The existence of common fixed point theorems of generalized contractive mappings in cone metric spaces

Rajesh Shrivastava ,Sudeep Kumar Pandey1 Ramakant Bhardwaj2 R.N.Yadav3
Govt. Science and Commerce College, Benazir, Bhopal (M.P.) India
1. Millennium Group of Institution, Bhopal (M.P.)India
2. Truba Institute of Technology and Science, Bhopal (M.P.)India
3.Patel Group of Institutions, Bhopal (M.P.)India

Abstract

The purpose of this paper is to the study of the existence of common fixed point theorem for a sequence of self maps satisfying generalized contractive condition for a cone metrice space and obtains some new results in it. Also the paper contains generalized fixed point theorems of [10, 13, 19] and many others from the current literature.

1. Introduction and preliminaries

The well known Banach contraction principal and its several generalizations in the setting of metric spaces play a central role for solving many problems of non linear analysis. For example, see[2,5,6,15,16,17] Huang and Zang[8] generalized the concept of the metric spaces by introducing cone metric spaces and proved some fixed point theorems for mappings satisfying some contractive conditions, subsequentially, several other authors [1,9,16,19,21] studied the existence of fixed points and common fixed points of mappings satisfying contractive type condition on a normal cone metric space.

Recently Razapour and Hamilbarani[19] omitted the assumption of normality in cone metric space, which is milestone in developing fixed point theory in cone metric space. In[11] the authors introduced the concept of a compatible pair of self maps in a cone metric space and established a basic result for a non normal cone metric space with an example which [12] weakly compatible maps have been studied. In this paper we prove a common fixed point theorem for a sequence of self maps satisfying a generalized contractive condition for a non normal cone metric space.

Definition:-1.1 [sec [8]] :- Let E be a real Banach space a sub set of p of E is called a cone whenever the following condition holds.

(c1) P is closed, nonempty and P ≠ {0}
(c2) a,b∈R, a,b≥0 and x, y∈P imply ax+by∈P,
(c3)P∩(-P) = {0}

Given a cone P⊂E, we define a partial ordering ≤ with respect to P by x≤y if and only if y-x∈P. We shall write x<y to indicate that x≤y but x≠y while x≪y will stand for y-x∈p0 where P0 stands for the interior of P. If P0≠Ø.then P is called a solid cone[see[20]].

There exist two kinds of cones-normal (with the normal constant k) and non-normal cone [6]. Let E be a real Banach space,P⊂E a cone and ≤ partial ordering defined by P. Then P is called normal it there is a number k>0 such that for all x,y∈P.

0≤x≤y implies ∥x∥≤k∥y∥

(1.1)
or equivalently if (∀ n) x_n≤y_n≤z_n

and

lim_{n→∞} x_n = lim_{n→∞} z_n = x imply lim_{n→∞} y_n = x

(1.2)
The least positive number K satisfying (1.1) is called the normal constant of P.

Example 1.2 (see[20]) let E= C[0,1] with ∥x∥=∥x∥_∞+∥x∥_1 on p={x∈E:x(t)≥0}.This cone is not normal.

Consider for example, x_n(t)=n/n and y(t)=1/n, then 0≤x_n≤y_n and lim_{n→∞} y_n = 0 but ∥x_n∥=max_{t∈[0,1]} ∥x_n∥_∞ + ∥x_n∥_1

max_{t∈[0,1]} |x_n(t)-1| = \frac{1}{n} + 1 > 1 :hence x_n does not converge to zero. It follows by (1.2) that P is a non-normal cone.

Definition 1.3 (see [13]): Let P be a cone in a real Banach space E. If for a∈P and a≤ka for same K∈ [0,1],then a=0.
Definition 1.4 (see [10]): Let P be a cone in a real Banach space E with non-empty interior. If for $a \in E$ and $a \preceq c$ for all $c \in P$, then $a = 0$.

Remarks 1.5 (see [19]): $\lambda p \preceq p$ for $\lambda > 0$ and $p + p = p$.

Definition 1.6 (see [8.22]): Let X be a nonempty set suppose that the mapping $d : X \times X \to E$ satisfies:

- $(d_1) 0 \preceq d(x,y)$ for all $x,y \in X$ and $d(x,y) = 0$ if and only if $x = y$.
- $(d_2) d(x,y) = d(y,x)$ for all $x, y \in X$.
- $(d_3) d(x,y) \preceq d(x,z) + d(z,y)$ for all $x, y, z \in X$.

Then d is called a cone metric [8] or K-metric [22] on X and (X, d) is called a cone metric [8] or K-metric space [22].

Example 1.1 (see [13]): Let $E = \mathbb{R}^2$ and $P = \{(x,y) \in \mathbb{R}^2 : x \geq 0, y \geq 0\}$, $X = \mathbb{R}^2$ and $d : X \times X \to E$ defined by $d(x, y) = \langle x - y, a(x - y) \rangle$, where $a \geq 0$ is a constant. Then (X, d) is a cone metric space with normal cone P where $K = 1$.

Example 1.2 (see [18]): Let $E = \mathbb{F}$, $P = \{x_n \}_{n=0}^{\infty} \subseteq E : x_n \geq 0$, for all n, (X, P) a metric space, and $d : X \times X \to E$ defined by $d(x, y) = \langle p(x, y), 2z \rangle$ for some fixed $x \in X$.

Remarks 1.10: The concept of a cone metric space is more general than that of a metric space, because each metric space is a cone metric space where $E = \mathbb{R}$ and $P = \{0, +\infty\}$.

Definition 1.11 (see [13]): Let (X, d) be a cone metric space. We say that (X, d) is a Cauchy sequence if for every $0 < \varepsilon \in E$, there is an N such that for all $n, m > N$, $d(x_n, x_m) \ll \varepsilon$.

Definition 1.9 (see [8.22]): Let (X, d) be a cone metric space. We say that (X, d) is a complete cone metric space if every Cauchy sequence in (X, d) is convergent in X.

Remarks 1.5: A complete cone metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent in X.

In the following (X, d) will stand for a cone metric space with respect to a cone P with $P \subseteq E$.

Theorem 3.1: Let (X, d) be a complete cone metric space with respect to a cone P contained in real Banach space E. Let $\{T_n\}$ be a sequence of self maps on X satisfying generalized contractive condition (2.1) with for some $\alpha, \beta, \gamma, \delta, \eta, \mu \in [0, 1]$ for $x, y \in X$, let $x_n = T_n x_{n-1}$ for all n, then the sequence $\{x_n\}$ converges in X and its limit v is a common fixed point of all the maps of the sequence $\{T_n\}$. This common fixed point is unique if $\alpha + 2\eta + \mu < 1$.

Proof: Let $x = x_{n-1}$, $y = x_n$, $T = T_n$ and $T' = T_n + 1$ in (2.1) we have...
\begin{align*}
\text{d}(T_{x_n-1}x_n, T_{n+1}x_0) &\leq \alpha \text{d}(x_n-1, x_n) + \beta \text{d}(x_{n-1}, T_{x_n-1}x_n) \\
&\quad + \gamma \text{d}(x_n, T_{n+1}x_0) + \delta \text{d}(x_n, T_{x_n-1}x_n) \\
&\quad + \eta \text{d}(x_n-1, T_{n+1}x_0) + \mu \text{d}(x_n-1, T_{x_n-1}x_n)
\end{align*}

As \(x_n = T_{x_n-1}x_n \), we have
\begin{align*}
\text{d}(x_n, x_{n+1}) &\leq \alpha \text{d}(x_n-1, x_n) + \beta \text{d}(x_{n-1}, x_n) \\
&\quad + \gamma \text{d}(x_n, x_{n+1}) + \delta \text{d}(x_n, x_{n+1})
\end{align*}

Writing \(\text{d}(x_n, x_{n+1}) = \rho_n \), we have
\(\rho_n \leq (\alpha + \beta + \delta + \eta + 2\mu) \rho_{n-1} + (\gamma + \delta + \eta + \mu) \rho_n \)
\[(1 - \gamma - \delta - \eta - \mu) \rho_n \leq (\alpha + \beta + \delta + \eta + 2\mu) \rho_{n-1} \]
This implies that
\[\rho_n \leq t \rho_{n-1} \]
where
\[t = \frac{\alpha + \beta + \delta + \eta + 2\mu}{1 - \gamma - \delta - \eta - \mu} \]

As \((\alpha + \beta + 2\delta + \gamma + 2\eta + 3\mu < 1) \), we obtain that \(t < 1 \)

Now \(\rho_n \leq t \rho_{n-1} \leq t^2 \rho_{n-2} \leq \ldots \leq t^n \rho_0 \)

Where \(\rho_0 = \text{d}(x_0, x_1) \), also for \(n > m \) we have
\begin{align*}
\text{d}(x_n, x_m) &\leq \text{d}(x_n, x_{n-1}) + \text{d}(x_{n-1}, x_{n-2}) + \ldots + \text{d}(x_{m+1}, x_m) \\
&\leq (t^{n-1} + t^{n-2} + \ldots + t^m) \text{d}(x_1, x_0) \\
&\leq \frac{t^m}{1-t} \rho_0
\end{align*}

As \(t < 1 \) and \(p \) is closed, thus we obtain that
\[\text{d}(x_n, x_m) \leq \frac{t^m}{1-t} \rho_0 \quad (3.2) \]

Now for \(\epsilon \in p \), there exists \(r > 0 \) such that \(\epsilon \cdot y \in p \), if \(\| y \| < r \). Choose a positive integer \(N \in \mathbb{N} \) such that for all \(n > N \)
\[\| y \| < r \text{ which implies } \epsilon - \frac{t^m}{1-t} \rho_0 \in p \]

So we have \(\epsilon - \text{d}(x_n, x_m) \in p \) for all \(n > N \), and for all \(m \) by definition(1.11), this implies \(\text{d}(x_n, x_m) \in p \) for all \(n > N \)
and for all \(m \) hence \(\{ x_n \} \) is a Cauchy sequence in \(X \). By the completeness of \(X \), there exists \(z \in X \) such that \(x_n \rightarrow z \) as \(n \rightarrow \infty \). For an arbitrary fixed \(m \) we show that \(T_mz=z \). Now
\[\text{d}(T_mz, z) \leq \text{d}(T_mz, T_nx_0) + \text{d}(T_nx_0, z) \]
\[\quad = \text{d}(x_0, z) + \text{d}(T_mz, T_nx_0) \]
Using (2.1) we have
\[\text{d}(T_mz, z) \leq \text{d}(T_mz, T_nx_0) + \text{d}(T_nx_0, z) \]
have a unique common fixed point, say \(z \).

This fixed point is unique if \(\alpha + 2\eta + \mu < 1 \).

Theorem 3.2:- Let \(\{T_n\} \) be a sequence of self maps in \(X \) satisfying for some \(\alpha, \beta, \gamma, \delta, \eta, \mu \in [0,1] \) with \(\alpha + \beta \gamma + 2\delta + 2\eta + 3\mu < 1 \) and \(\alpha + 2\eta + \mu < 1 \) there exists positive integer \(m \) such that for all \(x, y \in X \),

\[
\begin{align*}
\alpha d(x, y) &\leq d(x, z) + \beta d(x, s^m_i x) + \gamma d(y, s^m_i y) \\
&\quad + \delta d(x, s^m_i x) + d(y, s^m_i y) + \eta d(x, s^m_i x) + d(x, s^m_i x) \\
&\quad + \mu d(x, s^m_i y) + d(x, s^m_i y) \\
&\quad + \mu d(x, s^m_i x) + d(x, s^m_i x)
\end{align*}
\]

Then all the maps of the sequence \(\{s_n\} \) have a unique common fixed point in \(X \).

Proof: - from theorem 3.1 all the maps of the sequence \(\{S^m_i\} \) have a unique common fixed point, say \(z \).

hence \(S^m_i z = z \) for all \(i \).

For all \(i \), \(S^m_i z = z \) implies \(s_i z = z \) taking \(x = s_i z, y = z \), \(i = 1 \) and \(j = 2 \) in (3.3), we have \(s_i z = z \) continuing in similar way it follows that \(s_i z = z \) for all \(i \). Thus \(z \) is a common fixed point of all the maps of the sequence \(\{s_i\} \). Its uniqueness follows from the fact that \(s_i z = z \) implies \(S^m_i z = z \) for all \(i \).

In theorem 3.1 taking \(T_1 = T_2 = \ldots = T_N = \ldots = T \), we get the following general form of Banach contraction principle in a cone metric space which is not necessarily normal.

Theorem 3.3:- Let \((X,d) \) be a complete cone metric space with respect to a cone \(\pi \) contained in real Banach space \(E \). Let \(T \) be a self map in \(X \) satisfying generalized contractive condition (2.1) with \(\alpha + \beta \gamma + 2\delta + 2\eta + 3\mu < 1 \) and for some \(\alpha, \beta, \gamma, \delta, \eta, \mu \in [0,1] \) then for each \(x \in X \) sequence \(\{T^n_x\} \) converges in \(X \) and its limit is a fixed point \(T \). This fixed point is unique if \(\alpha + 2\eta + \mu < 1 \).
Theorem 3.4: Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E. Suppose the mapping $T: X \rightarrow X$ satisfying for some positive integer n
\[d(T^n x, T^n y) \leq \alpha d(x, y) + \beta d(x, T^n x) + \gamma d(y, T^n y) + \delta d(x, T^n x) + \eta d(y, T^n x) + \mu d(x, T^n y) + \nu d(y, T^n y)\]

For all $x, y \in X$ and $\alpha, \beta, \gamma, \delta, \eta, \mu, \nu \in [0, 1]$ are constants such that $\alpha + \beta + \gamma + 2\delta + 2\eta + 3\mu < 1$ then T has a unique fixed point in X.

Proof: from Theorem 3.3 T^n has a unique fixed point u. But $T^n(Tu) = T^n u = Tu$, so Tu is also a fixed point of T^n hence $Tu = u$ is a fixed of T. Since the fixed point of T is unique.

Corollary 3.5: Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E. Suppose the mapping $T: X \rightarrow X$ satisfies for some positive integer m, n.

\[d(T^n x, T^n y) \leq \alpha d(x, y) + \beta d(x, T^n x) + \gamma d(y, T^n y) + \delta d(x, T^n x) + \eta d(y, T^n x) + \mu d(x, T^n y) + \nu d(y, T^n y)\]

For all $x, y \in X$ and $\alpha, \beta, \gamma, \delta, \eta, \mu, \nu \in [0, 1]$ are constants such that $\alpha + \beta + \gamma + 2\delta + 2\eta + 3\mu < 1$ and $\delta = \eta$ then T has a unique fixed point in X.

Proof: by Theorem 3.4 we get $x \in X$ such that $T^n x = T^n y = x$. The result then follows from the fact that $d(T^n x, x) = d(T^n y, y) = d(T^{n+1} x, T^{n+1} y)$

\[d(T^n x, x) = d(T^n y, y) = d(T^{n+1} x, T^{n+1} y) = 0\]

Which implies $T^n x = x$.

Theorem 1[8] and Theorem 2.3[20]: Let (X, d) be a complete cone metric space. Suppose the mapping $T: X \rightarrow X$ satisfies the contractive condition
\[d(T^n x, T^n y) = k d(x, y)\]

For all $x, y \in X$ where $k \in [0, 1]$, is a constant. Then T has a unique fixed point in X. And for any $x \in X$, the iterative sequence $\{T^n x\}$ converges to the fixed point.

Theorem 3[8] and Theorem 2.6[20]: Let (X, d) be a complete cone metric space. Suppose the mapping $T: X \rightarrow X$ satisfies the contractive condition
\[d(T^n x, T^n y) = k \left(d(x, T^n x) + d(y, T^n y) \right)\]

For all $x, y \in X$ where $k \in [0, 1/2]$, is a constant. Then T has a unique fixed point in X. And for any $x \in X$, the iterative sequence $\{T^n x\}$ converges to the fixed point.

Theorem 4[8] and Theorem 2.7[20]: Theorem 1[8] and Theorem 2.3[20]. Let (X, d) be a complete cone metric space. Suppose the mapping $T: X \rightarrow X$ satisfies the contractive condition
\[d(T^n x, T^n y) = k \left(d(x, T^n x) + d(y, T^n y) \right)\]

For all $x, y \in X$ where $k \in [0, 1]$, is a constant. Then T has a unique fixed point in X. And for any $x \in X$, the iterative sequence $\{T^n x\}$ converges to the fixed point.

Remark 3.8: Above theorems os [8] and [20] follows Theorem 3.3 of this paper by taking

(i) $\alpha, \gamma, \delta, \eta, \mu$ and $\alpha = k$
(ii) $\alpha, \gamma, \delta, \eta, \mu$ and $\beta = k$
(iii) $\alpha, \beta, \gamma, \delta, \eta, \mu$ and $\gamma = k$
(iv) $\alpha, \beta, \gamma, \delta, \eta, \mu$ and $\delta = k$
(v) $\alpha, \beta, \gamma, \delta, \mu$ and $\eta = k$
(vi) $\alpha, \beta, \gamma, \delta, \eta$ and $\mu = k$

Precisely, Theorem 3.3 synthesize and generalizes all the results of [9] and [20] for a non normal cone metric space. Theorem 3.2 is a generalized form of Banach contraction principle in a complete cone metric space which is not necessarily normal

Acknowledgement: One of the authors (R.B.) is thankful to MPCST Bhopal for project no. 2556

References:-