Innovative Systems Design and Engineering
ISSN $2222-1727$ (Paper) ISSN $2222-2871$ (Online)
Vol.12, No. 2022

Solution. $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}, \mathrm{E}=\{\mathrm{ab}, \mathrm{ac}, \mathrm{ad}, \mathrm{be}, \mathrm{ed}, \mathrm{eg}, \mathrm{df}, \mathrm{fg}, \mathrm{fc}\}$
Definition 2.1.2

- Vertices of an edge are called its ends
- Two vertices are called neighbours, if there is an edge connecting them
- Two edges are called incidents, if they have common vertex
- Graph is called simple, if there are no loops
- An empty graph is the one that has vertices, but no edges

Definition 2.1.3 Graph $H=\left(V_{H}, E_{H}\right)$ is called subgraph of graph $\mathrm{G}=\left(\mathrm{V}_{\mathrm{G}}, \mathrm{E}_{\mathrm{G}}\right)$, if $\mathrm{V}_{\mathrm{H}} \subseteq \mathrm{V}_{\mathrm{G}}$ and $\mathrm{E}_{\mathrm{H}} \subseteq \mathrm{E}_{\mathrm{G}}$. Denoted as $H \leq G$
the subset of graph is called an ordered pair $G=(V, E)$, where V is a , E , graph. Consequently, if each pair $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ appears only once in E , the graph is called 1 -graph $[4]$.
Definition 2.1.5 An ordered system of vertices ($\left.\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{t}}\right), \mathrm{r} \geq 1$ of graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ such that each of the edges $\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+1}$, for $\mathrm{i}=0,1, \ldots, \mathrm{r}-1$, belong to graph G , is called path in G . The vertex x_{0} is called the beginning of the path while x_{t} is called the end of the path.
Definition 2.1.6 Let the graphs $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$, where $\mathrm{V} 1 \cap \mathrm{~V} 2=\varnothing$ (disjoint) be given. Graph $G=(V, E)=G_{1} \cup G_{2}$, where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$ is called the union of graphs G_{1} and G_{2}.
Definition 2.1.7 A graph is called connected, if it is a union of two graphs. On the contrary, we say that the graph is disconnected.
2.2 Weighted graphs. The minimum distance- shortest path problem

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a directed graph, with respect to which a function (reflection) $\mathrm{W}: \mathrm{E} \rightarrow R_{0}^{+}$is given, with each edge of $\mathrm{e} \in \mathrm{E}$ associated with only one non-negative real number $\mathrm{W}(\mathrm{e})$, which is called weight of edge e or length with weight (abbreviated length) of edge e or distance with weight (abbreviated distance) between the edges of edge e. If the edge is $e=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$, then we note the length with its weight $w i, j: W\left(v_{i}, y_{j}\right)=W_{i, j}$.
Definition 2.2.1. A graph G equipped with a function W of weights of its edges is called a weighted graph and is denoted by G^{w}.
For the subgraph H of the G^{W} graph, the number $W(H)=\sum_{\varepsilon \in E(H)} W(e)$ is called the total weight of the subgraph H
 ath of length 0 . In a directed graph there may be several paths starting at vi and ending at v_{j}. Of interest is knowing those paths at a vertex v_{i}. The length of the shortest path starting at $v i$ and ending at v_{i} is called the minimum distance between vertices vi and vj and is denoted by $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$, denoted

```
```

The vertex }\mp@subsup{x}{m}{}\inV\mathrm{ such that for each i=1,2,..,n satisfies the inequality

```
```

```
```

The vertex }\mp@subsup{x}{m}{}\inV\mathrm{ such that for each i=1,2,..,n satisfies the inequality

```
```



```
```

 In other words, the m-center is the vertex where it is reached
    ```
```

```
```

 In other words, the m-center is the vertex where it is reached
    ```
```

We assume that for each vertex $x_{j} \in V$ we have given a positive number w_{j} that we call its weight. In different
problems, w_{j} it has different meanings, for example, in the placement of a service center in an area, w_{j} it can
problems, w_{j} it has different meanings, for example, in the placement of a service center in an area, w_{j} it can
also indicate the number of residents of the i-th settlement.
- c-center with weighted graph G is any vertex $x_{c} \in V$ such that:
$\max _{1 \leq j \leq n}\left\{w_{j} l^{\prime}\left(x_{c}, x_{j}\right)\right\} \leq \max _{15 j \leq n}\left\{w_{j} l^{\prime}\left(x_{i}, x_{j}\right)\right.$
for each $\mathrm{i}=1,2, \ldots$, n
- m-center with weighted graph G is any vertex $x_{m} \in V$ such that:
$\sum_{j=1}^{n} w_{j} l^{*}\left(x_{m}, x_{j}\right) \leq \sum_{j=1}^{n} w_{j} l^{*}\left(x_{i}, x_{j}\right)_{\text {for each } \mathrm{i}=1,2, \ldots, \mathrm{n}}$
In the above definitions, the center exists only when the left sides of the inequalities are finite numbers. On the
contrary, it is said that the graph has no center, namely c -center or m-center. Clearly, G will be centered if and
only if there is at least one vertex from which every other vertex can be traversed by paths in G .
only if there is at least one vertex from which every other vertex can be traversed by paths in G .
In the above definitions, vertices are considered the same "rights". In practice this consideration is not alway
appropriate. For example, in the establishment of a health or social-cultural facility that serves several residential
centers, the number of residents of each residential center should also be taken into account, which means; that
the service facility should be as close as possible to centers with more inhabitants. [2],[3]

2.4.2 An approach for finding centres

All four types of centers defined above are very easily found through the matrix A* which we find with the help of Floyd's Algorithm.
i. For simple centers, we add to the matrix A^{*} a column where we put the largest element of each row and a column where we put the sum of each row. The vertex, which belongs to the smallest element of the second added column represents the m-center of the graph. To get the weighted c -center and m -weighted center, first the columns of the matrix A^{*} are multiplied
by the weights wj of the vertices, respectively, and then it is done in the same way as in point i).
y the weights wj of the vertices, respectively, and then it is done in the same way as in point i).

In practice, it is often required to find the "most suitable" place to build a facility that serves several peripheral points which may be residential centers or different points that require service. Example, in a given region where it is better to place a health, social-cultural facility, or a shopping center, serving the residential centers, for a
telegraphic network where it is better to place the information processing center (central). Depending on the telegraphic network where it is better to place the information processing center (
optimality criterion for positioning in this object, we consider two types of problems:

- The first includes those problems where the most suitable place for the facility is considered to be the one from which the minimum distance from the facility to the peripheral point This type includes the problem of placing the social-cultural or health facility
- In problems of the second type, the most suitable place for the object is the one from which the sum of the lengths of all the shortest paths connecting the object with peripheral points is the smallest possible.
It is more economical that the total length of the conductors connecting the points of the telegraph etwork to the switchboard to be minimal, therefore this problem belongs to the problems of the second type. [2]
2.4.1 Graph Centres

If we take a graph which is connected $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with n vertices, we put a non-negative number in correspondence with each edge $u \in E 1(u)$. We denote by ${ }^{*}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ the minimum distance from x_{i} to x_{j}.

- The vertex $x_{c} \in V$ such that for each $\mathrm{i}=1,2, \ldots, \mathrm{n}$ satisfies the inequality
$\max _{15 j \leq n} l^{r}\left(x_{c}, x_{j}\right) \leq \max _{1-j \leq n} l^{*}\left(x_{i}, x_{j}\right)$ it is called the c-center of graphite.
In other words, c -centre is the peak where it is reached

Figure. 3.1.1
3. C-CENTER AND M-CENTER IN KOSOVO (RESULTS)
3.1 Simple c-center and m-center

At the beginning, we give the graph of the most important roads in Kosovo (fig. 3.1.1)
Where the circles with numbers represent the cities or crossroads, while the rectangles represent the distances or weights of the edges
for each settlement.

No.	Country	Number of Inhabitants
1.	Mitrovica	71.636
2.	Vushtrri	68.793
3.	Kline e Eperme	1.719
4.	Podujeva	86.836
5.	Gjyrakoc	2.209
6.	Skenderaj	51.553
7.	Obiliq	21.056
8.	Banje e Pejes	1.300
9.	Vitomeric	5.409
10.	Peje	97.776
11.	Zahac	1.120
12.	Kline	39.527
13.	Kjeve	1.279
14.	Orlat	3.134
15.	Gllogove	60.111
16.	Komoran	4.393
17.	Fushe Kosove	37.735
18.	Prishtina	207.062
19.	Graqanice	11.720
20.	Novoberda	6.953
21.	Kamenice/Artane	33.599

25

ISNovaive Systems Design and Engineering
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online Vol.12, No.5, 2022

Table. 3.1.2

According to table 3.1 .2 we can see that the c -centre is vertex 25 , which belongs to the settlement (crossroads) Bllace, while the m -centre, which is vertex 14 that belongs to the settlement (crossroads) Orllate.

Table. 3.1.
According to table 3.1 .3 we observed that

- The weighted c -centre is the vertex 24 belonging to the city of Malishevë, while
- The weighted m -centre is the vertex 26 belonging to the city of Shtime.

If we analyse further the appendix 2 , we notice that

- The second c-centre with weight is the peak 26 - the city of Shtime
- The third c -centre with weight comes out the peak 14 -the settlement Orllate, while
- The m-centre with weight comes out the peak 27 - the city of Ferizaj
- The third m-centre with weight comes out 25 - the settlement Blacee.

Innovative Systems Design and Engineering
SSN 2222-1727 (Paper) ISSN 2222-2871 (Onlin
Vol.12, No. 5, 2022

$\frac{\text { mww.iste.ors }}{\text { nISTE }}$

Notice In the above graph, we have not considered the permitted speed of yehicle movements on the road. If the speed is also considered, then the c, m-centres may change.
4. SOCIO-ECONOMIC ADVANTAGES OF WEIGHTED C-CENTRES AND WEIGHTED M-CENTERS According to the results that we obtained for weighted c -centres and m -centres and considering the theoretical aspect for them, we are listing some economic and social favors for c -centres with weight and m -centres with weight
4.1 Socio-economic advantages of c weighted centers

The object of public importance in Kosovo of the first type (hospital, university, training facility, etc.) should be
placed in peak 24 (or as an alternative 26.14), i.e. in the city of Malisheva (Shtimes Orllati), for the reason that:

- The smallest average distance for each end of Kosovo turns out to be Malisheva (the second weighted
c-center is Shtimja and the third weighted c-center is Orllati)
- Not far from Malisheva (Shtime, Orllati) are the big cities of Kosovo
- On average, the cost of transporting goods and services in Kosovo to come for such activities in the capital city decrease
- The capital is relieved from heavy traffic
- Malisheva (Shtimja, Orllati), will develop more economically, for the reason that small commercia services can be opened around these facilities
- The weight of the capital is distributed
- New job opportunities open up for c-centers with weight
- The internal displacement of the population to the Capital is stopped.
4.2 Social-economic advantages of m weighted center

The object of public importance in Kosovo of the second type (information processing centers, distribution centers should be located at peak 26 (or as an alternative 27,25), i.e. in the city of Shtime (Ferizaj, Bllacë), fo he reason that:

- The distribution of networks throughout Kosovo will have a lower cost, if this distribution has its center
- Not far from Shtime are the big cities of Kosovo
- On average, the cost of building such networks decrease
- The capital is relieved from heavy traffic
- Shtimja is developed more economically, for the reason that small commercial services can be opened around these facilities
- Large interventions in the Capital are avoided, which also lead to road blockage
- New employment opportunities are opening for weighted m-centers

5. CONCLUSION

After a theoretical support that we gave to our aim, we successfully reached some significant results

- The weighted c centre in Kosovo is Malishev
- The weighted m centre in Kosovo is Shtimja
- Some socio-economic arguments were given for these centres

We hope that with this paper we have managed to solve some issues on the placement of public facilities in Kosovo
Moreover, as we know the time complexity of the shortest paths algorithms depends on the number of the vertices taken, number of the edges etc in future work we are planning to generate a software with the optimized time complexity for the problems of the same nature as discussed in this paper

References
Rosen HK, Discrete Mathematics and its Applications, Sixth AT\&T Laboratories International Edition, The McGraw-Hill Companies, 2007.
Thoma Miter, Alma Spaho, Applied Mathematics, Tirana, 2016.
Hysen Binjaku, Mathematics Exercises, Tirana, 2010.
Kedhi V. Operational research (An introduction), Dita Print, Tirana 2017.
Robin J. Wilson, Introduction to Graph Theory, Fourth edition, 1998.
D. Cvetkovic, M. Milic, Teorija graphova i njene primene, Belgrade, 1971.

Vasillaq Kedhi, Grafet dhe rrjedhat ne rrjeta, Tirane, 2000.
A. Jusufi, K. Filip, Matematike Diskrete dhe aplikime, Prishtine, 2022.

Zuhri Ramadhan - Primand Floyd - Warshall Comparative Algorithmsin Shortest Path Problem, 2018
Hamdy A. Taha Operations Research An Introduction,10th edition 2017.
Dong Lin, Andrew Allan,Jianqiang Cui Sub-centres, socio-economic characteristics and commuting: a case study and its implications.
Jialei Wang, Ying Sun, Zuojun Liu, Peng Yang, Tao Lin Route Planning based on Floyd Algorithm for Intelligence Transportation System 2007.
EI Sapundzhi, M.S Popstoilov Optimization alsoriths for finding the shortest paths, 2017.
R. Floyd, Comm. ACM, 5, 345 (1962).

Larson, R. and Odoni, A. "Shortest Paths between All Pairs of Nodes." $\$ 6.2 .2$ in Urban Operations Research.
1981.

