The Tent Chaotic Mapping: Analysis for Generation of Binary Codes for Better Performance by Using MATLAB

Annepu .Venkata NagaVamsi
Dept of E.I.E, AITAM, Tekkali -532201, Andhra Pradesh, India.
E-mail: vamsikrishna_avn@yahoo.co.in

G.S.S.S.V.K.Mohan
Dept of E.I.E, AITAM, Tekkali -532201, Andhra Pradesh, India.
E-mail: g_k_mohan@yahoo.com

M.S.Pradeep Kumar Patnaik
Dept of E.I.E, AITAM, Tekkali -532201, Andhra Pradesh, India.
E-mail: patnaik_mspk@yahoo.com

Received: October 29, 2011
Accepted: October 30, 2011
Published: November 4, 2011

Abstract:
In this paper, the Tent map is analyzed as a source of pseudorandom bits. To evaluate the performance of the proposed pseudorandom bit generator, different issues were considered, such as the period length, the discriminator value and the merit factor. The Tent mapping is a suitable alternative to other traditional low-complexity pseudorandom bit generators.

Keywords: Tent map, discrimination value, merit factor, chaotic signal.

1. Introduction
The generation of random numbers is required in several applications, including measurement and testing of digital circuits and telecommunication systems (eg, to perform their functional verification and evaluate their immunity to noise), the aim is to achieve a satisfactory tradeoff among the best merit factor. In radar or sonar applications, linear chirps are the most typically used signals to achieve pulse compression. The pulse being of finite length, the amplitude is a rectangle function. If the transmitted signal has a duration T, begins at t = 0 and linearly sweeps the frequency band Δf centered on carrier f_0, it can be written

\[s_c(t) = \begin{cases} A e^{i 2 \pi \left(f_0 + \frac{\Delta f}{2} \right) t} & \text{if } 0 \leq t < T \\ 0 & \text{otherwise} \end{cases} \ldots \ldots 1.1 \]

for best performance, the autocorrelation pattern of the optimum coded waveform must have a large peak value for zero shift and zero value for non-zero shifts. In this paper, good binary codes are generated using Tent –map equation to achieve a low PSL. It is possible to generate infinite number of codes at larger lengths easily, by changing the initial conditions by very small increment, threshold level and bifurcation factor.

2. How can chaotic waveform help?
They are deterministic (defined by an iterative map or differential equations), and can therefore be practically implemented.
They are non–periodic, which suggests there are potential advantages in security and can be used as (infinitely) long spreading sequences.

They are sensitive to initial conditions so that the behaviour of two systems with small difference in the initial system state (or) a parameter diverges exponentially in time while both systems remain bounded by the operation of the non-linearity a property useful in efficient high power transmission.

Chaotic systems have a very sensitive dependence on their initial conditions. This sensitive dependence can be demonstrated by giving two very close initial points to the iterative map. After a few iterations, the two resulting sequences will look completely uncorrelated. Hence; an abundant source of almost uncorrelated signals has been discovered: a slight change in the initial condition will produce a completely different signal.

3. Tent mapping-Chaotic Equation

Here in this paper we are dealing with the Tent mapping. A deal of chaotic behaviour can be described by one simple, fairly innocuous looking equation, the Tent map as shown in the Figure1.,and the bifurcation for the tent map in Figure 2.

The chaotic mapping is as follows
\[X_{n+1} = f (x_n) \]1.1

Tent mapping:
\[X_{n+1} = A - (B (x_n)) \quad A>1 \]1.2

The chaotic regime:
\[X_n \text{ belongs to } [A (1-B), A] \quad 0<B<2 \]1.3

4. Proposed technique for code generation

As the Tent chaotic mapping, we can generate different sequences and by selecting the best sequence among the sequences, the best sequence is taken and is been coded in binary for the best results.

The threshold for the binary codes is done as below
\[X (n) >0 \quad xx (n) = 1 \]1.4
\[X (n) <0 \quad xx (n) = -1 \]1.5

The applied function is auto–correlation pattern
\[X (n) \text{ is an N length sequence the auto correlation function is defined as } \]
\[R(k) = \sum x(n) x(n+k) \text{ limits from } \]
\[n=0 \text{ to N-1-k} \]1.6

From the autocorrelation pattern, the discriminator factor (D) can be formed as,
\[R(0) \]
\[D = \text{ Where } k \neq 0 \text{ } \]
\[\text{Max}(R(k)) \]

5. Side lobe Reduction Using Window function

The main disadvantage of pulse compression is the appearance of side lobes in the autocorrelation function which will mask the weak reflections from other targets, this can be overcome by reducing the side lobes, there are various techniques for this purpose, and one such is the windowing techniques.

The following window functions have been applied.
1. Hamming window

\[W(n) = 0.54 + 0.46 \cos \left(\frac{2\pi n}{N+1} \right), \quad 0 \leq n \leq N \]

2. Hanning window

\[w(n) = 0.5 + 0.5 \cos \left(\frac{\pi n}{N+1} \right), \quad 0 \leq n \leq N \]

3. Triangular Window

\[W(n) = 1 - \frac{n}{2(N+1)} \quad 0 \leq N \leq N+1 \]

5.1 Results for binary codes and its response to a matched filter is shown in the Table 1.

6. Results and Conclusion

Good binary codes were generated using Tent map. At different lengths, good sequences were obtained and it was found that the discrimination factor increases with the length of the sequence. At lower lengths the performance with the hanning and hamming windows function were found to be superior compared to triangular window. The best sequences were found from the triangular window function at higher lengths. Further improvement in the result can be obtained by reducing the incremental value in the algorithm and search for new good codes.

7. Graphical Results

The graphical result shows the exactly the differences in the rectangular window, hanning window, hamming window and triangular window as in the Figure 3, Figure 4, Figure 5, Figure 6 and the tent map output in the Figure 7.

References

Ghobad, H.B. Chaotic signals for digital communication Ph.D Thesis for Purdue University, 1992

A Chaotic Sequence Spread-Spectrum” IEEE Transactions on Communications. vol. 25(2/3/9), pp. 1126-1129, 1996 MAKOTO ITOH,

Ternary Pulse Compression Sequence by logistic map” ”, IEEE, MOHORIR, PP.2512-2515, 1998

International Journal on Chaotic Signals “, vol.12, no.23, pp.236-239, 1999

Figure 1. Graph of Tent map function

Figure 2. Bifurcation diagram for the tent map

Figure 3. Discrimination curve for the hamming window
Figure 4. Discrimination curve for the Triangular window

Figure 5. Discrimination curve for the rectangular window

Figure 6. Discrimination curve for the hanning window
Figure 6. Output for Tent mapping

Table 1

<table>
<thead>
<tr>
<th>Length</th>
<th>DISCRIMINATION FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drec value</td>
</tr>
<tr>
<td>20</td>
<td>7.665</td>
</tr>
<tr>
<td>50</td>
<td>8.142</td>
</tr>
<tr>
<td>100</td>
<td>12.353</td>
</tr>
<tr>
<td>500</td>
<td>15.822</td>
</tr>
<tr>
<td>1000</td>
<td>16.381</td>
</tr>
<tr>
<td>1500</td>
<td>17.643</td>
</tr>
<tr>
<td>3000</td>
<td>22.496</td>
</tr>
<tr>
<td>3500</td>
<td>22.602</td>
</tr>
</tbody>
</table>
This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library , NewJour, Google Scholar