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Abstract

The purpose of this paper is to the study of thstemce of common fixed point theorem for a seqaesfcself
maps satisfying generalized contractive conditiond cone metrice space and obtains some newgésLilt
Also the paper contains generalized fixed poinbtéms of [10, 13, 19] and many others from the enirr
literature.

1. Introduction and preliminaries

The well known Banach contraction principal andsiéseral generalizations in the setting of mefpaces play
a central role for solving many problems of noréinanalysis. For example, see[2,5,6,15,16,17]

Huang and Zang[8] generalized the concept of thegiengpaces by introducing cone metric spaces aadeg

some fixed point theorems for mappings satisfyinga contractive conditions, subsequentialy, sevettar
authors [1,9,16,19,21] studied the existence addiyoints and common fixed points of mappings fértig

contractive type condition on a normal cone medpace.

Recently Razapour and Hamlbarani[19] omitted ahsumption of normality in cone metric
space, which is milestone in developing fixed pofreory in cone metric space. In[11] the authatsoduced
the concept of a compatible pair of self maps itcoae metric space and established a basic resuét fon
normal cone metric space with an example which {#23kly compatible maps have been studied. Inghper
we prove a common fixed point theorem for a segeewoic self maps satisfying a generalized contractive
condition for a non normal cone metric space.

Definition:-1.1_[sec [8]] :- Let E be a real Banach space a sutose of E is called a cone whenever the
following condition holds.

(cy) P is closed, nonempty andA0}

(o) a,lkR,a,l»0 and x, ¥P imply ax+b¥P,

(cz)PN(-P) = {0}

Given a cone €E, we define a partial orderirgith respect to P bysy if and only if y-xe P. We shall write
X<y to indicate that Xy but xty while x<y will stand for y-xp°’ where B stands for the interior of P. If
p’£@.then P is called a solid cone(see[20]).

There exist two kinds of cones-noriwéath the normal constant k) and non-normal cdiellet E be a
real Banach spacedE a cone angpartial ordering defined by P. Then P is callednmarit there is a number
k>0 such that for all xgP.
0<x<y implies|Ix|I<kllyll
(1.1)

or equivalently if (J n) x<y.<z,
and limx, =limz, =ximply limy, =x
n—- oo n- oo

n-o

(1.2)
The least positive number K satisfying (1.1) idazhthe normal constant of P.

Example 1.2 (see[20]) let Iﬁml [ 0,1] with X=Xl +Ix.,, on p={x€E:x(t)>0}.This cone is not normal.

n

Consider for example, ,&)=t/n and y(t)=1/n, then <y, and limy, =0 but lIx,I=maxep 1 +
n- oo

1
n

MaXepo,1j ‘t n-1 ‘ = + 1 > 1 ;hence xdoes not converge to zero. It follows by (1.2) tRais a non-

normal cone.
Definition 1.3 (see [13]): Let P be a cone in a real Banachesgadf for &P and aka for same k [0,1],then
a=0.

57



Innovative Systems Design and Engineering www.iiste.org
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) J LA L]
Vol.4, No.13, 2013 ||S E

Definition1.4 (see [10]): Let P be a cone in a real Banach spas#h non-empty interior. If for@E and ac
for all cep0,then a=0.
Remarks 1.§see [19]\p°cp’ for A>0 and § +p’cp’
Definition 1.6(see [8.22]) Let X be a nonempty set suppose ligatrtapping
d: XxX—E satisfies.
(dp)0<d(x,y) for all x,}eX and d(x,y)=0 if amd only if x=y.
(do) d(x,y)=d(y,x) for all x,\eX
(ds) d(x, yEd(x,2)+d(z,y), X,YV,EX ........
Then d is called a cone metric [8] or K_metric [2##] X and (x,d) is called a cone metric[8] or k-ritet
space[22] (we shall use the first term).The cohoém cone metric space is more general thanahatmetric
space, because each metric space is a cone npetcie where ER and P=[0,o].
Example 1.7see[8])Let BR? p = {(x,y) €R? : x>0,y>0}, X=R and d : XxX-E defined by d(x,y)=(|x-y|, alx-
yl).where a0 is a constant. Then(x,d) is a cone metric spatterarmal cone P where K=1
Example 1.§see[18] Let Ef ,P={x.}n-1€E:x:>0, for all n, (X,p) a metric space ,and d:XxXE defined, by
d(x,y)={p(x,y/2"} -1. Then (X,d) is a cone metric space.
Clearly, the above examples show that class of owgteic space contains the class of metric spaces.
Definition 1.9 (sec[8]) let (X,d) be cone metric space. We say {k.} is
O a Cauchy sequence if for everjn E with O<e, then there is an N such that for all n,m>N,d) « «.
@ & convergent sequence if for everin E with 0, then there is an N such that for all n>N, (k< ¢
for some fixed x in X.
A cone metric space X is said to be complete ifg@auchy sequence in X is convergent in X.
In the following (X,d) will stands for a cone metspace with respect to a cone P with#@in a real Banach
space E and is partial ordering in E with respect to P.
Remarks 1.10It follows from above definition that if ¢} is a subspace of a Cauchy sequencg ix a cone

metric space (x,d) angx->u as R0 then x—u as R-oo.

Definition 1.11 (see[13]Let (X,d) be a cone metric Space and P be a core ri@al Banach space E. If
u<v,v«&w, then u<w.

Lemma 1.12(see[13]) Let(X,d) be a cone metric space and B bene in a real Banach space E khd, >0
are some fixed point real number. }fxx, y,—Yy in X and for someep

<110 (%n, X)+2d(Yn, ¥)
for all n>N, for some integer N then a=0
2. Generalized contraction mapping

Let X be a cone metric space and F+X be a mapping then T is called generalized cotitrenapping if it
satisfies the following condition:
d(TwTy) < ad(xy) 4 d(x, T)+y(y, T)+3[d(x, T.)+(y, Ty)]
ﬁ[d(X,Ty)"’(y, Ty)+u[d(XaTy)+(Xy Tx)] (21)

For all x, ye X anda, B, v, 8, n, u €[0,1] are constants such that
a+[+y+20+20+3u<]
Remarks (2.1):

(i) If (i)d=n=p=0 andu, B, y €[0,1], then (2.1) reduce to contraction mappingraef by Banach[3]

(i) a=p=y=pu=0 and3, n€[0,1/2] then (2.1) reduce to contraction mappinfijndel by Kannan[14]

(i) a=p=y=6=n=0andue€[0,1/3] then (2.1) reduce to contraction mappintpfeing the condition hold.

3. Main Results
In this section we shall prove some fixed poinbtieens of generalized contractive mapping.
Theorem 3.1 let (X,d) be a complete cone metric space witipeet to a conp contained in real Banach
space E. let {J}be a sequence of self maps on x satisfying geizechkcontractive condition (2.1) with for
someq, B, v, 8, n,u €[0,1] for Xy €X, let x, =TXn.; for all n . then the sequencefxconverges in X and its
limit v is a common fixed point of all the mapsth& sequence {}. This common fixed point is unique if
ot+2n+u<l

Proof=- taking x=%.1 , y= % T=T,and T= F+1 in (2.1) we have

58



Innovative Systems Design and Engineering www.iiste.org
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) J LA L]
Vol4, No.13, 2013 ISTE

d(TiXn-1, TheXn)<ad(Xn-1, %) +Bd(Xn1, TrXn1)
Hd (X, TreXn) +0[A(Xn-1, TaXn-2)+d (%o, Tra1Xn)]
M[Ad(Xn-1, TreaXn)+d(Xa, TaXn-1)]
Hd(Xn-1, TreXn)Fd(Xa-2, TrXn)]
AS %= T Xn.1, We have
d(Xn, Xn+1) <0d(Xn-1, %) +Bd(Xn2, Xo)
+yd(Xn, Xn+1)+0[d(Xn-1, Xn) +d(Xn, Xns1)]
N[A(Xn-1, Xo+2)+A %0, Xo)]+R[A (Xn-1, Xo+2)+0 (%01, Xn)]
<0d(Xo-1, X0) +Bd(Xn-1, X0)+Yd (Xn, Xns1)
+8[d(Xn-1, X0)+d(Xn, Xn )+ N[A(Xn-2, Xo)+d (X, Xn+)]
+[d(Xn-2, %)+ (%o, Xne1) A (X1, Xo)]

Writing d(X,, X.+1)=pnWe have
po<(a+B+d+n+2u)p, +(y+3+n+u)p,
(1-y-0-n-p)p,<(a+B+d+n+2u)p,,
This implies that
P, <to., Where
t:ar+,3+5+/7+2/,1

1-y-o-n-u
As(a+[+20+y+2n+3u<1), we obtain that t<1
Now p,<tp  <t?0 <. <t"p,

Where Oy = d(XO  Xp ) also for n>m we have
d(X,, X, )< d(X,,X,_; )+ d(X,_1, X0 ) F eeeeeennnn + d(Xpeps X, )

m+1?'m

< (tnfl+tn72+

........ +t™ ) d(X,%, ) < tmtd(x,xo)

1_
-,
1-t°
As t<1 and p is closed, thus we obtain that
tm
d(x, %)< T Py (3.2)
Now for eep® ,there exists r>0 such thatye p°, if llyll<r. choose a positive integer: Nsuch that for all AN
m m

L, yli<r which implies€ - _1 i Poep’ and

Hl—t

m

ﬁpo — d(X,Xm)Ep by using (3.2).

So we haveE—d(x,xm)ep® for all n>N, and for all m by definition(1.11). this impliexgd,xy)<<€. for all n>N:
and for all m hence {} is a Cauchy sequence in X. by the completenes§ tifiere exists, @x such that x-z
as n—oo. for an arbitrary fixed m we show thatd=z. now
d(Tz,2) <d(Tmz, Tn Xn-0)+d(TXn-1,2)
=d(%,2)+ d(Tz, Tn Xn.2)
Using (2.1) we have
d(kz,2)< d(Tmz, Tn Xn-0)+ d(To, %01 2)
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=d( )&Z)'f' d(Tmz, Tn Xn-1)
< d( % 2)+o d(z, %.9+B d(Z,Twz,)+y d(%-2,Tn Xn1)
$[d(z, Twz)+ d(.1, T Xn-)[*n[ d(Z,To Xn.2)+ A (%1, T2 )]
uf d(z,Tn Xn-0)+ d(z,Tmz,)]
= d(%, 2)+0d(z,%.1)+Bd(Z, Tmz)+ yd(Xn-1Xn) +3[ d(Z,Tmz,)+ d(%.1,Xn)]
w d(Z, %)+ A0 Tm2)]+u[ d(z, %)+ d(z,Tm2)]
< d(xmz)"' ad(ZJ%-l)"' Bd(ZrTmZ)+'Yd( Xn—lvz)
o d(z,Tmz)+ d(%-1,2)+ d(z)]+n[ d(z, X)+ d(%-1,2)+ d(z,Tn2)]
i d(zx)+ d(Xy-0,2)+ d(Z,Tw2)]
=(BHn+p )d(6,2)+Haty+8n+p) d( Z,%)+H(B+6+HuHm) d(Tmz,Z)
So we have
(1-B-6—n)d(Tmz, 2)<(1+5+n+U) d(%, 2)+Hoty+5+u+n)d(z,%.-1)
AS X—Z, ¥%.1—2z(n—x) and (15-5-—n-u1)>0, Using lemma 1.12 we have ¢¢Tz)=0 and we get =z, thus z
is a common fixed point of all the maps of sequéhge

Uniqueness:-
Let T,v=v for all n be another common fixed point of #le maps of the sequence,JTNow d(v,z)= d(Tv, T,
z)
<ad(v,z)+pd(v,T, v)+y d(z,T, 2)+3[ d(v,T, v)+ d(z,T, 2)]
M d(v,Th 2)+ d(z, T V)[+p[ d(v, Tn 2)+ d(v,Ta V)]
Which gives
d(v.zx(at+2n+u)d(v,2)

asa+2n+u<l using definition 1.3 we have d(v,z)=0, i.ezvthus v is the unique common fixed point of b t
maps of the sequence {iT

Theorem 3.2- let (X,d) be a compact cone metric space wigpeet to a cone p contained in a real Banach
space E. Let {§be a sequence of self maps in X satisfying for sem pn,yn 8n, 7n, tn €[0,1] with o+
Brytyn +260,+2 nn,+3 up<l ando,+2n,+ u<l there exists positive integer far eachi such that for all
X,YEX.

d(§"x8" Y=o dx Y +Adxs"X)+dys" V)
+a[dxg"x)+dy,s" Y] +/7,[dxS" Y+dXS"X)] (3.3
+14[dxs" y)+dxg"X)]

Then all the maps of the sequencg {f&ve a unique common fixed point in X.

m

Proof: - from theorem 3.1 all the maps of the sequen§ { },have a unique common fixed point , say z.
mi

henceS1 z=z

. m g : . L
For all i. now S z=z implies S siz=gz. taking x=gz, y=z, i=1 and j=2 in (3.3), we havgzs= z.
continuing in similar way it follows thatz= z for all i . thus z is a common fixed pointailf the maps of the

m
sequence {& Its uniqueness follows from the fact that s z implies S z=z for all i.

In theorem 3.1 taking F To= Ta=.ooviveiiiiiee e, =T=nn. =T, we get the following general form of
Banach contraction principle in a cone metric spalsieh is not necessarily normal.

Theorem 3.3- let(X,d) be a complete cone metric space wipeet to a cone p contained in real Banach space
E. Let T be a self map in X satisfying generalizedtractive condition (2.1) with+ p+y +26+2 n+3 u<1 and

n
for somea,f,y,d, n, u€[0,1]then for each &X sequenc«{Tx } converges in X and its limit is a fixed
point T. This fixed point is unique i&+2n+ u<1.
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Theorem 3.4:-let (X,d)be a complete cone metric space with@esfo a cone p contained in a real Banach
space E. suppose the mapping =X satisfying for some positive integer n

AT x T"y) < adx y)+Bd(x T+ ydyT"y)
+[dXT"X)+dy, T"Y)] +77,[dXT"y)+dy,T"X)]
+ 4 [dXT"Y) +dXT" X)]

For all x,ye X anday, Bn, ¥n 6n, Ins 4n €[0,1] are constants such that B, +y, +28,,+21n,,+3 u<l then T has a
unique fixed point in X.

Proof :- from theorem 3.3 Thas a unique fixed point u. bul(Tu)=T(T"u)=Tu, so Tu is also a fixed point of T
hence Tu=u, u is a fixed of T. since the fixed poinT is unique.

Corollary 3.5:- Let (X,d) be a complete cone metric space withpect to a cone p contained in real Banach
space E . Suppose the mapping X satisfies for some positive integer m, n.

d(T"x,T'y)<a, d(xy) + B,d(x,T"X) + y,d(y, T"y)
+3,[dXT™x)+d(y, T"Y)] +77,[d(x,T"y)+d(y,T™ x)]

+ 4, [dXTy) +d(xT™y)]
For all x,ye X andap, Bn, ¥n, 6n, 1Ins 4n €[0,1] are constants such that B, +yn +260,+2 1, +3 un<l andé,,=n,
then T has a unique fixed point in X.
Proof:- by theorem 3.4 we get& X such that Tx=T"y=x. the result then follows from the fact that
d(T x,X)=d(TT"XT"y) =d(T"TX,T"X)
<a,d(Tx,x) + B,d(TX,T"Tx) + y,d(xT"X)
+0,[d(MXT X +d(X,T"X)] +7,[dTXT"™) +dxT"TX)]
+ 14, [d(TX T"X) +d(x T" Tx)]
<a, d(TxX)+ B,d(Tx,TX) + y,d(x,X)
+0,[d(Tx,TX) +d(x,X)] +/7,[d(TX,X) +d(x TX)]
+ 16, [d(T%,X) +d(TX TX)]
=(a, +27, + 14, )d(TxX)

Which implies Tx=x.
Theorem 1[8] and theorem 2.3 [20]:-Let (X,d) be a complete cone metric space. Supplusenapping T:
X—X satisfies the contractive condition
d(Ty Ty)<=kd(xy)
For all x,ye X where k€[0,1], is a constant. Then T has a unique fixethipm X. And for any X, the
iterative sequence {k} converges to the fixed point.
Theorem 3[8] and theorem 2.6[20]:Let (X,d) be a complete cone metric space. Supgfeseapping T:X>X
satisfies the contractive condition
d(T T,)<=k[d(x, T,)+d(y.T,)]
For all x,y e X where &[0,1/2], is a constant. Then T has a unique fixethipin X. And for any X, the
iterative sequence {k} converges to the fixed point.
Theorem 4[8] and Theorem 2.7[20]:-Theorem 1[8] and theorem 2.3 [20]. Let (X,d) bsoanplete cone metric
space. Suppose the mapping F:X satisfies the contractive condition
d(Tx Ty)<=k[d(y, T})+d(x,Ty)]
For all x,y e X where &[0,1], is a constant. Then T has a unique fixethtpm X. And for any X, the
iterative sequence {k} converges to the fixed point.
Remark 3.8:- Above theorems os [8] and [20] follows Theorem & &his paper by taking

i B,y,6,n, uando=k

(i) a,y 6,n, uandp=k

(iii) a B, ,6,n, uandy =k

(iv) a, By, n, uands =k

(v) a,B,y,6 ,nandn=k
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(vi) « B,y .6 nandu=k

Precisely, Theorem 3.3 synthesize and generalitélsearesults of [9] and [20] for a non normal eometric
space. Theorem 3.2 is a generalized form of Banantraction principle in a complete cone metriccgpahich
is not necessarily normal
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