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Abstract 

Electric power system is a highly complex and non linear system. Its analysis and control in real time environment 

requires highly sophisticated computational skills. Computations are reaching a limit as far as conventional 

computer based algorithms are concerned. It is therefore required to find out newer methods which can be easily 

implemented on dedicated hardware. It is a very difficult task due to complexity of the power system with all its 

interdependent variables, thus making the neural networks one of the better options for the solution of different 

issues in operation and control. In this project an attempt has been made to implement ANN’s for observability 

determination, State Estimation, Economic Load Dispatch and for Reactive Power Optimization. A Hopfield 

neural network model has been developed to test Topological Observability of Power System and it is tested on 

two different test systems. The results so obtained, are comparable with those results of conventional root based 

observability determination technique. Further a Hopfield model has been developed to determine State Estimation 

of power system. State Estimation of 6 bus system and IEEE 14 bus system is attempted using this Hopfield neural 

network. Results obtained by developed model are compared with those of conventional Non Linear WLS State 

Estimation. Next use of ANN for Economic Load Dispatch problem has been developed. Economic Load dispatch 

has been studied using various test system data (like 3, 6, 20 & 30 units) and the results are compared with 

conventional Lambda iterative technique and Particle Swarm Optimization techniques. Next Reactive Power 

Optimization problem has been attempted using ANN. The performance of so developed ANN is tested on Ward 

Hale 6 bus system and IEEE 30 bus system data and the results obtained are compared with those of the results 

obtained by GA and Particle Swarm Optimization technique. 
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1. INTRODUCTION 

Modern Power System Control Centers must operate and control medium and large electrical networks that usually 

cover a large geographic area. The accomplishment of these tasks has been made possible due to important 

developments in computer and communication technologies. Now days, complex Power Systems require a very 

accurate and efficient control that makes Control Centers especially important. These centers are equipped with 

SCADA (Supervisory Control and Data Acquisition) systems allowing to acquire information about the Power 

System and its transmission to Control Centers in real-time. Due to the symbolic nature of the reasoning involved 

in some control tasks, Artificial Intelligence techniques appeared as a promising solution. Some years ago, some 

of the most important electrical utilities around the world began to develop knowledge-based applications to 

incorporate in their Control Centers. These applications deal with the information available in the Control Center 

and help operators in decision making.  These methods must be capable of meeting all the important tasks of 

efficient control system such as numerical stability, computation efficiency, and implementation complexity 

 

1.2 ENERGY CONTROL CENTER 

Fig.1.1 is a schematic diagram showing the information flow between the various functions to be performed in an 

operation control centre computer system. The system gets its information about the power system from remote 

terminal units (RTU) that encode measurement transducer output and opened/closed status information into digital 

signals that are transmitted to the operations centre over communication circuits.  

Network topology program: 

Topological observability analysis is necessary to examine whether the relationship between measurement 

allocation and power system configuration is appropriate. In order to run the state estimator, we must know how 
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the transmission lines are connected to the load and generator buses, this information is called network topology. 

Since the breakers and switches in any substation can cause the network topology to change, a program must be 

provided that reads the telemeter breaker/switch status indications and restructures the electrical model of the 

system Every time when a system configuration is changed for some reasons, a topological observability test 

should be executed prior to performing the state estimation to check one-to-one correspondence between 

measurements and buses. If this is not the case, observability analysis methods can provide the minimum set of 

additional measurements needed to restore observability. 

State Estimation: 

As seen in the Fig.1.1, the electric model of the power system transmission system is sent to the state estimator 

program together with the analog measurements. The output of the state estimator consists of all bus voltage 

magnitudes and phase angles, transmission line MW and MVAR flows calculated from the bus voltage magnitude 

and phase angles, and bus loads and generations calculated from the line flows. In real time environment the state 

estimator consists of different modules such as network topology processing, observability analysis, state 

estimation and bad data processing. Thus the state estimation program forms the heart of entire real time control 

of any power system. 

The output of the state estimator i.e. |V|, δ, Pij, Qij together with latest model developed by network topology 

program the form the basis for the Economic Load Dispatch or minimum Emission dispatch, Reactive Power 

Dispatch, contingency analysis program etc. 

In addition, the control centre can transmit control information such as raise/lower commands to generators 

and open/close commands to circuit breakers and switches. The analog measurements of generator output must be 

used directly by the AGC program whereas all the other data will be processed by the state estimator before being 

used by other programs 

 

  
 

Fig 1.1 Energy control center system security schematic 

 

2  STATIC STATE ESTIMATION OF POWER SYSTEMS 

The goal of control center design is security control under the three states of power system operation: the normal, 

emergency, and restorative states. There are several functions performed by a control center in the classical energy 
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management system (EMS) environment, and the most difficult of these to implement are those that run in a real-

time environment. The key functions include state estimation, security monitoring, on-line load flow, security 

analysis, supervisory control, automatic generation control, automatic voltage/VAR control, and economic 

dispatch control [15]. These functions often interact in a complex manner, but all are aimed at providing the system 

operator with a coherent view of the system and/or carrying out the operator’s decisions. Since all of these 

functions are directly dependent on state estimation, it is essential that the system operator trust the result.  

In 1969 Fred Schweppe introduced the idea of using the redundant number of measurements, made available 

by the supervisory control and data acquisition (SCADA) system to statistically determine the state of the network. 

His proposition, the state estimator [14], was eventually accepted and serves as a basis for static state estimation. 

Though power systems are dynamic, real-time systems, dynamic state estimation is generally not employed, 

reasons being- static state estimation presently fills the control center needs, and there are many difficulties in 

determining the dynamic system model and dynamic state estimation is computationally intensive[16]. Of these, 

the difficulty of defining a tractable, reliable model of the dynamic power system is the biggest inhibitor, due to 

the highly unpredictable and nonlinear nature of power systems. 

The state estimator plays the essential role of a purifier, creating a complete and reliable database for security 

monitoring, security analysis and the various controls of a power system. The state estimator thus employs 

statistical methods to act as a tunable filter between the field data measurements and security and control functions. 

The fundamental equation for the problem of power system state estimation (SE) can be formulated as 

                
( )z h x e 

                        (4.1) 

Where z represents all measurements, including power injection, power flow and bus voltage magnitude 

measurements, e is the measurement noise vector, x is the state vector composed of the phase angles and 

magnitudes of the voltages at network buses, and 
(.)h

 stands for the nonlinear measurement functions in terms 

of state variables. It is always assumed that the parameters and observability of the systems are already determined 

in advance. It is to be noted that the measurements are never simultaneous, they are sequential, however at a very 

close interval and therefore the static state estimator assumes it to be snap-shot measurement [13], i.e. all 

measurements are assumed to be taken simultaneously.    

 

3.MODIFIED HOPFIELD NEURAL NETWORK METHOD FOR EQUALITY CONSTRAINED STATE 

ESTIMATION 

State Estimation processes a set of measurements to obtain the best estimate of the current state of the power 

system. The set of measurements includes telemetered measurements and pseudo-measurements. Telemetered 

measurements are the online telemetered data of bus voltages, line flows, injections, etc. Pseudo-measurements 

are manufactured data such as guessed MW generation or substation load demand based on historical data, in most 

cases. Telemetered measurements are subject to noise or error in metering, communication system, etc. The errors 

of some of the pseudo-measurements, especially the guessed ones, may be large. However, there is a special type 

of pseudo-measurements, known as the zero injections, for which the information contains no error. Zero injection 

occurs at a node, for example, representing a switching station where the power injection is equal to zero. Zero 

injection is an inherent property of such a node and no meter need to be installed but the information is always 

available. A state estimation algorithm must compute estimates, which satisfy exactly such constraints, 

independent of the quality of online measurements. The enforcing of constraints is in particular useful in networks, 

consisting of large unobservable parts of network or having very low measurement redundancy. 

In its conventional form, the Weighted Least Square method does not enforce the equality and limit 

constraints explicitly. However, the constraints contain reliable information about physical restrictions and 

equipment limits and can be used to increase the quality of state estimation result. The zero injections can be 

represented by a set of equalities. Various methods have been proposed to process constraints, literature review 

section lists some of the proposed methods for solving Equality constrained State Estimation problem. 

Various algorithms of State Estimation using the conventional computer are reaching a limit as far as the 

solution techniques are concerned, and as long as these computer based algorithms are used, faster methods can 

not be expected. However for security monitoring and control in power system, improvement in calculation time 

is always desired in order to obtain necessary information more quickly and accurately. 

In recent years, it has been found that Artificial Neural Networks (ANN’s) are well suited as computational 

tools for solving certain classes of complex problems, although software implementations of the algorithm on 

general-purpose computers can be too slow for time-critical applications, but the small number of computational 

‘primitives’, suggests advantages of hosting ANN’s on dedicated Neural Network Hardware (NNH) to maximize 

performance at a given cost target. ANN computations may be carried out in parallel, and special hardware devices 

are being designed and manufactured which take advantage of this capability. 

In this chapter a new method for enforcing equality and limit constraints in State Estimation algorithm using 

a modified Hopfield neural network is presented. This method is tested for 6 bus system and IEEE 14 bus system. 
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The main advantages of using the modified Hopfield neural network proposed in this work are i-) the internal 

parameters of the network are explicitly obtained by the valid-subspace technique of solutions, ii-) lack of need 

for adjustment of penalty factors for initialization of constraints, and iii-) for real time application, the modified 

Hopfield network offers simplicity of implementation in analog hardware or a neural network processor.(iv) 

training and testing of the neural network under human supervision is not required. 

 

STATE ESTIMATION WITH CONSTRAINTS 

State vector of an electric network consists of the complex voltages at the buses. Unmeasured tap positions of 

transformers may also be included into the state vector. A measurement vector consists of power flows, power 

injections, voltage and current magnitudes and tap positions of transformers. For a N bus system, the state vector 

X=[δ,V]T, of dimension n=2N-1, consists of the N-1 bus voltage angles δi with respect to a reference bus and the 

N bus voltage magnitudes Vi  for i=1,2,3,....N.  

The static state estimator measurement model is given as: 

               z=h(X) +є                                   (3.1) 

where z is the measurement vector, h(.) is a vector of nonlinear functions, relating the measurement and state 

vectors, and є is the vector of measurement errors.  

The error-free data are modeled as equality constraints 

              g(X)=0                                       (3.2) 

Limits on some network variables are modeled as inequality constraints which can be expressed in a compact form 

by p-dimensional functional inequalities 

               f(x) 0                                                                 

General nonlinear programming algorithms for the solution of a constrained minimization problem [24] are not 

efficient enough for the on-line application. Hence a neural network approach is used for solving this nonlinear 

programming problem. 

 

Objective function 

The objective is to minimize the weighted squared mismatch between measured and calculated quantities. 

Considering system to be observable and with m>n , where m is  the total number of measurements and n is the 

number of state variables , the mathematical problem is given as  follows: 
                    T

-11
m in R

2
[ Z -h ( X ) ] [ Z -h ( X ) ]                                                    

Subject to the equality and inequality constraints as defined below. 

The diagonal matrix 
1R 

  represents the weights of the individual measurements in the objective function. 

 

4. RESULTS 

The proposed method is tested on Ward Hale 6 bus system and modified IEEE 30 bus system and the results are 

compared with conventional and optimization techniques. Since neuron output consists of different terms, linear 

relationship between input and output doesn’t holds well. Hence sigmoid function is considered in this case. 

Convergence criterion adopted is €<0.0001. Voltage limits for load buses are Vmin=0.9, Vmax=1.1 and for PV bus 

are Vmin=1, Vmax=1.06. Tap limits are Tmin=0.9, Tmax=1.1 and shunt limits taken are Smin=0 and Smax= , A=0.5, 

B=0.04 (It is to be noted that convergence is independent of values of A, B). 

The data for Ward Hale 6 bus system is given at Appendix B. 

The results are shown in table 7.1. Execution time on typical PC is 0.516 sec. 

Table 4.1Ward Hale 6 bus system 

Variables Non fuzzy[42] Fuzzy[42] GA[43] PSO[43] HHN 

V1 1.09 1.1 1.0225 1.023 1.1 

V2 1.15 1.15 1.1 1.1 1.1 

V3 1.0 1.01 0.99 1.0 1.049713 

V4 1.0 1.01 0.917 0.918 1.049631 

V5 1.00 1.01 0.969 0.9696 0.975035 

V6 0.98 0.994 0.9 0.9019 0.975082 

Q1 0.363 0.353 0.423 0.927 0.119356 

Q2 0.193 0.194 0.378 0.579 0.143057 

Q4 0.05 0.05 0.05 0.05 0.055 

Q6 0.055 0.055 0.055 0.055 0.05 

T65 0.96 0.98 0.9 0.9 0.9725 

T43 0.98 0.99 0.9 0.9 0.9090 

Loss 8.93 8.77 8.1746 8.1745 8.156772 
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Fig4.2 

 

 
Fig 4.3 

 

4.2 Modified IEEE 30 bus system 

The data for Modified IEEE 30 bus system is given at Appendix B. The results are shown in Table 7.2. Execution 

time on a typical PC is found to be is 2.187 sec 
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Table 4.2 Modified IEEE 30 bus system 

Variables GA[43] Classical PSO [43] Improved PSO [43] HHN 

V1 1.0 1.018 1.015 1.031082 

V2 0.999 1.012 1.0048 1.0338 

V5 0.974 1.013 1.0017 1.022362 

V8 1.007 0.994 0.99 1.026687 

V11 1.0894 1.04 1.0019 1.0913 

V13 1.088 1.016 0.993 1.025466 

Q1 0.597 0.147 0.433 0.6233 

Q2 0.755 0.348 0.452 -0.041101 

Q5 -0.128 0.0532 0.0565 0.0621 

Q8 0.052 0.144 0.156 0.15 

Q11 0.1725 0.166 0.068 0.15 

Q13 0.0386 0.0306 0.0636 0.070258 

Q17 0.045 0.025 0.05 0.031262 

Q18 0.045 0.05 0.055 0.049293 

Q23 0.045 0.055 0.055 0.055 

Q27 -0.01 0.02 0.03 0.01 

T1,3 0.975 1.05 1.025 1.0625 

T2,4 1.0 1.025 1.0125 1.0875 

T5,7 0.9625 1.0125 1.025 0.925 

T9,10 1.0 1.0 0.9875 1.0625 

T12,13 0.9875 1.0625 1.0625 1.0875 

T18,19 1.0375 1.075 1.0375 0.9375 

T10,17 0.95 0.95 0.95 0.925 

T23,24 1.0625 1.05 1.0375 1.05 

T27,29 1.0125 1.0 1.0 1.05 

T8,28 1.0 1.0 1.0 1.025 

Loss 4.2716 4.1501 4.1396 3.94198 

                                          

   
Fig 4.3 Losses Vs Iterations for IEEE 30 bus system 
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Fig 4.4 Energy Vs Iterations for IEEE 30 bus system 

 

CONCLUSIONS 

Releasing the importance of neural networks for hardware implementation, in this project  neural network based 

solutions were developed to solve most important computational tasks in real time control of power systems.  A 

Hopfield neural network model was developed for determination of topological observability of power system. 

This neural network has been tested on test systems of 5 bus 10 measurement system and 9 bus 14 measurement 

system. The results obtained are crosschecked with those of conventional root base observability determination. It 

is found that neural network is far simpler in coding compared to conventional method which involves lot many 

complexities. 

The software package has been developed (in MATLAB) for reactive power optimization using Hopfield 

neural network. The so developed module is tested on Ward Hale 6 bus system and IEEE 30 bus system. A 

comparison is made between fuzzy, non fuzzy, classical P.S.O and improved P.S.O. It is found that the ANN 

approaches provides efficient and comparable results to those of conventional and optimization methods. 

Finally the papaer work has provided the opportunity to gain good experience in using ANN, PSO and other 

conventional techniques to power system related topics like state estimation, Observability, active power 

optimization, reactive power dispatch etc. 
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