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Abstract 
The purpose of this paper is to the study of the existence of common fixed point theorem for a sequence of self 
maps satisfying generalized contractive condition for a cone metrice space and obtains some new results in it. 
Also the paper contains generalized fixed point theorems of [10, 13, 19] and many others from the current 
literature. 
 

1. Introduction and preliminaries 

The well known Banach contraction principal and its several generalizations in the setting of metric spaces play 
a central role for solving many problems of non linear analysis. For example, see[2,5,6,15,16,17] 
Huang and Zang[8] generalized the concept of the metric spaces by introducing cone metric spaces and proved 
some fixed point theorems for mappings satisfying some contractive conditions, subsequentialy, several other  
authors [1,9,16,19,21] studied the existence of fixed points and common fixed points of mappings satisfying 
contractive type condition on a normal cone metric space. 
  Recently Razapour and Hamlbarani[19] omitted the assumption of normality in cone metric 
space, which is  milestone in developing fixed point theory in cone metric space. In[11] the authors introduced 
the concept of a compatible pair of self maps in a cone metric space and established a basic result for a non 
normal cone metric space with an example which [12] weakly compatible maps have been studied. In this paper 
we prove a common fixed point theorem for a sequence of self maps satisfying a generalized contractive 
condition for a non normal cone metric space. 
Definition:-1.1 [sec [8]] :- Let E be a real Banach space a sub set of p of E is called a cone whenever the 
following condition holds. 
(c1) P is closed, nonempty and P ≠{0} 
(c2) a,bϵR,a,b≥0 and x, y∈P imply ax+by∈P, 
(c3)P∩(-P) = {0} 
Given a cone P⊂E, we define a partial ordering ≤with respect to P by x≤y if and only if y-x ∈ P. We shall write 
x<y to indicate that x≤y but x≠y while x≪y will stand for y-x∈p0 where P0 stands for the interior of P. If 
p0
≠Ø.then P is called a solid cone(see[20]). 

              There exist two kinds of cones-normal (with the normal constant k) and non-normal cone [6]. Let E be a 
real Banach space,P⊂E a cone and ≤partial ordering defined by P. Then P is called normal it there is a number 
k>0 such that for all x,y∈P. 
0≤x≤y implies ∥x∥≤k∥y∥            
(1.1) 
or equivalently if (∀ n) xn≤yn≤zn  

and n n n
n n n
lim x lim z x imply lim y x

→∞ →∞ →∞
= = =          

(1.2) 
The least positive number K satisfying (1.1) is called the normal constant of  P. 

Example 1.2 (see[20]) let  E=
1C [ 0,1]
�

 with ∥x∥=∥x∥∞+∥x
1
∥∞ on p={x∈E:x(t)≥0}.This cone is not normal. 

Consider for example, xn(t)=tn/n and y(t)=1/n, then 0≤xn≤yn and 
n

n
lim y 0

→∞
=

 
but ∥xn∥=maxt∈[0,1]

nt

n
+ 

maxt∈[0,1]
n 1 1

t 1 1
n

− = + > ;hence xn does not converge to zero. It follows by (1.2) that P is a non-

normal cone. 
Definition 1.3 (see [13]):  Let P be a cone in a real Banach space E. If for a∈P and a≤ka for same K∈ [0,1],then 
a=0. 
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Definition1.4 (see [10]): Let P be a cone in a real Banach space E with non-empty interior. If for a∈E and a≪c 
for all c∈p0,then a=0. 
Remarks 1.5(see [19]) λp0

⊆p0 for λ>0 and p0 +p0
⊆p0  

Definition 1.6(see [8.22]) Let X be a nonempty set suppose that the mapping  
d : X×X→E  satisfies. 
(d1)0≤d(x,y) for all x,y∈X and d(x,y)=0 if amd only if x=y.  
(d2) d(x,y)=d(y,x) for all x,y∈X 
(d3) d(x, y)≤d(x,z)+d(z,y), x,y,z∈X …….. 
Then d is called a cone metric [8] or K_metric [22] on X and (x,d) is called a cone metric[8] or k-metric 
space[22]  (we shall use the first term).The concept of a cone metric space is more general than that of a metric 
space, because each metric space is a cone metric space where E=ℝ and P=[0,+∞]. 
Example 1.7(see[8])Let E≠ℝ2 p = {(x,y) ∈ℝ2 : x≥0,y≥0}, X=ℝ and d : X×X→E defined by d(x,y)=(|x-y|, a|x-
y|),where a≥0 is a constant. Then(x,d) is a cone metric space with normal cone P where K=1 
Example 1.8(see[18] Let E=l2 ,P={xn} n≥1∈E:xn≥0, for all n, (X, ρ) a metric space ,and d:X×X→E defined, by 
d(x,y)={ρ(x,y/2n} n≥1. Then (X,d) is a cone metric space. 
Clearly, the above examples show that class of cone metric space contains the class of metric spaces. 
Definition 1.9 (sec[8]) let (X,d) be cone metric space. We say that {xn} is 

(i) a Cauchy sequence if for every ε in E with 0≪ε, then there is an N such that for all n,m>N,d(xn,xm) ≪ ε. 
(ii) a convergent sequence if for every ε in E with 0≪ε, then there is an N such that for all n>N, d(xn,x) ≪ ε 

for some fixed x in X. 

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X. 
In the following (X,d) will stands for a cone metric space with respect to a cone P with P0

≠Ø in a real Banach 
space E and ≤ is partial ordering in E with respect to P. 
Remarks 1.10 It follows from above definition that if {x2n} is a subspace of a Cauchy sequence {xn} in a cone 
metric space (x,d) and x2n→u as n→∞ then xn→u as n→∞. 

Definition 1.11 (see[13]) Let (X,d) be a cone metric Space and P be a cone in a real Banach space E. If 
u≤v,v≪w, then u≪w. 
Lemma 1.12 (see[13]) Let(X,d) be a cone metric space and P be a cone in a real Banach space E and l,l1,l2 >0 
are some fixed point real number. If xn→x, yn→y in X and for some a∈p 
la≤l1d(xn, x)+l2d(yn, y) 
for all n>N, for some integer N then a=0 

2. Generalized contraction mapping 

Let X be a cone metric space and T:X→X be a mapping then T is called generalized contractive mapping if it 
satisfies the following condition: 
d(Tx,Ty) ≤ α d(x,y) +β d(x,Tx)+γ(y, Ty)+δ[d(x,Tx)+(y, Ty)] 
              +η[d(x,Ty)+(y, Ty)+μ[d(x,Ty)+(x, Tx)]                                                            (2.1) 
For all x, y ϵ X and α, β, γ, δ, η, μ ϵ[0,1] are constants such that  

2 2 3 1α β γ δ η µ+ + + + + <
  

Remarks (2.1): 
     (i) If (i)δ=η=μ=0 and α, β, γ ∈[0,1], then (2.1) reduce to contraction mapping defined by Banach[3] 

(ii) α=β=γ=μ=0 and δ, η∈[0,1/2] then (2.1) reduce to contraction mapping defined by Kannan[14] 

(iii)  α=β=γ=δ=η=0 and μ∈[0,1/3] then (2.1) reduce to contraction mapping following the condition hold. 

3. Main Results 
In this section we shall prove some fixed point theorems of generalized contractive mapping. 
Theorem 3.1: let (X,d) be a complete cone metric space with respect to a cone p contained in real Banach 
space E. let {Tn}be a sequence of self maps on x satisfying generalized contractive  condition (2.1) with for 
some α, β, γ, δ, η,μ ϵ[0,1] for x0 ∈X, let xn =Tnxn-1 for all n . then the sequence {xn} converges in X and its 
limit v is a common fixed point of all the maps of the sequence {Tn}. This common fixed point is unique if 
α+2η+µ<1 

      Proof:- taking x=xn-1 , y= xn T= Tn and T= Tn+1 in (2.1) we have 
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 d(Tnxn-1, Tn+1xn)≤αd(xn-1, xn)+βd(xn-1, Tnxn-1) 

     +γd(xn, Tn+1xn)+δ[d(xn-1, Tnxn-1)+d(xn, Tn+1xn)] 

     +η[d(xn-1, Tn+1xn)+d(xn, Tnxn-1)] 

     +μ[d(xn-1, Tn+1xn)+d(xn-1, Tnxn)] 

As xn= Tnxn-1, we have 

d(xn, xn+1) ≤αd(xn-1, xn)+βd(xn-1, xn) 

+γd(xn, xn+1)+δ[d(xn-1, xn)+d(xn, xn+1)] 

+η[d(xn-1, xn+1)+d(xn, xn)]+μ[d(xn-1, xn+1)+d(xn-1, xn)] 

≤αd(xn-1, xn)+βd(xn-1, xn)+γd(xn, xn+1) 

+δ[d(xn-1, xn)+d(xn, xn+1)]+η[d(xn-1, xn)+d(xn, xn+1)] 

+μ[d(xn-1, xn)+d(xn, xn+1)+d(xn-1, xn)] 

Writing d(xn, xn+1)=ρn we have 
( ) ( )

( ) ( )
n n 1 n

n n 1

2

1 2

ρ α β δ η µ ρ γ δ η µ ρ
γ δ η µ ρ α β δ η µ ρ

−

−

≤ + + + + + + + +

− − − − ≤ + + + +
  

This implies that 

n n 1tρ ρ −≤    Where 

2
t

1

α β δ η µ
γ δ η µ

+ + + +=
− − − −

  

As( 2 2 3 1)α β δ γ η µ+ + + + + < ,  we obtain that t<1  

Now  
2 n

n n 1 n 2 0t t ........... tρ ρ ρ ρ− −≤ ≤ ≤ ≤   

Where 0 0 1d(x ,x )ρ =  also for n>m we have  

n m n n 1 n 1 n 2 m 1 md (x , x ) d (x , x ) d (x , x ) ........... d (x , x )− − − +≤ + + +
  

  

m
n 1 n 2 m

1 0 1 0

m

0

t
(t t ........ t ) d(x ,x ) d(x ,x )

1 t

t

1 t
ρ

− −≤ + + + ≤
−

=
−

  

As t<1 and p is closed, thus we obtain that 
m

n m 0

t
d(x ,x )

1 t
ρ≤

−
            (3.2) 

Now for εϵp0 ,there exists r>0 such that ε-yϵ p0, if ∥y∥<r. choose a positive integer Nℇ  such that for all n≥Nℇ  

∥

m

0

t

1 t
ρ

−
y∥<r which implies ℇ −  

m

0

t

1 t
ρ

−
∈p0 

 and 

  

m

0

t

1 t
ρ

−
− d(xn,xm)∈p by using (3.2). 

So we have ℇ‒d(xn,xm)∈p0 for all n>Nℇ, and for all m by definition(1.11). this implies d(xn,xm)<<ℇ. for all n>Nℇ 
and for all m hence {xn} is a Cauchy sequence in X. by the completeness of X, there exists, Z∈x such that xn→z 
as n→∞. for an arbitrary fixed m we show that Tmz=z. now 
         d(Tmz,z) ≤d(Tmz,Tn xn-1)+d(Tnxn-1,z) 
       =d(xn,z)+ d(Tmz,Tn xn-1) 
Using (2.1) we have 
              d(Tmz,z)≤ d(Tmz,Tn xn-1)+ d(Tn,xn-1 z) 
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   = d( xn, z)+ d(Tmz,Tn xn-1) 
   ≤ d( xn ,z)+α d(z, xn-1)+� d(z,Tmz,)+	 d(xn-1,Tn xn-1) 
                           + δ[d(z,Tmz)+ d(xn-1,Tn xn-1)]+η[ d(z,Tn xn-1)+ d(xn-1,Tmz )] 
                            +μ[ d(z,Tn xn-1)+ d(z,Tmz,)] 
   = d(xn, z)+αd(z,xn-1)+βd(z,Tmz)+ γd(xn-1,xn)+δ[ d(z,Tmz,)+ d(xn-1, xn)] 
                           +η[ d(z,xn)+ d(xn-1,Tmz)]+μ[ d(z, xn)+ d(z,Tmz)] 
                           ≤ d(xn,z)+ αd(z,xn-1)+ βd(z,Tmz)+ γd( xn-1,z) 
                           +δ[ d(z,Tmz)+ d(xn-1,z)+ d(z,xn)]+η[ d(z, xn)+ d(xn-1,z)+ d(z,Tmz)] 
                           +μ[ d(z,xn)+ d(xn-1,z)+ d(z,Tmz)] 
                           =(1+
+η+µ )d(xn,z)+(α+	+
+η+µ) d( z,xn-1)+(�+
+µ+η) d(Tmz,z) 
So we have 
(1-�‒
‒µ‒η)d(Tmz,z)≤(1+
+η+µ) d(xn, z)+(α+	+
+�+η)d(z,xn-1) 
As xn→z, xn-1→z(n→∞) and (1‒�‒
‒η‒µ)>0, Using lemma 1.12 we have d(Tmz,z)=0 and we get Tmz=z, thus z 
is a common fixed point of all the maps of sequence{T n}. 
Uniqueness:-  
Let Tnv=v for all n be another common fixed point of all the maps of the sequence {Tn}. Now d(v,z)= d(Tnv,Tn 

z) 
                   ≤ αd(v,z)+ βd(v,Tn v)+γ d(z,Tn z)+δ[ d(v,Tn v)+ d(z,Tn z)] 

       +η[ d(v,Tn z)+ d(z,Tn v)]+μ[ d(v,Tn z)+ d(v,Tn v)] 
Which gives  
d(v,z)≤(α+2η+µ)d(v,z) 
as α+2η+µ<1 using definition 1.3 we have d(v,z)=0, i.e. v=z. thus v is the unique common fixed point of all the 

maps of the sequence {Tn}. 
Theorem 3.2:- let (X,d) be a compact cone metric space with respect to a cone p contained in a real Banach 

space E. Let {Sn}be a sequence of self maps in X satisfying for some αn, βn,	n 
n, �n, �n ∈[0,1] with αn+ 
βn,+	n +2
n,+2 �n,+3 �n<1 and αn+2�n+ �n<1 there exists positive integer mi for each i such that for all 
x,y∈X. 

 

i i i i

i i i i

i i

m m m m
i j n n i n i

m m m m
n i j n j i

m m
n j i

d(s x,s y) d(x,y) d(x,s x) d(y,s y)

                    [d(x,s x) d(y,s y)] [d(x,s y) d(x,s x)]

                    [d(x,s y) d(x,s x)]

α β γ

δ η

µ

≤ + +

+ + + +

+ +
(3.3) 

Then all the maps of the sequence {sn} have a unique common fixed point in X. 

Proof: - from theorem 3.1 all the maps of the sequence {
im

is  },have a unique common fixed point , say z. 

hence 
mi
is z=z 

For all i. now 
im

is z=z implies 
im

is s1z=s1z. taking x=s1z, y=z, i=1 and j=2 in (3.3), we have s1z = z. 

continuing in similar way it follows that siz = z for all i . thus z is a common fixed point of all the maps of the 

sequence {si}. Its uniqueness follows from the fact that siz = z implies 
im

is z=z for all i.  

In theorem 3.1 taking T1= T2= T3=……………………..= Tn=………= T, we get the following general form of 
Banach contraction principle in a cone metric space which is not necessarily normal. 
Theorem 3.3:- let(X,d) be a complete cone metric space with respect to a cone p contained in real Banach space 
E. Let T be a self map in X satisfying generalized contractive condition (2.1) with α+ β+	 +2
+2 �+3 �<1 and 

for some α,β,	,
, �, �∈[0,1]then for each x∈X sequence
n

x{T }    converges in X and its limit u is a fixed 

point T. This fixed point is unique if  α+2�+ �<1.  



Innovative Systems Design and Engineering                                                                                                                                     www.iiste.org 

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)  

Vol.4, No.13, 2013 

 

61 

Theorem 3.4:- let (X,d)be a complete cone metric space with respect to a cone p contained in a real Banach 
space E. suppose the mapping T:X→X satisfying for some positive integer n 

n n n n
n n n

n n n n
n n

n n
n

d(T x,T y) d(x,y) d(x,T x) d(y,T y)

                    [d(x,T x) d(y,T y)] [d(x,T y) d(y,T x)]

                    [d(x,T y) d(x,T x)]

α β γ
δ η
µ

≤ + +

+ + + +

+ +
   

For all x,y ∈ X and αn, βn, 	n, 
n, �n, �n ∈[0,1] are constants such that αn+ βn,+	n +2
n,+2 �n,+3 �n<1 then T has a 
unique fixed point in X.  
Proof :- from theorem 3.3 Tn has a unique fixed point u. but Tn(Tu)=T(Tnu)=Tu, so Tu is also a fixed point of Tn 
hence Tu=u, u is a fixed of T. since the fixed point of T is unique.  
Corollary 3.5:- Let (X,d) be a complete cone metric space with respect to a cone p contained in real Banach 
space E . Suppose the mapping T:X→X satisfies for some positive integer m, n. 

m n m n
x y n n n

m n n m
n n

n m
n

d(T x,T y) d(x, y) d( x,T x) d(y,T y)

                    [d(x,T x ) d(y,T y)] [d(x,T y) d(y,T x )]

                    [d(x,T y) d(x,T y)]

α β γ

δ η
µ

≤ + +

+ + + +

+ +
  

For all x,y ∈ X and αn, βn, 	n, 
n, �n, �n ∈[0,1] are constants such that αn+ βn,+	n +2
n,+2 �n,+3 �n<1 and 
n,=�n 
then T has a unique fixed point in X.  
Proof:- by theorem 3.4 we get x ∈ X such that Tmx=Tny=x. the result then follows from the fact that 

m n m n

m n
n n n

m n n m
n n

n m
n

     d(T x,x) d(TT x,T y) d(T Tx,T x)

                    d(Tx,x) d(Tx,T Tx) d(x,T x)

                    [d(Tx,T Tx) d(x,T x)] [d(Tx,T x) d(x,T Tx )]

                    [d(Tx,T x) d(x,T Tx

α β γ
δ η
µ

= =

≤ + +

+ + + +

+ +

n n n

n n

n

n n n

)]

                    d(Tx,x) d(Tx,Tx) d(x,x)

                    [d(Tx,Tx) d(x,x)] [d(Tx,x) d(x,Tx )]

                    [d(Tx,x) d(Tx,Tx )]

                     =( 2 )d(Tx,x)

α β γ
δ η
µ
α η µ

≤ + +
+ + + +
+ +

+ +

  

Which implies Tx=x. 
Theorem 1[8] and theorem 2.3 [20]:-. Let (X,d) be a complete cone metric space. Suppose the mapping T: 
X→X satisfies the contractive condition  
d(Tx,Ty)<=kd(x,y) 
For all x,y ϵ X where k∈[0,1], is a constant. Then  T has a unique fixed point in X. And for any x∈X, the 
iterative sequence {Tnx} converges to the fixed point. 
Theorem 3[8] and theorem 2.6[20]:- Let (X,d) be a complete cone metric space. Suppose the mapping T:X→X 
satisfies the contractive condition  
d(Tx,Ty)<=k[d(x,Tx)+d(y,Ty)] 
For all x,y e X where k∈[0,1/2], is a constant. Then T has a unique fixed point in X. And for any x∈X, the 
iterative sequence {Tnx} converges to the fixed point. 
Theorem 4[8] and Theorem 2.7[20]:- Theorem 1[8] and theorem 2.3 [20]. Let (X,d) be a complete cone metric 
space. Suppose the mapping T:X→X satisfies the contractive condition  
d(Tx,Ty)<=k[d(y,Tx)+d(x,Ty)] 
For all x,y e X where k∈[0,1], is a constant. Then  T has a unique fixed point in X. And for any x∈X, the 
iterative sequence {Tnx} converges to the fixed point. 
Remark 3.8:- Above theorems os [8] and [20] follows Theorem 3.3 of this paper by taking 

(i) β,	, 
, �, � and α=k 
(ii)  α, 	, 
, �, � and β=k 
(iii)  α ,β, , 
, �, � and 	 =k 
(iv) α, β ,	, �, � and 
 =k 
(v) α, β, 	, 
 ,μ and η = k 
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(vi) α ,β ,	 ,
 ,� and �=k 

Precisely, Theorem 3.3 synthesize and generalizes all the results of [9] and [20] for a non normal cone metric 
space. Theorem 3.2 is a generalized form of Banach contraction principle in a complete cone metric space which 
is not necessarily normal 
Acknowledgement: One of the authors (R.B.) is thank full to MPCST Bhopal for project no. 2556 
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