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Abstract 

This paper presents an optimization based technique for calculation of reactive power flow under line outage 

condition. Traditional sensitivity based method provides an approximate solution due to presence of non-linearity. 

This deficiency has been overcome by formulating line outage as non-linear constrained optimization problem 

for a bounded network. A population based search algorithm namely Differential Evolution (DE) has been 

applied for optimization. The methodology is tested on IEEE 14 bus system and simulated results are compared 

with the results of AC power flow which shows that the proposed method improves the accuracy in reactive 

power flow and bus voltage values under line outage condition. 
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1.INTRODUCTION  Modern power system is a very large complex network operating most of the time in 

stressed condition due to increased load demand. Isolation of one of the transmission line from network due to 

fault or any other abnormality results several line overloads in other branches and system voltage deviation. In 

order to alleviate these stresses it is required to develope fast and accurate methods to predict the post outage 

status of the system. However accuracy and speed of the solution are conflicting requirements.One of the most 

powerful tools for calculating post outage quantities is distribution factors based on sensitivity analysis. Line 

outage distribution facors and DC power flow methods [1] are effectively used for Megawatt flows. These 

methods provide Fairly fast and reliable results for MW flows but fail to address voltage security analysis. 

Several methods based on power flow [2-5] have been developed to handle reactive power flows and voltage 

magnitude problems. Ilic and Phadke [5] devloped a method for calculating reactive power flows in contingency 

analysis but it requires nine different factors which are prone to computational errors. Lee and Chen [6] proposed 

voltage distribution factors which are based on FDLF and network sensitivities. The method suffers accuracy as 

the assumption of  P-δ and Q-V coupling is not generally applicable during stressed system condition. Methods 

proposed by Preston et al [7] for calculating line currents under muliple outage condition suffers from high 

computational errors due to linearised network equations. Singh and Shrivastava [8] developed a new set of 

distribution factors based on decoupled power flow Jacobian matrix.   Power system behaviour is highly  

non-linear under stressed condition and any  attempt to develop the methods for reactive power flow  using 

linearised model to enhance computational speed may result serious errors. Minor deviation in calculating 

voltage magnitude may result in high errors in reactive power flows. Therefore an improved model is required 

for calculating post outaged voltage magnitudes. 

An improved model is presented in ths paper for voltage and reactive power calculation under line outage 

condition without increasing any significant computational time.  A bounded network comprising the outaged 

branch and the neighbouring branches has been considered. Line outage is formulated as a non linear constrained 

optimization problem for this network. Voltage magnitude at different nodes of  the bounded network is 

obtained using DE to minimize the mismatch between the actual and calculated reactive powers resulting from 

linearized network relatonship. The proposed method makes use of base case variables and the linearized MW 

power flows for a restricted set of network variables. Therefore it does not result any significant increase in 

computational time. However, the optimization cycle provides a non linear feedback for reactive power 

mismatch, which in turn minimizes the load bus voltage magnitude error due to linearised network constraints. 

The resulting bus voltage magnitudes and reactive power flows are much better than the one obtained by the 

traditonal approaches. The accuracy of the proposed algorithm has been verified on IEEE-14 bus test 

system .The results are compared with those of the actual power flows to examine the strength of the method. 

2. Expression for Reactive Power flow through a transmission line  Consider a transmission line connected 

between buses k and m in the system as shown in Fig.1 
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Fig. 1: Transmission line with external sources at both ends 

Reactive power in the line can be expressed as follows  

Qkm = -Vk
2
bkm + VkVm [bkm cosδmk + gkm sinδmk]    (1) 

Qmk = -Qkm 

Where,   Vk,Vm = bus voltage magnitude at kth & mth bus respectively 

δk,δjm = bus voltage phase angles of kth & nth bus 

δmk = δm - δk  

gkm,bkm are the conductance & susceptance of line connected between kth & mth                      

but 

yij = gkm + jbkm     line admittance. 

Generally it is preferred to simulate branch outage using a pair of fictitious sources to preserve the network 

topology. Fig 1 shows a simulated line outage. An exact outage simulation by fictitious sources creates the same 

effect of the line outage without changing the reactive power balance of the network i.e. 

Qsk = Q
T

km                                                (2) 

Qsm = -Q
T

km                                                     (3) 

Q
T

km is the post outage reactive power flow which is very close to pre outaged flow.  

3. Problem Formulation: For a bounded network line outage simulation can be carried out as a constrained 

optimization problem. This sub network comprises the outaged branch and the neighbouring branches. An exact 

simulation satisfies both the reactive power flow equation and fictitious source constraints (2) and (3). 

An incremental relationship between reactive power and load bus voltage magnitudes mismatches as follows: 

∆Q=J∆V                                             (4) 

Where, 

∆Q= Reactive power mismatch error 

∆V= Change in load bus voltage magnitude 

Load bus voltage magnitudes calculated from above do not satisfy (2) and (3) because of linearization errors. 

Therefore, part of the reactive power generation circulates through the system. The proposed formulation aims 

the minimization of difference between the reactive power flow in the line in pre and post outaged conditions. 

This can be stated as: 

Min F =  Qsk - Qkm
T                                                

(5) 

Subject to 

∆Q = B ∆Vb 

For all load buses 

Where B = Bus susceptance matrix 
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The proposed DE optimization technique provides a feedback by which the load bus voltage magnitudes are 

revised to minimize the effect of fictitious sources on the network reactive power distribution. The time required 

is also not considerable as it is confined in the bounded network and makes the use of base case variables. 

DC power flow equation provides bus voltage phase angles for each outage. Phase angles are assumed constant 

as it has very weak coupling with reactive power flow. DE is preferred for optimization as discussed below. 

4.  Overview of Differential Evolution  Differential evolution (DE) developed by Storn and Price [10] is a 

very simple population based, stochastic function minimiser and has been found very powerful to solve various 

nature of engineering problems [11,12]. DE attacks the optimization problem by sampling the objective function 

at multiple randomly chosen initial points. Preset parameter bounds define the region from which ‘M’ vectors in 

this initial population are chosen. DE generates new solution points in ‘D’ dimensional space that are 

perturbations of existing points. It perturbs vectors with the scaled difference of two randomly selected 

population vectors. To produce a mutated vector, DE adds the scaled, random vector difference to a third selected 

population vector (called as base vector). Further DE also employs a uniform cross over to produce trial vector 

from target vector and mutated vector. The three fundamental steps are explained below. 

Step-(a) Initialization: A initial population of size ‘M’ is generated as follows 

],........,[ )0()0(

2

)0(

1

)0(

MXXXS =  (6) 

T

iDiii xxxX ],.....,[ )0()0(

2

)0(

1

)0( =
   

 (7) 

x
(0)

ij i.e. j
th

 parameter of Xi vector is obtained from uniform distribution as follows 

 jjjjij randxxxx )( min,max,min,

)0( −+=  (8) 

xj,min and xj,max  are lower and upper bounds on variable xj. randj is a random digit in the range [0,1]. 

Step-(b) Mutation: DE mutates and recombines the population to produce a population of ‘M’ trial vectors. 

Differential mutation adds a scaled, randomly sampled, vector difference to a third vector as follows 

 )( )()()()( k

q

k

p

k

base

k

i XXXV −+= σ  (9) 

σ is known as scale factor usually lies in the range [0, 1]. 

)(k

pX  and 
)(k

qX  are two randomly selected vectors (p ≠ q). 

)(k

baseX  is known as base vector. 

)(k

iV  is a mutant vector. 

The base vector index ‘base’ may be determined in variety of ways. This may be a randomly chosen 

vector (base ≠ p ≠ q). 

Step-(b) Crossover: DE employs a uniform crossover strategy. Crossover generates trial vectors ti
(k)

 as 

follows. 

 




 =≤

=
otherwise                                  

)or  ( if      
)(

,

)(

,)(

, k

ji

randrj

k

jik

ji
x

jjCrandv
t  (10) 

Cr is crossover probability lies in the range [0, 1]. Cr is user defined value which controls the number of 

parameter values which are copied from the mutant. If the random number randj is less than or equal to Cr, the 
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trial parameter is adopted from the mutant
)(k

iV . Further, the trial parameter with randomly chosen index, jrand is 

taken from the mutant to ensure that trial vector does not duplicate target vector
)(k

iX . Otherwise the parameter 

is adopted from the target vector
)(k

iX . 

Step-(d) Selection: Objective function is evaluated for target vector and trial vector, trial vector is selected 

if it provides better value of the function than target vector as follows 

 



 ≤

=+

otherwise                     

)()( if      
)(

)()()(

)1(

k

i

k

i

k

i

k

ik

i
X

Xftft
X

     

 (11) 

The process of mutation, crossover and selection is executed for all target vector index, i, and a new population 

is created till the optimal solution is obtained. The procedure is terminated if a maximum number of generations 

(kmax) have been executed or no improvement in objective function is noticed in a pre-specified generations. 

Various benchmark versions of DE that differ in the new generation methods largely are available [12]. In this 

the DE/best/1/bin has been selected. The first term after DE i.e. ‘best’ specifies the way base vector is chosen. In 

this selected scheme the base vector is the current best so far vector. ‘1’ after best denotes that one vector 

difference contributes to the differential. Last term ‘bin’ denotes binomial distribution that result because of 

uniform crossover. Number of parameters donated by mutant vector closely follows binomial distribution. It is to 

be noted that best, target and difference vector indices are all different. 

5. Results and Discussion  The methodology presented in this paper is tested on IEEE 14 bus system [9]. 

Reactive power flows and voltage magnitudes for the given system are calculated both with AC power flow and 

with the proposed method under line outage condition. Simulation is carried out on MATLAB applying DE 

optimization technique. One of the line which is heavily loaded is selected for outage Errors in bus voltage 

magnitudes and reactive power flow are calculated as the difference of their values obtained using proposed 

method with that of AC power flow. Line connected between bus no 7 and 9 has been considered for outage. Pre 

outage reactive power flow is recorded 0.867pu. Table-1 and 2  depict  the post outage voltage magnitude 

respectively as obtained with the proposed methodology Same table also contain the calculated values under 

contingency using AC power flow for comparison. Respective Errors are shown in the last column of table 1 and 

2. The maximum % error in voltage magnitude is 0.4 which is less than 1pu which is reported. Error obtained in 

reactive power flow is quite high but still they are less than those reported in the literature. The error is bit 

dominant due to small size of the system. Algorithm has also been tested under different loading conditions and 

error in voltage margin and reactive power found remain low as compared to other existing methodology. 

Table-1: Voltage magnitudes under line outage condition for IEEE-14 bus system. 

BUS NO. PRE OUTAGE VOLTAGE 

MAGNITUDE 

AS OBTAINED USING 

PROPOSED METHOD 

ERROR 

 

1 1.060 1.060 0 

2 1.045 1.045 0 

3 1.010 1.010 0 

4 1.015 1.015 0 

5 1.016 1.016 0 

6 1.070 1.070 0 

7 1.066 1.068 0.002 

8 1.090 1.090 0 

9 0.988 0.991 0.011 

10 0.994 0.997 0.003 

11 1.027 1.030 0.003 

12 1.050 1.054 0.003 

13 1.040 1.043 0.003 

14 0.992 0.896 0.006 
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Table-2 Reactive power flow under line outage condition for IEEE-14 bus system 

 

LINE NO. 

REACTIVE POWER FLOW 

USING AC LOAD FLOW 

REACTIVE POWER FLOW 

USING PROPOSED METHOD 

ERROR 

1-2 -20.3 -20.1 0.2 

1-5 5.4 4.9 0.5 

2-3 3.6 3.5 0.1 

2-4 0.2 0.15 0.05 

2-5 2.8 1.8 1.0 

3-4 5.3 5.0 0.3 

4-5 12.0 10.6 1.4 

4-7 -14.1 -15.0 0.9 

4-9 13.2 12.3 1.07 

5-6 12.8 13.5 0.9 

6-11 14.6 13.1 1.1 

6-12 3.7 3.3 1.1 

6-13 13.0 11.8 1.1 

7-9 OUTAGED 87.2 SIMULATED  

9-10 -5.5 -4.6 1.19 

9-14 -2.6 -1.8 1.4 

10-11 -11.3 -10.3 1.09 

12-13 1.9 1.58 1.20 

13-14 8.3 7.5 1.13 

7-8 -14.5 -13.8 1.05 

 

6.  Conclusion  An improved model has been presented in this paper for calculation of reactive power and 

voltage magnitudes. Considering the contingent line as part of bounded network it is then formulated as 

non-linear constrained optimization problem Voltage magnitude and reactive power flow in this bounded region 

are determined by DE in such a way to minimize the reactive power mismatch errors. Base case variables and 

linearised MW flows for bounded network have been used in the proposed method. This avoids excessive time 

of computation. Results are shown for IEEE 14 bus system. Clearly indicate that the bus voltage magnitude and 

reactive power flows are much better than those calculated by the traditional approaches. Accuracy of the 

method are found better for large size system compared to  small size system. 

 

References 

1. A.J. Wood and B.F. Woolenberg, Power Generation, Operation and Control, New York, Wiley, 1984, pp 

355-375. 

2. H.Daniels and M.S.Chen,’ An optimization techniques and security calculation for dispatching computers,’ 

IEEE Trans. Power App. Syst. Vol.  PAS -91, no. 3, May 1972, pp 783-788. 

3. N.M. Peterson, W.F. Tinney and D.W.Bree,’Iterative linear AC power flow solution for approximate outage 

studies’, IEEE Transaction Power Application System, vol PAS.91, no.5, sep1972,pp2048-2058. 

4. K.R. Mamandur and G.J.Berg, ’Efficient simulation of line and transformer outage in power system’ ,IEEE 

Transaction Power Application System Vol PAS-101, no.10, oct 1982, pp3733-3741. 

5. M.Ilic and A.Phadke, ‘Redistribution of reactive power flow in contingency analysis’, IEEE Transaction 

Power System Vol PWRS-1, no.3, Aug 1986, pp266-275. 

6. C.Lec and N.Chai, ‘Distribution factors reactive power flow in transmission line and transformer outage 

studies’, IEEE on power system, Vol7, no.1, Feb 1992, pp194-200. 

7. E.G.Preston, M.L.Banghman and W.M.Grady,’A new model for outaging transmission lines in large electric 

networks’, IEEE Transaction on power systems, Vol 14, no 2, May 1999, pp 412-418. 

8. S.N.Singh and S.C.Shrivatava, ’Improved Voltage and reactive power distribution factors for outage studies’, 

IEEE Transaction on power system, vol 12, no.3, Aug 1997, pp 1085-1193 

9. A.Ozdemir, J.Y.Linc and C.Singh,’Branch outage simulation for MVAr flows bounded network solution’, 

IEEE Transaction on power system, vol 18, no.4, Nov 2003, pp 1523-1528. 

10. R. Storn and K.V. Price, ‘Differential evolution a simple and efficient adaptive scheme for global 

optimization over continuous spaces’, Technical Report TR-95012, ICSI. 



Innovative Systems Design and Engineering                                                                  www.iiste.org 

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)  

Vol.4, No.6, 2013 - Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

43 

11. J. Lampinen, ‘A constraint handling approach for differential evolution algorithm’, Proc. of 2002 

Congress on Evolutionary Computation (CEC-02), Vol. 2, pp. 1468-1473. 

12. Kenneth V. Price, Rainer M. Storn and Jouni A. Lampinen, Differential Evolution: A Practical Approach to 

Global Optimization (Natural Computing Series) Springer-Verlag New York, Inc. Secaucus, NJ, USA ©2005 

(Book). 

 

 


