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Abstract. 

The cross presentation of the Laplace transform method and the finite variance method to one-dimensional nonaligned 
momentary heat conduction problems is considered. The calculation is discretized in the interplanetary area by the 
finite difference method. The nodal heats are at that point changed by the use of the Laplace transform method. The 
changed heats are reversed mathematically to get the outcomes in the corporeal measures. This report depicts that the 
current technique does not need to achieve a time-pacing method. Therefore the outcomes at whatever time can be 
calculated in the time area deprived of any sequential calculations. The current outcomes are likened in tables with 
those achieved by the straight variational technique and other means. However, it is observed that their outcomes are in 
right agreement with per capita other. It can be established that the current cross technique is consistent and efficient. 
Furthermore, two diverse linearization methods for the nonaligned peripheral state are examined. 
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1.0. Introduction 

In the arithmetic means the finite element method (FEM) and the finite variance method are often used. In earlier 
arithmetical approaches, nonaligned momentary or transitory heat transmission problems were resolved mostly by the 
Crank-Nicolson technique or the time amalgamation technique. The time amalgamation technique with the median 
rule has been verified to maintain its total stability in the nonaligned system. It is essential to use lesser time paces to 
evade undesirably arithmetical alternations in the result when the Crank-Nicolson technique is used. It can be set up 
from Orivuori's work that the deviation of the results obtained by means of the Crank-Nicolson technique is actually 
simple for minor values of time. The supplementary demerit in the use of these two approaches to momentary or 
transitory problems is that reiteration is required at every time pace. This method will have a tendency to upsurge the 
rate once only lengthy time results are needed. To decrease these hindrances, the current technique is examined. 
Several instances are examined to exemplify the arithmetical precision of the cross technique. It is however observed 
that the current outcomes are in right agreement with those gotten by the use of the straight variational technique and 
other approaches. Moreover, the outcomes are even over the whole area. 

 2.0.   Analysis 

Taking a look at the dimensionless procedure of the leading (or governing) differential equation for one-dimensional 
momentary heat conduction in a slab by temperature-dependent current conductivity can be articulated as: 

  for 0 < x < l , t > 0 (l) 
with peripheral settings presented in the subsequent formulae: 

k(T)— + qo(t) - Bio(T ax at x —  

k(T)— + ql(t) + Bil(T 'T1 00) — 0 ðx 

and the preliminary form 

 

where T in is the preliminary heat, Toc is the heat of the environs, and Bio and Bil are Biot statistics. They are well-
defined as Bio hob/k() and Bil  transform:  
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Lined difference of current conductivity with heat is expected to be 

 

The discretized method of equation (l), by means of the principal differential procedure, can be articulated as 

 

where fabricated nodal points i  n + I at the exterior of the area are proved in Figure l ; I signifies the 
space amid two nodes. 

Let f(u, v) be a countless times differentiable functional equations of u and v. At that point its Taylor's series 
expansion represented as: 

 

Linearization of the nonaligned time Ti Ti by the Taylor's series calculation presents: 

 

Hence, the linearized procedure of equation (4) with equation (6) is 

 

 

where the overbar signifies the earlier repeated result. 
Meanwhile, the Laplace transform of an existent equation and its transposed formulas are well-defined as: 

e 3t4(t) dt 

ds 

where s v + iw (v, w e R) is a multifaceted numeral. 
Let’s take the Laplace transform of equation (7) with regards to time areas 

 

Equation (9) can be reorganized as 

 (2 + 2ßÌi +  + ( l + ßïi+  
The peripheral settings (2) are the nonaligned method. Hence they are of a necessity to be linearized in the current 

study. At present, two diverse linearization methods will be carefully chosen. 
The initial linearization method of the peripheral settings (2) can be specified as 
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2.1. Presentation  

 

Figure 1. Representation illustration of one-dimensional problems 

and 

 

The linearization method of equations (l l) by means of the Taylor's series calculation, equation (6), is 

 -(1 +  - + ( l + ßT2)T2  

21qI(t) + 21BiI  
Let’s take the Laplace transform of equations ( 12) with regards to time areas 

 

and 

 

The subsequent linearization method of the peripheral settings (2), by means of the principal difference procedure, 
provides 

 

 

Therefore making equations (14) linear using equation (6) can be gotten by the subsequent 

linearization methods as I - + (ßT2 - ßï() - + ( l + ßÌI)T2 = -  

 ßTn_ I + 21BiI)Tn + (l + ßïn)Tn  

21qI(t) + 21BiI  
Let’s then take the Laplace transform of the peripheral settings (15) with regards to time is given as: 

  - 1 - + (ßT2 - ßï() - + ( l + ßTI)Î2  

- ßïn_ l + 21BiI)Ìn + (l + ßTn)Ì'n 

 

The change of equation (9) and the peripheral settings (13) or (16) can produce the subsequent vector matrix equation: 

 

where [k] is an (n x n) crew matrix with multifaceted numeral, {T} is an (n x l) vector signifying the indefinite 
changed heats, and {f} is an (n x l) vector signifying the compelling terms. 
A preliminary result {T} is predicted to calculate [k] and {f}, and also the use of the direct Gaussian elimination 
procedure and the arithmetical transpose of Laplace transform to equation (17) can produce the nodal heats in the 
corporal measures. The Laplace transform computational method is accomplished frequently till the comparative 
blunders among the present nodal heats and the standards at the preceding reiteration are all not more than a value of 
easiness. 
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An iterative result is supposed to be convergent on condition that: 

  i 1 , 2 , .  
where the superscript m signifies the mth reiteration. Though, the merging standard presented in equation ( 18) does 
not at all times pledge the precision of the arithmetical result for iterative systems. The statistic is well-known to all. 
To examine the accurateness of the cross system, several descriptive samples will be examined. 

3.0    Numerical samples/ results. 

3.1. First Sample (specified by Krajewsk'i 7 ) 
Contemplate on a momentary heat transmission problem in a one-dimensional slab specified by Krajewski 7 and 

Mehta. 8 Its leading (or governing) differential equation, peripheral state 

  …     

where 

 
s 

 

 

The calculated outcomes gotten as of equation (22) are enumerated in Tables 1—3 and Figure 2 by means of I I 
nodes in the interplanetary area. A contrast of the current results with those specified by Krajewski 7 and Mehta8 is 
elaborated in Tables 1—3 and Figure 2, correspondingly. However, it can be established from Tables 1—3 that the 
outcomes of Krajewski 7 displayed arithmetical alternations for lesser values of dictions, and preliminary form are 
articulated as 

 
 for 0<x< l ( l ) 

 
ax 

 

 

The discretized method of equation (19a), by means of the dominant change procedure, is specified as 

0 
21 
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Let’s take the Laplace transform of equation (20) with regards to time provides 

 
21 

Consequently the resultant scheme of numerical equation for the initial sample can be inscribed in the subsequent 
matrix formula: 

      …      

Though, the current technique does not consume this problem. Additionally, Tables 1—3 likewise display no 
extraordinary change amid the current results and the outcomes of Krajewski 7 for t > 0.2. The succeeding deduction 
displays the current cross technique. 

Table 1. Contrast of several arithmetical outcomes for t = 0.02 0.2 

Presen
t x
 solutio
ns 

 Krajewski7  

Galerkin variational 

Second 
variational 

0.00.0630 0.0633 0.06442 
0.10.04481 0.04482 0.04498 
0.20.01440 0.0138 0.0168 
0.30.0228 - 0.0235 -0.0195 

0. 40.0465 0.0475 0.0438 
0.5 0.0150 0.0405 0.0420 0.0416 
0.6 0.0455  0.0095 0.0024 
0.7 0.1250 0.1231 0.1047 
0.8 0.2834 0.3168 0.3152 0.2849 
0.9 0.5738 0.6032 0.6021 0.5697 

1.0 1 .oooo 1 .oooo 1.0000 1 .oooo 
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Table 2. Contrast of several arithmetical outcomes for 0.2 and -0.3 

X 
Present 

solutions 

 Krajewski7  

Galerkin variational 

Second 
variational 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.1823 
0.1901 
0.2134 
0.2527 
0.3084 
0.3810 
0.4710 
0.5784 
0.7032 
0.8444 
1 .oooo 

o. 1807 
o. 1888 
0.2131 
0.2537 
0.3107 
0.3841 
0.4740 
0.5805 
0.7036 
0.8434 
1.0000 

0.1805 
0.1886 
0.2128 
0.2532 
0.3100 
0.3833 
0.4732 
0.5796 
0.7029 
0.8430 
1 .oooo 

0.1763 
0.1852 

0.2540 
0.3125 
0.3867 
0.4764 
0.5819 
0.7037 
0.8425 
I .OOOO 

Table 3. Contrast of several arithmetical outcomes for 1 .0 and ß 0.2 

x 
Present 

solutions 

 Krajewski7  

Galerkin variational 

Second 
Variational 

 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.8329 
0.8349 
0.8408 
0.8507 
0.8644 
0.8809 
0.9007 
0.9231 
0.9474 
0.9733 
1 .oooo 

0.8412 
0.8432 
0.8493 
0.8588 
0.8720 
0.8879 
0.9064 
0.9273 
0.9500 
0.9744 
1 .oooo 

0.8431 
0.8492 
0.8589 

0.8878 
0.9063 
0.9272 
0.9499 
0.9743 
1 .oooo 

0.8480 
0.8500 
0.8558 
0.8651 
0.8775 
0.8928 
0.9150 
0.9304 
0.9522 
0.9755 
1.0000 

is dependable and precise for nonaligned momentary or transitory problems. In overall, four or five reiterations are 
enough for the current technique to get a convergent heat supply of the first sample at a precise time. Mehta8 used the 
iterative method to control the momentary or transitory heat supply of the first sample. Figure 2 make known the 
iterative process specified by Mehta8 possibly will be deficient in precision. 

3.3. Second Sample (specified by Mastanaiah and Muthunayagam 9) 
Sample 2 examines a similar problem specified by Mastanaiah and Muthunayagam 9 The leading equation, 

peripheral settings, and preliminary state of the second sample are specified as 

 

for O < x < I (l) 

ðT(0, t)  
(24a) 

 
Ðx 

(24b)

  (24c) 

 

3.2..Submission 
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1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1 .0 x 

Figure 2. Contrast of the current results with those specified by Mehta 8 

The subsequent results for equations (l) and (24) are itemized in Tables 4—6. Tables 4 and 5 likewise display a 
contrast of the current results with the best linearization result specified by Mastanaiah and Muthunayagam9 and the 
finite change result, 9 correspondingly. The finite change result (FCR) was gotten by means of Crank-Nicolson implied 
method with two time heights. 

However, it is understood that the current results are not merely in right contract with the finite change result, but 
likewise more precise than the best linearization result (BLR). This deduction additionally proves that the current 
technique has right precision. Four or five repetitions are enough to get the convergent results for equations of 
Sample 2 at a precise time. 

Consequently the convergent frequency of the current cross technique is qicker. In actual fact, the peripheral form 
(24a) must not be in a lined method. That is to say, the peripheral form (24a) must be substituted by the subsequent 
nonaligned procedure. 10 

 

The initial linearization procedure of the peripheral form 
(25) gotten as of (12a) is 

 -(1 + - 21Bi0Tl + (l + ßT2)T2 

 - 21Bi() (26) 2 

Consequently the Laplace transform of equation (26) with regards to time is 

 -(1 + - 21Bi0Ìl + (l + ßT2)T2 

 
2s 

 

2 
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The next linearization procedure of the peripheral form (25) gotten from ( 16a) provides 

 I - + (ßT2 - ßT() -  
+ (l + ßTI)T2 = ß(TIT2 - TI TO) - 21Bi()  

Let’s take the Laplace transform of the peripheral form (28) with regards to time provides 

 
s s 

The outcomes for these two diverse linearization systems of the nonaligned peripheral form at x = 0 are presented 
in Table 6. Table 6 displays no extraordinary change among the outcomes of these two diverse linearization systems. 

3.4. Sample 3 

This sample examines a thick, undeformable block (or slab) whose preliminary heat is equivalent to zero. For t > 0 
the peripheral superficial at x 0 is reserved separately, and the peripheral at x I is exposed to heat cos(t), which 
differs with time. The calculated formula of Sample 3 is specified as 

X 2At  2At  2At  2At  

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.427 

0.300 

0.208 

0.145 

0.097 

0.640 

0.545 

0.473 

0.423 

0.393 

0.383 

0.393 

0.298 

 

0.608 

0.505 

0.449 

0.442 

0.441 

0.318 

0.099 

0.636 

0.485 

0.438 

0.409 

0.400 

0.373 

0.277 

0.203 

0.600

0.542 

0.496 

0.464 

0.444 

0.438 

Table 5. Contrast of the current results with FCR 9 when Bio 

1 and At — O. 

1464 

  

 Current results FDS9  

transform:  

Table..4.  Contrast of the current results with  BLR 9 when Bio 1 and At = 0.1464 

 Current results  

 

x 2At 6At 2At  2At t 6At 2At  

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.427 

0.300 

0.208 

0.145 

0.097 

0.640 

0.545 

0.473 

0.423 

0.393 

0.383 

0.393 

0.298 

 

0.608 

0.505 

0.449 

O. 

442 

0.429 

0.302 

0.147 

0.099 

0.644 

0.550 

0.480 

0.430 

0.400 

0.390 

0.395 

0.300 

0.221 

0.554 

0.509 

0.474 

0.453 

0.446 

 

 

Table 6. Contrast of arithmetical outcomes for two diverse linearizations of the peripheral form when Bio1.0 and At 

0.1464 

0.5 
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ôT(O, t) ax cos(t) 
 

The dimensionless heat supplies of Sample 3 at several time for ß = 0.3 and —0.3 are revealed in Table 7. It is 
thought-provoking to perceive that the connection point of the two curvatures in the direction of x I with cumulative t. 
For adequately huge t, heats for 

0.3 are advanced as compared with those for ß —0.3 all through the block. 

Determining the arithmetical result of a nonaligned momentary heat transmission problem is a complex task. But, the 
other significant work for nonaligned momentary problems is how to discover a technique that will not be agonize 
from variabilities in the arithmetical results and can compute the true precise outcome. To display the arithmetical 
precision of the formula established in the current cross technique, several samples are examined. Furthermore, a 
problem per the nonaligned peripheral form is likewise well thought-out in the current work. In those problems the 
linearization by the Taylor's sequence calculation is mostly used to reduce the nonaligned problem into an aligned one. 

To the writer's information, the result of n concurrent numerical equations at every time pace is necessary once the 
Crank-Nicolson procedure is applied. This report suggests that all the interior heats is essential to be calculated at 
every time pace. This method will have a tendency to upsurge the rate once the results are essential to be carried out 
over lengthy time phases. 
Likewise, it is habitually essential to yield lesser time paces to evade unwanted arithmetical fluctuations in the result. 
This simple restriction on the time pace possibly will call for an extreme volume of computed time. The benefit of the 
Laplace transform method is that it can rapidly give a precise result at any definite time. Though, in preceding works 
the Laplace transform method is used only to resolve lined schemes. No research was conducted on a nonaligned 
momentary problem for the reason that the Laplace transform method possibly will not effectively do the job. 
Therefore, it had applied limits. The cross technique has been established to overcome this problem. It is exciting to 
note that the cross technique can effectively get precise outcomes for nonaligned momentary problems. In overall, 
four or five reiterations are essential for the current problems. 

 

3.5. Presentation  

 Table 7. Dimensionless heat supply of Sample 3 at different time for   0.3 

 

p 

x   1.0 

 0.3 

t - 0.1 t = 0.5 1.0 

 0.1839 -5 0.0228 

O. 1944 5 0.0257 0.1905 0.2076 -5 0.0295 0.2024 

 0.2262 4 0.0350 0.2195 

-4 

 0.2504 0.0424 0.2420 

 0.2802 4 0.0521 0.2705 

 0.3158 -3 O. 0644 0.3056 

 0.3575 -3 0.0799 0.3481 

 0.4054 3 0.0990 0.3991 

0.3 
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Wrobel and Brebbia ll suggested that the cross presentation of the peripheral component technique and the Laplace 
transform method cannot yield right outcomes for problems with time-dependent peripheral settings, due to 
arithmetical problems in the reverse alteration procedure. This problem does not happen in the current cross technique. 

The current technique possibly will be used to solve other problems in two or three dimensions.  

4.0. Terminology 

BIO, Bil Biot numbers (Bio b thickness of slab c specific temperature total force 
vector heat transmission constants at x 0 and 

 
 

 
current conductivity at t  current conductivity of block (l + ßT) total conduction matrix space 

among two nodes n node numerals  precise superficial heat changes at x 0 and x  
Laplace transform limit dimensionless heat preliminary temperature ambient heat 

dimensionless time (aoT/b2 ) x dimensionless coordinate (x*/b) 
 coordinate 

Greek letters orientation thermal diffusivity ß constant (thermal conductivity 
coefficient) time compactness. 

5.0. Reference 

1.   Hughes, T. J. R. Unconditionally stable algorithms for nonlinear heat conduction. Comput. Meth. Appl. Mech. 
Engrg. 1977, 10, 135-139. 

2 Orivuori, S. Efficient method for solution of nonlinear heat conduction problems. Internat. J. Numer. Methods 
Engrg. 1979, . 

3 Shih, T. M. Numerical Heat Transfer. Springer-Verlag, New York, 1984. 
4 Dubner, H. and Abate, J Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine 

transform. J. ACM 1968, 15, 115-123. 
5 Durbin. F. Numerical inversion of Laplace transforms: Efficient improvement to Dubner and Abate’s method. 

Comput. J. 1973, 17, 371-376. 
6 Honig, G. and Hirdes, U. A method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math. 

1984. 9, 113-132. 
7 Krajewski, B. On a direct variational method for nonlinear heat transfer. Internat, J. Heat Mass Transfer 1975, 

18, 495-502. 
8 Mehta, R. C. On the solution of transient conduction with temperature dependent thermal conductivity. J. Heat 

Transfer 1979, 99, 137-1e39. 
9 Mastanaiah, K. and Muthunayagam, A. E. Transient conduction I the finite slab with variable thermal 

conductivity. A/AA J. 1975, 13, 954-056. 
10 Ozisik, M. N. Heat Conduction. John Wiley, New York. 1980. Pp 441-442. 
11 Wrobel, I. C. and Brebbia. C. A. A formulation of the boundary element method for axisymmetric transient heat 

conduction. Internal. J. Heat Mass Transfer 1981, 24, 834-850. 
12 Koram, Samuel & Benjamin, Korankye & Godson, Kweitsu. (2018). Seismic Response Analysis of 
Underground Structures. Journal of Environment and Earth Science (IISTE). 

 
 

 


