Development of a Timed Coloured Petri Net Model for Time-of-Day Signal Timing Plan Transitions

Ganiyu Rafiu Adesina (Corresponding author)
Department of Computer Science and Engineering, Ladoke Akintola University of Technology, P.M.B 4000,Ogbomoso, Nigeria.
Tel: +2348060596393 E-mail: ganiyurafiu @ yahoo.com
Olabiyisi Stephen Olatunde
Department of Computer Science and Engineering, Ladoke Akintola University of Technology, P.M.B 4000,Ogbomoso, Nigeria. Tel: +2348036669863 E-mail: tundeolabiyisi@ hotmail.com
Omidiora Elijah Olusayo
Department of Computer Science and Engineering, Ladoke Akintola University of Technology, P.M.B 4000,Ogbomoso, Nigeria.
Tel: +2348030712446 E-mail: omidiorasayo@yahoo.co.uk
Okediran Oladotun Olusola
Department of Computer Science and Engineering, Ladoke Akintola University of Technology, P.M.B 4000,Ogbomoso, Nigeria.
Tel: +2348034466236 E-mail: dotunokediran@yahoo.com
Badmus Taofeek Alabi
Department of Computer Science and Engineering, Ladoke Akintola University of Technology, P.M.B 4000,Ogbomoso, Nigeria.
Tel: +2348067334191 E-mail: successallover222@yahoo.com

Abstract

In many countries, traffic signal control is one of the most cost effective means of improving urban mobility. Nevertheless, the signal control can be grouped into two principal classes, namely trafficresponse and fixed-time. Precisely, a traffic response signal controller changes timing plan in real time according to traffic conditions while a fixed-time signal controller deploys multiple signal timing plans to cater for traffic demand changes during a day. To handle different traffic scenarios via fixed-time signal controls, traffic engineers determine such time-of-day intervals manually using one or two days worth of traffic data. That is, owing to significant variation in traffic volumes, the efficient use of fixed-time signal controllers depends primarily on selecting a number of signal timing plans within a day. In this paper, a Timed Coloured Petri Net (TCPN) formalism was explored to model transition between four signal timing plans of a traffic light control system such that a morning peak signal timing plan handles traffic demand

between the hours of 6:00 am and 8:30 am, followed by afternoon I and afternoon II signal timing plans which handle traffic demands from 8:30 am to $3: 00 \mathrm{pm}$ and from 3:00 pm to 7:00 pm respectively, while the off peak plan handles traffic demands from 7:00 pm to $9: 00 \mathrm{pm}$. Other hours of the day are ignored since they are characterized by low traffic demands.
Keywords: Signal timing plan, Petri nets, Time-of-day, Model, Traffic, Fixed-time.

1. Introduction

Traffic controls are mainly based on the estimation of the flow rate of vehicle arrivals. This is the case of both major kinds of techniques of the traffic light control, fixed cycle time and adaptive signal control (Wu , et al., 2007). In the fixed signal control (i.e. offline technology), historical data is used to set up control strategies. The fixed signal control is simple and does not require sensors to obtain information about realtime traffic condition. It is just based on the average flow rate of roads. The drawback of the fixed signal control is that it cannot respond to any change in traffic condition. In order to improve such a control, adaptive control strategies (i.e. online technologies) are proposed. They receive real-time data through sensors and create an optimal timing plan. In adaptive control strategy, detectors located on the intersection approaches monitor traffic conditions and feed information on the actual system state to the real-time controller. Moreover, the controller selects the duration of the green phases in the signal-timing plan in order to optimize a performance index (Patel and Ranganathan, 2001; Wey, 2000; Dotoli et al., 2003). In both control strategies, the traffic network has to be appropriately modelled either for simulation purposes or in order to determine on line some states of the transportation network that are not available due to detector absence or failures (Gabard, 1991).
Using a fixed-time control strategy, as traffic demand changes over time, especially by time-of-day, traffic engineers develop multiple signal timing plans to accommodate these changes over time in an urban signalized intersection. For example, signal timing plan deployed in the morning peak would be different from that of midday. This is called time-of-day (TOD) mode control. It is the most common traffic control approach for non-adaptive signals in urban signalized intersections. In addition, traffic signals are coordinated in order to provide better progression along major arterials. Timing plans under TOD intervals are different in nature such that when a new timing plan is implemented over the previous timing plan, the progression bandwidth along an arterial could be damaged, which is known as a transition cost. Thus, the number and the selection of the TOD intervals are as important as finding the optimal signal timing plan for each of the intervals. In practice, traffic engineers manually collect traffic count data for one or two days, plot the aggregated volumes and determine the TOD intervals based on engineering judgment. This approach may not be efficient since it cannot keep up with the rapid changes in daily traffic. Thus, an adaptive and automated tool that utilizes a large set of archived traffic data and produces an optimal TOD plan could be very useful (Byungkyu et al., 2003). This would eliminate the shortcomings of the short-term manual counts and the reliance of the expert judgment. A recent study proposed the use of statistical clustering algorithms to determine such TOD intervals (Smith et al., 2002).
In furtherance, Petri nets have been proven to be a powerful modeling tool for various kinds of discrete event systems (Murata, 1989; Peterson, 1981), and its formalism provides a clear means for presenting simulation and control logic. Hence, the Petri nets are applied in traffic control. Coloured Petri nets (CPN) is a graphical oriented language for modeling and validation of systems in which communication, synchronization and resource sharing play an important role. It is an example of high-level Petri nets which combines the strength of Petri nets with the strength of programming languages. That is, Petri nets provide the primitives for describing synchronization of concurrent processes, while programming languages provide the primitives for definition of data types and manipulation of their data values. The inclusion of time concepts into a Coloured Petri Net model results in a model called Timed Coloured Petri Net (TCPN) model (Ganiyu et al., 2011b). Thus, with a Timed Coloured Petri Nets, it would be possible to calculate performance measures, such as the speed by which a system operates, mean waiting time and throughput. The objective of this paper is to develop a Timed Coloured Petri Net model for Time-of-Day signal timing plans with emphasis on modelling transition between four signal timing plans of a traffic light control
system such that a morning peak signal timing plan handles traffic demand between the hours of 6:00 am and 8:30 am, followed by afternoon I and afternoon II signal timing plans which handle traffic demands from 8:30 am to $3: 00 \mathrm{pm}$ and from 3:00 pm to 7:00 pm respectively, followed by the off peak plan handles traffic demands from 7:00 pm to 9:00 pm while other hours of the day are ignored.

2. Methodology

2.1 Basic Concept of Timed Coloured Petri Nets

Colored Petri Nets (CPNs) provide a modeling framework suitable for simulating distributed and concurrent processes with both synchronous and asynchronous communication. They are useful in modeling both non-deterministic and stochastic processes as well. Simulation is experimentation with a model of a system (White and Ingalls 2009). A CPN model is an executable representation of a system consisting of the states of the system and the events or transitions that cause the system to change its state. Through simulations of a CPN model, it is possible to examine and explore various scenarios and behaviors of a system. The relatively small basic vocabulary of CPNs allows for great flexibility in modeling a wide variety of application domains, including communication protocols, data networks, distributed algorithms, and embedded systems (Peterson 1981, Jensen and Kristensen 2009). CPNs combine the graphical components of ordinary Petri Nets with the strengths of a high level programming language, making them suitable for modeling complex systems (Jensen, Kristensen, and Wells 2007). Petri Nets provide the foundation for modeling concurrency, communication, and synchronization, while a high level programming language provides the foundation for the definition of data types and the manipulations of data values. The CPN language allows the model to be represented as a set of modules, allowing complex nets (and systems) to be represented in a hierarchical manner. CPNs allow for the creation of both timed and untimed models. Simulations of untimed models are usually used to validate the logical correctness of a system, while simulations of timed models are used to evaluate the performance of a system. Time plays an important role in the performance analysis of concurrent systems.
CPN models can be constructed using CPN Tools, a graphical software tool used to create, edit, simulate, and analyze models. CPN Tools has a graphical editor that allows the user to create and arrange the various Petri Net components. One of the key features of CPN Tools is that it visually divides the hierarchical components of a CPN, enhancing its readability without affecting the execution of the model. CPN Tools also provides a monitoring facility to conduct performance analysis of a system. In addition, unlike traditional discrete event systems, CPNs allow for state space based exploration and analysis, which is complementary to pure simulation based analysis.
In a formal way, a Coloured Petri Nets is a tuple CPN $=(\Sigma, \mathrm{P}, \mathrm{T}, \mathrm{A}, \mathrm{N}, \mathrm{C}, \mathrm{G}, \mathrm{E}, \mathrm{I})$ where:
(i) $\quad \Sigma$ is a finite set of non-empty types, also called colour sets.
(ii) P is a finite set of places.
(iii) T is a finite set of transitions.
(iv) A is a finite set of arcs such that:
$\mathrm{P} \cap \mathrm{T}=\mathrm{P} \cap \mathrm{A}=\mathrm{T} \cap \mathrm{A}=\emptyset$.
(v) $\quad \mathrm{N}$ is a node function. It is defined from A into $\mathrm{PxT} \cup \mathrm{TxP}$.
(vi) $\quad \mathrm{C}$ is a colour function. It is defined from P into Σ
(vii) G is a guard function. It is defined from T into expressions such that:
$\forall t \in T:[\operatorname{Type}(\mathrm{G}(\mathrm{t}))=\mathrm{B} \wedge \operatorname{Type}(\operatorname{Var}(\mathrm{G}(\mathrm{t}))) \subseteq \Sigma]$.
(viii) E is an arc expression function. It is defined from A into expressions such that:
$\forall a \in A:\left[\operatorname{Type}(\mathrm{E}(\mathrm{a}))=\mathrm{C}(\mathrm{p})_{\mathrm{MS}} \wedge \operatorname{Type}(\operatorname{Var}(\mathrm{E}(\mathrm{a}))) \subseteq \Sigma\right]$ where p is the place of $\mathrm{N}(\mathrm{a})$.
(ix) I is an initialization function. It is defined from P into closed expressions such that:

$$
\forall p \in P:\left[\operatorname{Type}(\mathrm{I}(\mathrm{p}))=\mathrm{C}(\mathrm{p})_{\mathrm{MS}}\right] .
$$

(Jensen, 1994)
The set of types determines the data values and the operations and functions that can be used in the net expressions (i.e., arc expressions, guards and initialization expressions). If desired, the types (and the corresponding operations and functions) can be defined by means of a many-sorted sigma algebra (as in the theory of abstract data types). The places, transitions and arcs are described by three sets P, T and A which are required to be finite and pairwise disjoint. By requiring the sets of places, transitions and arcs to be finite, we avoid a number of technical problems such as the possibility of having an infinite number of arcs between two nodes. The node function maps each arc into a pair where the first element is the source node and the second the destination node. The two nodes have to be of different kind (i.e., one must be a place while the other is a transition). Multiple arcs is a modelling convenience. For theory, they do not add or change anything. The colour function C maps each place, p, to a type $C(p)$. Intuitively, this means that each token on p must have a data value that belongs to $\mathrm{C}(\mathrm{p})$. The guard function G maps each transition, t , into a boolean expression where all variables have types that belong to Σ. When we draw a CP-net we omit guard expressions which always evaluate to true. The arc expression function E maps each arc, a, into an expression of type $C(p)_{\text {ms }}$. This means that each arc expression must evaluate to multi-sets over the type of the adjacent place, p . The initialization function I maps each place, p , into a closed expression which must be of type $\mathrm{C}(\mathrm{p})_{\mathrm{MS}}$ (Jensen, 1994).
A timed non-hierarchical Coloured Petri Nets is a tuple TCPN $=\left(C P N, R, r_{o}\right)$ such that:
(i) CPN satisfying the above definition.
(ii) $\quad \mathrm{R}$ is a set of time values, also called time stamps. It is closed under + and including 0 .
(iii) r_{o} is an element of R called the start time
(Huang and Chung, 2008).

2.2 The Case Study

Controlling traffic signal timing at an optimal condition is undoubtedly one of the most cost effective means of improving mobility of urban traffic system. In the light of this, majority of studies related to the signal control have focused on developing better traffic signal timing plans by developing computerized programs including TRANSYT-7F (Wallace et al., 1998), PASSER-II (Messer et al., 1974) or better optimization techniques. Using a fixed-time control strategy, as traffic demand changes over time, especially by time-of-day, traffic engineers develop multiple signal timing plans to accommodate these changes over time in an urban signalized intersection. However, the number of signal timing plans should be minimum as possible. The greater the number of plans the more maintenance would eventually be required to upkeep them.
In order to develop the proposed Timed Coloured Petri Net model, a study case is considered in this section. Figure 1.1 depicts the layout of a signalized intersection under consideration. Traffic is currently ruled in the intersection by a fixed time control strategy with associated signal-timing plans. The layout consists of two roads named ARTERIAL S1 and ARTERIAL S3. With respect to the four input links of the intersection, the direction from ARTERIAL S1 is identified as North while its opposite direction identified as South. Similarly, the direction from ARTERIAL S3 is identified as East while its opposite direction is identified as West. To efficiently control significant variation in traffic volumes at the considered intersection, there exists a morning peak plan that operates from 06:00 am - 8:30 am, an afternoon I plan that operates from 8:30 am $-3: 00 \mathrm{pm}$, an afternoon II plan that operates from 3:00 $\mathrm{pm}-7: 00 \mathrm{pm}$ and an off-peak plan that operates from 7:00 pm $-9: 00 \mathrm{pm}$. Tables 1.1, 1.2, 1.3 and 1.4 report the four aforementioned signal-timing plans. Vehicle streams are represented with letters from A to H while pedestrian streams are represented with letters from I to L. Also, yellow (i.e. amber) phases are taken into account such that a morning peak, afternoon I, afternoon II and off peak signal timing plans of the
considered intersection consist of $25,27,26$ and 25 phases respectively, with phases 10,11 and 12 of each the morning peak, afternoon I and afternoon II signal timing plans representing amber phases.

2.2.1 Developing the TCPN Model of Time-of-Day Signal Timing Plan Transitions

The proposed Timed Coloured Petri Net (TCPN) model is developed consisting of two parts, namely the signal timing plan sub-model and the traffic light sub-models. Based on the Timed Coloured Petri Net formalism, the tokens required for all the two parts mentioned above comprise four elements. The token elements (i.e. $i, c t, p$ and n) and their interpretations are as enumerated:

- The element i denotes the traffic light of each stream (i.e. stream $A_{T}, B_{T}, C_{L}, D_{L}, E_{T}, F_{T}, G_{L}, H_{L}$, $\mathrm{M}_{\mathrm{R}}, \mathrm{N}_{\mathrm{R}}, \mathrm{O}_{\mathrm{R}}$ and P_{R} traffic lights).
- The element $c t$ represents the cycle time (i.e. $c t 1$ for morning peak, $c t 2$ for afternoon I, $c t 3$ for afternoon II and $c t 4$ for off peak period).
- The element p represents the period for the giving time-of-day (i.e. $p 1$ for morning peak period, $p 2$ for afternoon I period, $p 3$ for afternoon II period and $p 4$ for off peak period).
- The element n counts the numbers of repetition cycles starting from the initial period.

However, the parameters necessary to describe the traffic behaviours in the considered intersection are as follows:

- The phase durations (in seconds) of green, red and yellow signal lights of each stream as reported in signal timing plans shown in Tables 1.1, 1.2, 1.3 and 1.4.
- The numbers of repetition cycles n_{i} given by equation (1.1).
- $n_{i}=\sum^{n} r_{i}, n \leq 4$
where r_{i} is the numbers of repetition for the period p_{i}. All the numbers of repetition cycles (i.e. r_{i}) and the corresponding values of n_{i} are depicted in Table 1.5.

2.2.1.1 The Signal Timing Plan Sub-model

The operation of a signal control system on an arterial corridor requires a timing plan for each signal in the corridor. A coordination timing plan consists of three main elements: cycle length, splits, and offsets. Moreover, the signal timing sub-model should be able to assign the cycle times to the different periods. In this sub-model, there are no durations and time delay. Indeed, it is used to estimate the cycle time of a period. Likewise, the number of the repetition cycle has to be counted. Once the number of repetition cycles equal to n_{i}, the current period p_{i} goes to the next period p_{i+1}. However, the Signal Sub-model requires four places (i.e. p1, p2, p3 and DB1) and three transitions (i.e. $\mathrm{t} 2, \mathrm{t} 3$ and t 4). The function of the place DB1 is to keep the cycle time and the current period together at the same time. Finally, there are four arcs between transition t 2 and the place p 2 . The arc expressions determine when the current period goes to next period.

2.2.1.2 The Traffic Light Sub-models

To correctly control an intersection via traffic light signal indications, each traffic signal must follow a defined sequence of active colour lights, normally from green to yellow and red, and then backing to green. As a result, the traffic light part of the proposed TCPN model modelled the changing rule of traffic lights according to the four signal-timing plans shown in Tables 1.1, 1.2, 1.3 and 1.4. In particular, vehicles are allowed to pass through an intersection when green lights are turned on. On the other hand, vehicles are inhibited to pass through an intersection during red and yellow signal indications as these, in Nigerian context, correspond to stop and stop at the stop line, respectively (Ganiyu et al., 2011a).
By considering the intersection shown in Figure 1.1, there are twelve vehicle streams identified, namely Cleft, D-left, G-left, H-left, M-right, N-right, O-right, P-right, A-through, B-through, E-through and Fthrough denoted by $C_{L}, D_{L}, G_{L}, H_{L}, M_{R}, N_{R}, O_{R}, P_{R}, A_{T}, B_{T}, E_{T}$ and F_{T}, respectively. As a result, the traffic light part of the TCPN modelling the intersection would be divided into twelve sub-models. These are called streams $C_{L}, D_{L}, G_{L}, H_{L}, M_{R}, N_{R}, O_{R}, P_{R}, A_{T}, B_{T}, E_{T}$ and F_{T} sub-models. Each of the first four streams
(i.e. C_{L}, D_{L}, G_{L} and H_{L}) is controlled by one set of traffic light (i.e. Red, Yellow and Green signal lights) while each of the next four streams (i.e. $\mathrm{M}_{\mathrm{R}}, \mathrm{N}_{\mathrm{R}}, \mathrm{O}_{\mathrm{R}}$ and P_{R}) is controlled only by a Right turn green arrow light. However, the last four streams (i.e. A_{T}, B_{T}, E_{T} and F_{T}) are individually controlled by two sets of traffic lights. To be precise, each of the last four streams is allocated two lanes and controlled correspondingly by two sets of traffic lights placed on a long arm cantilever. As an example, two sets of traffic lights represented by A. 1 and A. 2 in Figure 1.1 concurrently control the Stream A_{T} vehicles. As reflected by signal heads depicted in Tables 1.1, 1.2, 1.3 and 1.4, in modelling stream A_{T} traffic lights, the two sets of traffic lights would be merged and represented as follows:

- Place A_{G} models the state of green light controlling the $\operatorname{Stream} \mathrm{A}_{\mathrm{T}}$ vehicles
- Place A_{Y} models the state of yellow light controlling the Stream A_{T} vehicles
- Place A_{R} models the state of red light controlling the Stream A_{T} vehicles

This is also applicable to the two sets of traffic lights ruling each of the streams $\mathrm{B}_{\mathrm{T}}, \mathrm{E}_{\mathrm{T}}$ and F_{T}. That is, the two sets of traffic lights controlling each of these streams would be merged and modelled as stated in Table 1.6. Besides, the model representations of the other traffic lights (i.e. streams $C_{L}, D_{L}, G_{L}, H_{L}, M_{R}, N_{R}, O_{R}$ and P_{R} traffic lights) are also explicated in Table 1.6. Moreover, taking model representation of the stream A_{T} traffic lights as an example, the presence of token in each of the places A_{G}, A_{Y} and A_{R} means green, yellow and red signal lights turn on respectively, and turn off otherwise. This is also applicable for each of the streams $\mathrm{C}_{\mathrm{L}}, \mathrm{D}_{\mathrm{L}}, \mathrm{G}_{\mathrm{L}}, \mathrm{H}_{\mathrm{L}}, \mathrm{M}_{\mathrm{R}}, \mathrm{N}_{\mathrm{R}}, \mathrm{O}_{\mathrm{R}}, \mathrm{P}_{\mathrm{R}}, \mathrm{B}_{\mathrm{T}}, \mathrm{E}_{\mathrm{T}}$ and F_{T} traffic lights.
Furthermore, for each of the twelve traffic light sub-models, the transitions required and their functions are enumerated in Tables 1.7(a) and 1.7(b). Based on the rules of Timed Colored Petri Nets, all the transitions would be drawn as rectangles. These represent individual events taking place in the traffic lights of the intersection. As with places, the names of the transitions are written inside the rectangles (e.g. t1, T8, t3, etc). A number of directed arcs connecting places and transitions are associated with appropriate arc expressions which consist of one or two of the following decision variables:

- Element i denotes the traffic light of each stream (i.e. stream $A_{T}, B_{T}, C_{L}, D_{L}, E_{T}, F_{T}, G_{L}, H_{L}, M_{R}$, $\mathrm{N}_{\mathrm{R}}, \mathrm{O}_{\mathrm{R}}, \mathrm{P}_{\mathrm{R}}$ traffic lights would be denoted by ic, id, ig, ih, im, inn, io, ip, ia, ib, ie and iff respectively).
- Time stamp derived from durations of green, red and yellow signal lights of each stream shown in Tables 1.1, 1.2, 1.3 and 1.4. This would be introduced using the symbol @. It should be noted that the time stamp could be defined as seconds, microseconds, milliseconds, etc, depending on the choice of modeller. Here, one time stamp unit is assumed to represent one millisecond in the developed TCPN model.

2.2.2 Discussion of Result

Figure 1.2 shows the developed Timed Coloured Petri Net (TCPN) model of Time-of-Day signal timing plan transitions of the considered intersection. The developed TCPN model is characterized by the following:

- Eight sets of traffic lights controlling the stream $A_{T}, B_{T}, C_{L}, D_{L}, E_{T}, F_{T}, G_{L}$ and H_{L} vehicles and four right-turn green arrow lights controlling the stream M_{R}, N_{R}, O_{R} and P_{R} vehicles.
- One signal timing plan sub-model and twelve traffic light sub-models (i.e. streams $\mathrm{A}_{\mathrm{T}}, \mathrm{B}_{\mathrm{T}}, \mathrm{C}_{\mathrm{L}}, \mathrm{D}_{\mathrm{L}}$, $\mathrm{E}_{\mathrm{T}}, \mathrm{F}_{\mathrm{T}}, \mathrm{G}_{\mathrm{L}}, \mathrm{H}_{\mathrm{L}}, \mathrm{M}_{\mathrm{R}}, \mathrm{N}_{\mathrm{R}}, \mathrm{O}_{\mathrm{R}}$ and P_{R} sub-models) that allow easy model modification or development for other periodic interval in a day in the considered intersection.
- The modelling of signal timing transitions of different periods that varies with the traffic flow in a day.
- The presence of tokens in the places $A R, B R, C R, D R, E R, F R, G R, H R, P 8, P 10, P 14, P 21, P 23$, P27, P33, P37, P40, P44, P48, P51, and DB1 which constitutes the initial marking or lost time phase of the model.
- The model execution is assumed to begin at the signal timing plan sub-model

3. Conclusion and Future Work

In this medium, we have been able to develop a Timed Coloured Petri Net model for Time-of-Day signal timing-plans selection of a named signalized intersection. Precisely, a Timed Coloured Petri Net formalism was explored with emphasis on the application of the methodology in modelling transition between four signal timing plans of a traffic light control system such that a morning peak signal timing plan handles traffic demand between the hours of 6:00 am and 8:30 am, followed by afternoon I and afternoon II signal timing plans which handle traffic demands from $8: 30 \mathrm{am}$ to $3: 00 \mathrm{pm}$ and from 3:00 pm to $7: 00 \mathrm{pm}$ respectively, followed by an off peak plan that handles traffic demands from 6:00 pm to $9: 00 \mathrm{pm}$ while other hours of the day are ignored. Furthermore, future and further research may be geared towards developing a Timed Coloured Petri Net model for Time-of-Day signal timing-plans selection of arterial traffic characterized by coordinated actuated controls. Also, the occurrence graph, as one of the analysis methods of Timed Coloured Petri Net models, could be used to verify the safeness and liveness properties associated with the developed Timed Coloured Petri Net model.

References

Byungkyu, B. P., Pinaki, S., Ilsoo, Y. and Do-Hoon, L. (2003). Optimization of Time-of-Day Intervals for Better Traffic Signal Control. Paper submitted for presentation and publication at the 2004 Annual Meeting of the Transportation Research Board, Paper No. 04-4841.
Dotoli, M., Fanti, M. P. and Meloni, C. (2003). Real time optimization of traffic signal control: application to coordinated intersections. In Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, Washington, 3288-3295.

Gabard, J. F. (1991). Car following models. In Concise encyclopedia of traffic and transportation systems, 65-68, M. Papageorgiou (Ed.), Oxford: Pergamon Press.
Ganiyu, R. A., Olabiyisi, S. O., Omidiora, E. O., Okediran, O. O. and Alo, O. O. (2011a). Modelling and Simulation of a Multi-Phase Traffic Light Controlled T-type Junction Using Timed Coloured Petri Nets. American Journal of Scientific and Industrial Research, 2, 3, 428-437.

Ganiyu, R. A., Omidiora, E. O., Olabiyisi, S. O., Arulogun, O. T. and Okediran, O. O. (2011b). The underlying concepts of Coloured Petri Net (CPN) and Timed Coloured Petri Net (TCPN) models through illustrative example. Accepted Manuscript for Publication in International Journal of Physical Science, Paper No: ASCN/2011/012, African University Journal Series, Accra, Ghana.
Huang, Y. S. and Chung, T. H. (2008). Modeling and Analysis of Urban Traffic Lights Control Systems Using Timed CP-nets. Journal of Information Science and Engineering, 24, 875-890.
Jensen, K. (1994). An Introduction to the Theoretical Aspects of Coloured Petri Nets. A Decade of Concurrency, Lecture Notes in Computer Science, Springer-Verlag, 803, 230-272.
Jensen, K., and Kristensen, L. M. (2009). Coloured Petri Nets. Modelling and Validation of Concurrent Systems, Springer.
Jensen, K., Kristensen, L. M and Wells, L. (2007). Coloured Petri nets and CPN Tools for modelling and validation of concurrent systems. International Journal on Software Tools for Technology Transfer (STTT), 9(3-4):213-254.

Messer, C. J., Haenel, H. E. and Koeppe, E. A. (1974). A Report on the User's Manual for Progression Analysis and Signal System Evaluation Routine - PASSER II. TTI Research Report 165-14, College Station, Texas.

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications., Proceedings of the IEEE, 77, 4, 541580.

Patel, M. and Ranganathan, N. (2001). IDUTC: An Intelligent Decision-Making System for Urban TrafficControl Applications. IEEE Trans. on Vehicular Technology, 50, 816-829.

Peterson, J.L. (1981). Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood Cliffs, New Jersey.
Smith, B. L., Scherer, W. T., Hauser, T. A. and Park, B. (2002). Data-Driven Methodology for Signal Timing Plan Development: A Computational Approach. Computer-Aided Civil and Infrastructure Engineering, 17, 287-395.

Wallace, C. E., Courage, K. G., Hadi, M. A. and Gan, A. C. (1998). TRANSYT-7F User's Guide. Transportation Research Center, University of Florida, Gainesville, Florida.
Wey, W. M. (2000). Model formulation and solution algorithm of traffic signal control in an urban network. Computers, environment and urban systems, 24, 355-377.

White, K.P., Jr. and Ingalls, R.G. (2009). Introduction to Simulation. In Proceedings of the 2009 Winter Simulation Conference, eds. M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, 12-23. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.
Wu, J., Abbas-Turki, A., Correia, A and El Moudni, A. (2007). Controlling a discrete model of two cascading intersections. UTBM, 90010, Belfort Cedex.

Table 1.1: Signal timing plan of a morning peak period

Stre	Signal																									
	Heads	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A_{5}	A1 A. 2	G	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	G	G	G
B_{T}	B1B2	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	Y	Y	R	R	R
C_{1}	C. 1	G	G	G	G	G	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G
D_{1}	D. 1	R	R	R	G	G	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
$\mathrm{E}_{\text {T }}$	E1E2	R	R	R	R	R	R	R	R	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R
F_{T}	F.1F2	R	R	R	R	R	R	R	R	G	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R
G	G. 1	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	Y	R	R	R	R	R	R	R	R
H_{2}	H1	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	Y	R	R	R	R	R	R	R	R
I	I1I2I3I4	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	G	G	G	G
J	J.1J.2J 3 J .4	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	Y	Y	R	R
K	K1K2K 3K 4	R	R	R	R	R	R	R	G	G	G	Y	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R
L	L.1L.2L.3L. 4	R	R	R	R	R	R	R	G	G	G	Y	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R
M	M. 1															G	G	G	G	G						
N_{g}	N. 1																G	G	G							
O_{2}	0.1					G	G	G	G																	
P_{R}	P. 1	G	G	G	G	G	G	G	G																	G
Phase Duration (sec)		15	3	2	4	3	3	2	1	6	1	2	1	2	2	1	9	3	2	1	12	1	2	3	8	1
$\begin{gathered} \text { Cycle Duration } \\ \mathrm{Ct}_{1}(\mathrm{sec}) \end{gathered}$		90																								

[^0]Table 1.2: Signal timing plan of an afternoon I period

Streams	Signal																									
	Heads	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A_{5}	A1A2	G	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	G	G	G
B_{T}	B1B2	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	Y	Y	R	R	R
C_{1}	C. 1	G	G	G	G	G	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G
D_{1}	D. 1	R	R	R	G	G	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
$\mathrm{E}_{\text {T }}$	E1E2	R	R	R	R	R	R	R	R	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R
F_{T}	F1F2	R	R	R	R	R	R	R	R	G	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R
G	G. 1	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	Y	R	R	R	R	R	R	R	R
H_{L}	H1	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	Y	R	R	R	R	R	R	R	R
I	III2I3I4	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	G	G	G	G
J	J.152J3.4	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	Y	Y	R	R
K	K1K 2 K 3 K 4	R	R	R	R	R	R	R	G	G	G	Y	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R
L	L.IL2L.3L.4	R	R	R	R	R	R	R	G	G	G	Y	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R
M	M. 1															G	G	G	G	G						
N_{k}	N. 1																G	G	G							
0.	0.1					G	G	G	G																	
P_{R}	P. 1	G	G	G	G	G	G	G	G																	G
Phase Duration (sec)		15	3	2	4	3	3	2	1	6	1	2	1	2	2	1	9	3	2	1	12	1	2	3	8	1
$\begin{gathered} \text { Cyde Duration } \\ \mathrm{C}_{1}(\mathrm{sec}) \end{gathered}$		90																								

Legend
G: Green signal
Y: Yellow signal
R: Red signal

Table 1.3: Signal timing plan of an afternoon II period

Stre	Sigual																									
	Heads	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A_{T}	A. A. 2	G	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	G	G	G
B_{T}	B.1B2	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	Y	Y	R	R	R
C_{L}	Cl	G	G	G	G	G	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G
D	D. 1	R	R	R	G	G	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
E_{T}	E.1E2	R	R	R	R	R	R	R	R	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R
F_{T}	F.1F.2	R	R	R	R	R	R	R	R	G	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R
G	G.1	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	Y	R	R	R	R	R	R	R	R
H	H. 1	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	Y	R	R	R	R	R	R	R	R
I	I1I2L3I4	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	G	G	G	G
J	J.1J2J.3J. 4	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	Y	Y	R	R
K	K1K 2K 3K 4	R	R	R	R	R	R	R	G	G	G	Y	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R
L	L.1L.2.3L. 4	R	R	R	R	R	R	R	G	G	G	Y	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R
M	M1															G	G	G	G	G						
N_{R}	N. 1																G	G	G							
O_{2}	0.1					G	G	G	G																	
P_{3}	P. 1	G	G	G	G	G	G	G	G																	G
Phase Duration (sec)		14	3	2	4	3	3	2	1	6	1	2	1	2	2	1	9	3	2	1	12	1	2	3	8	2
$\begin{gathered} \text { Cycle Duration } \\ \mathrm{Ct}_{3} \text { (sec) } \end{gathered}$		90																								

Legend
G: Green signal
Y: Yellow signal
R: Red signal

Table 1.4: Signal timing plan of an off peak period

	Signal														Phase												
	Heads	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
$\mathrm{A}_{\text {I }}$	A. 1.2	G	G	G	Y	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G
B_{7}	B. B2	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	Y	R	R	R	R	R	R	R	R	R	R
$\mathrm{C}_{\text {L }}$	C. 1	G	G	Y	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G
D_{1}	D. 1	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	Y	R	R	R	R	R	R	R	R	R	R
$\mathrm{E}_{\text {T }}$	E.1E2	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	G	Y	Y	R	R	R
F_{7}	F1F2	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	Y	Y	R	R	R	R
G_{1}	G. 1	R	R	R	R	R	R	R	R	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
H_{1}	H1	R	R	R	R	R	R	R	R	G	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
I	I1I2I3I4	G	Y	Y	Y	Y	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
J	J.1J.2J3J. 4	R	R	R	R	R	R	R	R	R	R	R	R	G	G	Y	R	R	R	R	R	R	R	R	R	R	R
K	K.1K2K 3K 4	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	G	G	G	Y	Y	Y	R	R
L	L.1L2L.3L4	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	G	Y	Y	Y	R	R	R
M	M1				G	G	G	G	G	G	G																
N_{2}	N. 1								G	G	G	G	G														
O_{2}	0.1														G	G	G	G									
P_{2}	P. 1	G	G	G	G																	G	G	G	G	G	G
Phase Daration (sec)		1	2	1	1	1	1	2	1	11	1	2	2	1	7	5	3	2	3	2	7	2	1	2	2	1	1
Cycle Duration $\mathrm{Ct}_{4}(\mathrm{sec})$		75																									

Legend
G: Green signal
Y: Yellow signal
R: Red signal

Table 1.5. Numbers of repetition, execution time and cycle time for the periods

Period	Index (\boldsymbol{i})	Period $\left(\boldsymbol{p}_{\boldsymbol{i}}\right)$ Execution Time $(\mathbf{H r s})$	Period $\left(\boldsymbol{p}_{\boldsymbol{i}}\right)$ Cycle Time $($ Secs $)$	Repetition Cycle $\left(\boldsymbol{r}_{\boldsymbol{i}}\right)$	Total number of Repetition Cycle $\left(\boldsymbol{n}_{\boldsymbol{i}}\right)$
Morning Peak	1	2.5	90	100	100
Afternoon I	2	6.5	120	195	295
Afternoon II	3	4	90	160	455
Off Peak	4	2	75	96	551

Table 1.6: Model Representation of Major Traffic Light States of the Considered Intersection

Sub-models	Places	Model Representations
Stream B_{T}	B_{G}	Models the state of green light controlling the Stream B_{T} vehicles.
	B_{Y}	Models the state of yellow light controlling the Stream B_{T} vehicles.
	B_{R}	Models the state of red light controlling the Stream B_{T} vehicles.

Stream E_{T}	E_{G}	Models the state of green light controlling the Stream E_{T} vehicles.
	E_{Y}	Models the state of yellow light controlling the Stream E_{T} vehicles.
	E_{R}	Models the state of red light controlling the Stream E_{T} vehicles.
Stream F ${ }_{\text {T }}$	F_{G}	Models the state of green light controlling the Stream F_{T} vehicles.
	F_{Y}	Models the state of yellow light controlling the Stream F_{T} vehicles.
	F_{R}	Models the state of red light controlling the Stream F_{T} vehicles.
Stream C $\mathrm{L}_{\text {L }}$	C_{G}	Models the state of green light controlling the Stream C_{L} vehicles.
	C_{Y}	Models the state of yellow light controlling the Stream C_{L} vehicles.
	C_{R}	Models the state of red light controlling the Stream C_{L} vehicles.
Stream D_{L}	D_{G}	Models the state of green light controlling the Stream D_{L} vehicles.
	D_{Y}	Models the state of yellow light controlling the Stream D_{L} vehicles.
	D_{R}	Models the state of red light controlling the Stream D_{L} vehicles.
Stream GL	G_{G}	Models the state of green light controlling the Stream G_{L} vehicles.
	G_{Y}	Models the state of yellow light controlling the Stream G_{L} vehicles.
	G_{R}	Models the state of red light controlling the Stream G_{L} vehicles.
Stream H_{L}	H_{G}	Models the state of green light controlling the Stream H_{L} vehicles.
	H_{Y}	Models the state of yellow light controlling the Stream H_{L} vehicles.
	H_{R}	Models the state of red light controlling the Stream H_{L} vehicles.
Stream M $\mathrm{M}_{\text {R }}$	M_{G}	Models the state of a Right turn green arrow light controlling the stream M_{R} vehicles.
Stream N_{R}	N_{G}	Models the state of a Right turn green arrow light controlling the stream N_{R} vehicles.
Stream OR	O_{G}	Models the state of a Right turn green arrow light controlling the stream O_{R} vehicles.
Stream P_{R}	P_{G}	Models the state of a Right turn green arrow light controlling the stream P_{R} vehicles.

Table 1.7(a): Major Transitions of the Twelve Traffic Light Sub-models

Sub-models	Transitions	Actions
t_{1} and T_{5}	Concurrently turns off and on red and green signal lights respectively for Stream A_{T} vehicles in the first instance. Concurrently turns off and on red and green signal lights respectively for Stream A_{T} vehicles in the second instance. Concurrently turns off and on green and yellow signal lights respectively for Stream A_{T} vehicles. Concurrently turns off and on yellow and red signal lights respectively for Stream A_{T} vehicles.	
Stream B_{T}	T_{6}	$\mathrm{~T}_{7}$

	T_{15}	Concurrently turns off and on yellow and red signal lights respectively for Stream B_{T} vehicles.
Stream C $\mathrm{C}_{\text {L }}$	t_{20} and T_{21}	Concurrently turns off and on red and green signal lights respectively for Stream C_{L} vehicles in the first instance.
	T_{25}	Concurrently turns off and on red and green signal lights respectively for Stream C_{L} vehicles in the second instance.
	T_{22}	Concurrently turns off and on green and yellow signal lights respectively for Stream C_{L} vehicles.
	T_{23}	Concurrently turns off and on yellow and red signal lights respectively for Stream C_{L} vehicles.
Stream D ${ }_{\text {L }}$	t_{44} and T_{45}	Concurrently turns off and on red and green signal lights respectively for Stream D_{L} vehicles.
	T_{46}	Concurrently turns off and on green and yellow signal lights respectively for Stream D_{L} vehicles.
	T_{47}	Concurrently turns off and on yellow and red signal lights respectively for Stream D_{L} vehicles.
Stream E_{T}	t_{49} and T_{50}	Concurrently turns off and on red and green signal lights respectively for Stream E_{T} vehicles.
	T_{51}	Concurrently turns off and on green and yellow signal lights respectively for Stream E_{T} vehicles.
	T_{52}	Concurrently turns off and on yellow and red signal lights respectively for Stream E_{T} vehicles.
Stream F ${ }_{\text {T }}$	t_{26} and T_{27}	Concurrently turns off and on red and green signal lights respectively for Stream F_{T} vehicles in the first instance.
	T_{28}	Concurrently turns off and on green and yellow signal lights respectively for Stream F_{T} vehicles.
	T_{29}	Concurrently turns off and on yellow and red signal lights respectively for Stream F_{T} vehicles.
Stream GL	t_{57} and T_{58}	Concurrently turns off and on red and green signal lights respectively for Stream G_{L} vehicles.
	T_{59}	Concurrently turns off and on green and yellow signal lights respectively for Stream G_{L} vehicles.
	T_{60}	Concurrently turns off and on yellow and red signal lights respectively for Stream G_{L} vehicles.

Table 1.7(b): Major Transitions of the Twelve Traffic Light Sub-models

Sub-models	Transitions	Actions
Stream H_{L}	t_{36} and T_{37}	Concurrently turns off and on red and green signal lights respectively for Stream H_{L} vehicles. Concurrently turns off and on green and yellow signal lights respectively for Stream H_{L} vehicles. Concurrently turns off and on yellow and red signal lights respectively for Stream H_{L} vehicles.
Stream M_{R}	T_{38}	$\mathrm{~T}_{39}$

Innovative Systems Design and Engineering
www.iiste.org
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)
Vol 2, No 5, 2011

Stream N_{R}	T_{42}	Turns on a Right turn green arrow light for Stream N_{R} vehicles. Turns off a Right turn green arrow light for Stream N_{R} vehicles
Stream O_{R}	T_{55}	Turns on a Right turn green arrow light for Stream O_{R} vehicles. Turns off a Right turn green arrow light for Stream O_{R} vehicles
	T_{56}	
Stream P_{R}	T_{32}	Turns on a Right turn green arrow light for Stream P_{R} vehicles
	T_{33}	Turns off a Right turn green arrow light for Stream P_{R} vehicles Turns on a Right turn green arrow light for Stream P_{R} vehicles
		in the second instance

Figure 1.1: Layout of the considered intersection

Figure 1.2: The developed TCPN model of Time-of-Day signal timing plan transitions of the considered intersection

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

JournalTOCs

PKP | public knowlidgef project

GEORGETOWNUNIVERSITY
LIBRARY

[^0]: Legend
 G: Green signal
 Y: Yellow signal
 R: Red signal

