in y′  direction is given by 

 
* 4

*

4

3r

T
q

k y

σ ′∂= −
′∂                       (6)

        

 

where  *σ  is the Stefan-Boltzmann constant and *k  is the mean absorption coefficient. By using (7) , the 
energy equation (4)  becomes 

                                                

                                                 (7)                                                                   

 

It is convenient to make the governing equations 
and conditions dimensionless by using  
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In view of the equation (8), the equations (1), (2), (3) and (8) reduce to the following non-dimensional form. 

0
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∂ ∂

                                           (9)                   
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                                (12)                           

The corresponding boundary conditions are 

u x=       0v =               0σ =                1θ =                 at     y   = 0, 

1u =    0σ =     0θ =       as               y → ∞                                                  (13) 

where R is the Reynolds number. Proceeding with the analysis, we define a stream function ( , )x yψ   such that 

  ,u v
y x

ψ ψ∂ ∂= = −
∂ ∂

                                                           (14)                   

Now, let us consider the stream function as if  

( , ) ( ) ( )x y f y xg yψ = +                         

(15)      

( )xh yσ =                           

(16)   

In view of equation (14) – (16), the continuity equation (9) is identically satisfied and the momentum equation 
(10), angular momentum equation (11), energy equation (12) becomes  
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ψ ψ ψ ψ ψ ψ ψγ θ ∂ ∂ ∂ ∂ ∂ ∂ ∂ − = + + + −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
                  (17)                  
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and the boundary conditions (13) become  

x
y

ψ∂ =
∂

        0
x

ψ∂ =
∂

        0h =       1θ =                       at  y = 0 

1
y

ψ∂ →
∂

0h →  0θ →  asy → ∞                                                                      (20) 

in equations (17), (18),(19) and equating coefficient of 0x  and 1x ,  we obtain the coupled non-linear ordinary 
differential equations 

21
0f f g f g M f f Gr
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(23) 

( )( ) ( )3 2 23 4 1 3Pr 12 1 0F r Fg r rθ θ θ θ θ′′ ′ ′+ + + + + =                   (24)    

where a prime denotes differentiation with respect to y .  

In view of (17) and (18) , the boundary conditions (23) reduce to  

0f =       0f ′ =        0g =      1g′ =           1h =       1θ =        at    y  = 0  

1f ′ →     0g′ →       0h →      0θ →           as   y → ∞                                   (25) 

Of special significance in free convection problems are the skin-friction coefficient, Neusselt number  

The shear stress at the stretching surface is given by 

( ) ( )
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0 0
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y y
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The skin-friction coefficient Cf  is given by 
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The wall heat flux is given by 
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NUMERICAL PROCEDURE 

The shooting method for linear equations is based on replacing the boundary value problem by two 
initial value problems and the solutions of the boundary value problem is a linear combination between the 
solutions of the two initial value problems. The shooting method for the non-linear boundary value problem is 
similar to the linear case, except that the solution of the non-linear problem cannot be simply expressed as a 
linear combination of the solutions of the two initial value problems. Instead, we need to use a sequence of 
suitable initial values for the derivatives such that the tolerance at the end point of the range is very small. This 
sequence of initial values is given by the secant method, and we use the fourth order Runge-Kutta method to 
solve the initial value problems. 

Following Rosenhead [24] and Carnahan et al [25], the value of y at infinity is fixed at 5. The full 
equations (21) - (24) with the boundary conditions (25) were solved numerically using Runge-Kutta method 
algorithm with a systematic guessing (0), (0), (0), (0)f g h θ′′ ′′ ′ ′  by the shooting technique until the boundary 

conditions at infinity ( )f y′  decay exponentially to one, also ( ), ( ), ( )g y h y yθ′  to zero. The functions 

, ,f g h′ ′ −  θ  are shown in Figures. 

RESULTS AND DISCUSSION 

As a result of the numerical calculations, the dimensionless velocity, angular velocity , temperature and 
concentration distributions for the flow under consideration are obtained and their behavior have been discussed 
for variations in the governing parameters viz., the thermal Grashof number Gr, solutal Grashof number Gc, 
magnetic field parameter M, Radiation parameter F, the parameter of relative difference between the temperature 
of the sheet and temperature far away from the sheet r, Prandtl number Pr, Darcy number, porous medium 
inertia coefficient γ , vortes viscosity parameter N1, microrotation parameter G. In the present study, the 

following default parametric values are adopted. Gr = 0.5, Gc = 0.5, M = 0.01, Pr = 0.71, F = 1.0, r = 0.05,  γ  = 

0.01, N1 = 0.1, G = 2.0, Da = 100. All graphs therefore correspond to these unless specifically indicated on the 
appropriate graph. 

Fig.1(a). Shows the variation of the dimensionless velocity component f ′  for several sets of values of 

thermal Grashof number Gr. As expected, it is observed that there is a rise in the velocity due to enhancement of 
thermal buoyancy force.  

The effect of variation of the magnetic parameter M on the velocity     ( f ′ and  g′ ), angular velocity –

h, temperature θ  and concentration φ  profiles is presented in  Figs. 2(a) – 2(d) respectively. It is will know that 

the application of a uniform magnetic field normal to the flow direction gives rise to a force called Lorentz. This 
force has the tendency to slow down the velocity of the fluid and angular velocity of microrotation in the 
boundary layer and to increase its temperature. This is obvious from the decreases in the velocity profiles, 
angular velocity of microrotation profiles, while temperature profiles increases, presented in Figs. 2(a) – 2(d) 
respectively. 

Figs. 3(a) – 3(d) present typical profiles for the variables of the fluid’s x – component of velocity ( 
f ′ and  g′ ), angular velocity –h, temperature θ  for different values of Darcy number Da. It is noted that 

values of Da increases the fluid velocities and angular velocity increases, while temperature of the fluid be 
decreases.  
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Figs. 4(a) – 4(d) present the typical profiles for the variables of the fluid’s x – component of velocity ( 
f ′ and  g′ ), angular velocity –h, temperature θ  for different values of the porous medium inertia coefficient 

γ . Obviously, the porous medium inertia effects constitute resistance to the flow. Thus as the inertia coefficient   

increases, the resistance to the flow increases, causing the fluid flow in the porous medium to slow down and the 
temperature, concentration increases and, therefore, as γ  increases ,f g′ ′  and -h decreases while the 

temperature θ   

Figs. 5(a) – 5(d) present the typical profiles for the variables of the fluid’s x – component of velocity ( 
f ′ and  g′ ), angular velocity –h, temperature θ  for different values of the vortex viscosity parameter N1. 

Increase in the values of N1 have a tendency to increase , ,f h θ′ −  and to decrease g′ . 

Fig. 6 is a plot of the dimensionless angular velocity –h profiles for different values of the presence of 
the microrotation parameter G. The curves illustrate that, as the values of G increases, the angular velocity –h, as 
expected, decreases with an increase in the boundary layer thickness as the maximum moves away from the 
sheet. Of course, when the viscosity of the fluid decreases the angular velocity of additive increase. 

Fig.7(a). Illustrates the dimensionless velocity component f ′ for different values of the Prandtl number 

Pr. The numerical results show that the effect of increasing values of Prandtl number results in a decreasing 
velocity. From fig.7(b), it is observed that an increase in the Prandtl number results a decrease of the thermal 
boundary layer thickness and in general lower average temperature within the boundary layer.  

 The effect of the Radiation parameter F on the dimensionless velocity component f ′  and 

dimensionless temperature are shown in Figs. 8(a) and 8(b) respectively. Fig.8 (a) shows that velocity 
component f ′  decreases with an increase in the radiation parameter F. From Fig.8(b) it is seen that the 

temperature decreases as the radiation parameter F increases. This result qualitatively agrees with expectations, 
since the effect of radiation is to decrease the rate of energy transport to the fluid, thereby decreasing the 
temperature of the fluid. 

 The influence of the parameter of relative difference between the temperature of the sheet and the 
temperature far away from the sheet r on dimensionless velocity f ′  and temperature profiles are plotted in Figs. 

9(a) and 9(b) respectively. Fig.9(a) shows that dimensionless velocity f ′  increases with an increase in r. It is 

observed that the temperature increases with an increase in r (Fig.9 (b)). 

 Table 1 illustrates the missing wall functions for velocity, angular velocity, temperature and 
concentration functions. These quantities are useful in evaluation of wall shear stresses, gradient of angular 
velocity, surface heat transfer rate and mass transfer rate. The results are obtained for r = 0.05 and different 
values of the the thermal Grashof number Gr,, magnetic field parameter M, Radiation parameter F, the parameter 
of relative difference between the temperature of the sheet and temperature far away from the sheet r, Prandtl 
number Pr, Darcy number Da , porous medium inertia coefficient γ , vortes viscosity parameter N1, 

microrotation parameter G  . From Table 1 indicate that increasing the values of the Grashof number Gr  result in 
an increase in the values of (0)f ′′ . This is because as Gr increase, the momentum boundary layer thickness 

decreases and, therefore, an increase in the values of (0)f ′′
 occurs.  The results indicate that a distinct fall in 

the skin-frction coefficient in the x – direction ( (0)f ′′ and (0)g′′ ),the surface heat transfer rate (0)θ ′− , while 

gradient of angular velocity (0)h′ increases , accompanies a rise in the magnetic field parameter M. Increases in 

the values of Da has the effect of increasing the skin-friction function (0)f ′′ , heat transfer rate (0)θ ′−   while 

gradient of angular velocity (0)h′ ,  the skin-friction function (0)g′′  slightly decreases as Da increases. 

Further, the influence of the porous medium inertia coefficient γ  on the wall shear stresses, gradient of angular 

velocity, surface heat transfer is the same as that of the inverse Darcy number 1Da−  since it also represents 
resistance to the flow. Namely, as γ  increases, (0), (0)f θ′′ ′ ,  decrease while (0), (0)g h′′ ′− slightly 

increases, respectively.  
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 From Table 2 that for given values of Gr, M, Da,  γ , an increase in the values of microrotation 

parameter N1 leads to reduction in the skin-friction function (0), (0)g θ′′ ′  while the skin-friction function 

(0)f ′′ , gradient of angular velocity (0)h′ , increase as N1 increases. The skin friction (0)f ′′ increase and the 

gradient of angular velocity (0)h′ is decreased as the microrotation parameter G increases, while the skin-

friction coefficient in the x- directions  (0)g′′ heat transfer rate (0)θ ′−  are insensible to change in G. 

Increasing the values of heat generation parameter λ result in an increase in values of (0)f ′′  and the heat 

transfer rate (0)θ ′−  decrease. It is observed that the magnitude of the wall temperature gradient increases as 

Prandtl number Pr or radiation parameter F increases. Furthermore, the negative values of the wall temperature 
and concentration gradients, for all values of the dimensionless parameters, are indicative of the physical fact 
that the heat flows from the sheet surface to the ambient fluid. 
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Fig.3(d) variation of the velocity component θ  with Da Fig.4(a) variation of the velocity component f ′  
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Fig.4(d) variation of the velocity component θ  with γ  Fig.5(a) variation of the velocity component f ′  

with N1 
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Fig.5(b)variation of the velocity component g′  with  N1 Fig.5(c)variation of the velocity component h−  
with  N1 
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Fig.5(d)variation of the velocity component θ  Fig.6 variation of the velocity component h−  with 
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Fig.7(a) variation of the velocity component f ′  with  Pr Fig.7(b) variation of the velocity component θ  
with  Pr 
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Fig.8(a) variation of the velocity component f ′  with  F Fig.8(b) variation of the velocity component θ  
with  F 
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Fig.9(a) variation of the velocity component f ′  with  r Fig9(b) variation of the velocity component θ  
with  r 

Table 1 Variation of , , , ,f g h θ φ′′ ′′ ′ ′ ′−  at the plate with Gr, M, Da and γ  for Pr = 0.71, F = 1.0, r = 0.05.  

Gr M Da γ  f ′′ (0) (0)g′′  (0)h′  (0)θ ′−  

0.5 0.1 100 0.01 1.21865 -1.05339 0.25808 0.27721 

1.0 0.1 100 0.01 1.72256 -1.05339 0.25833 0.276989 

0.5 0.2 100 0.01 1.64847 -1.05339 0.25827 0.277042 

0.5 0.1 10 0.01 1.11425 -1.05275 0.26313 0.272843 

0.5 0.1 20 0.01 1.12368 -1.09429 0.26264 0.273265 

0.5 0.1 100 0.1 1.17407 -1.09973 0.26014 0.275425 
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Table 3 Variation of , , ,f g h θ′′ ′′ ′ ′−  at the plate with G, Pr, N1, F for Gr = 0.5,  M = 0.1, Da = 100. 

G Pr N1 F (0)f ′′  (0)g′′  (0)h′−  (0)θ ′  

2 0.71 0.1 1.0 1.12865 -1.05339 0.25808 0.27721 

4 0.71 0.1 1.0 1.21747 -1.05339 0.15006 0.27721 

2 1.0 0.1 1.0 1.1752 -1.05339 0.25805 0.33548 

2 0.71 0.4 1.0 1.22994 -1.03823 0.25937 0.27557 

CONCLUSIONS 

 The problem of steady, laminar, free convection boundary layer flow of micropolar fluid from a vertical 
stretching surface embedded in a non –Darcian porous medium in the presence of thermal radiation, uniform 
magnetic field and free stream velocity was investigated. A similarity transformation was employed to change 
the governing partial differential equations into ordinary one. These equations were solved numerically by fourth 
order Rung – Kutta along with Shooting technique. A wide selection of numerical results have been presented 
giving the evolution of the velocity, microrotation, temperature profiles as well as the skin- friction coefficient, 
heat transfer rate. It was found that the skin-friction coefficient, heat transfer rate are decreased and  gradient of 
angular velocity increases as the inverse Darcy number, porous medium inertia coefficient, or magnetic field 
parameter is increased. It was noticed that in increase in radiation parameter or Prandtl number caused decrease 
in the skin-friction coefficient and increase in heat transfer rate.  
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