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Abstract Data generation mechanisms have been widely applied in hydrology. Models are built for generation of data having the statistical properties of the historical records. The creation of synthetic time series starts with the generation of independent normal variables with average zero and variance one, then adding the time and spatial dependence structure as well as periodic components, whichever necessary. The data generation can be accomplished via the analysis of the historical data to check its suitability for generation, Selection, identification of the form, estimation of parameters, & check of the data generation model and Application of the model & testing of the results. This paper summarizes the required work to be done as per the above steps taking the autoregressive moving average as an example of the data generation model 
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1. Introduction The designers of water resources systems have realized that evaluating their designs using past or historical data provided no guarantee that the design would perform satisfactorily in the future because future flow sequences will not be the same as past flow sequences (Haan, 1982). The last statement describes the need for data generation in order to obtain new time series simulating the possible future flows. Synthetic data series are generated by many models using autoregressive (AR) processes, Thomas-Fiering model (1967), method of fragments (Srikanthan and McMohan(1985)) and its modified version (Maheepala and Perera (1996)) , the non-parametric approach model (Sharma and O'Neil (2002))and wavelet approach (Ünal, Aksoy and Akar (2004)).  
2. Time Series Modelling Time series modelling is the process of finding a mathematical model that represents a time series. It has mainly two uses in hydrology and water resources: 

A. For generation of synthetic hydrologic time series, and  B. For forecasting future hydrologic series. Generation of synthetic time series is generally needed for:  a.   Water harvesting projects. b. Reservoir sizing, c. Determining the risk of failure (or reliability) of water supply or  irrigation systems, d.  Future planning of reservoir operation, e.  Planning capacity expansions of water supply systems,…etc, While forecasting of hydrologic series is needed for, a. Short term planning of reservoir operation, b. Real time and short term operations of river basins or systems, c. Planning operation during an on-going drought, etc.        Box and Jenkins (1976) organized the modelling in four steps: i. The selection of the type of model ii. The identification of the form of model iii. The estimation of the model parameters iv. The diagnostic check of the model.  
3. Time Series and their components Yevjevich (1972b) defined the time series as "any magnitude observed at discrete times (of equal or unequal distances), averaged over and related to interval ∆t along total time T or recorded continuously with time."  Time series are considered stationary if the statistical properties such as mean and standard deviation are unaffected by a shift in the time origin. There are two basic classes for time series, deterministic series and stochastic series. Hydrologic time series are generally divided into four components: Over-years Trend and other deterministic changes denoted by T(t) Cyclic or periodic changes denoted by P(t) 
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Almost periodic changes such as tidal effect on hydrologic time series. Stochastic or random variation which consists of purely random component E(t) and dependant random component S(t) Considering the second and third components as one component and summing up all components, a hydrologic time series Q(t) may be written as: Q(t) = T(t)+P(t)+S(t)+E(t) The first three components are deterministic components and the last one is a random one. Trend component refers to the upwards or downwards of the series over time. Kottegoda (1970) concluded that the hydrologic time series of less than 100 years cannot show any evidence of trend. However, it is important to note that tis statement may be true as far as the flow remains natural without being interrupted (e.g. by building a structure etc. Hence the time series can be written as: Q(t)= P(t)+S(t)+E(t) In the data generation process, the above components are separated. Therefore, the generation of new series can be considered as a reversible process of the decomposition of a time series into its various components.  
4. Data Generation Models In general, data generation can be accomplished in three steps, Analysis of the historical data to check its suitability for generation,  Selection, identification of the form, estimation of parameters, and check of  the data generation model, Application of the model and testing of the results.  
5. Analysis of the Historical Data The historical data can be analysed as per the following sections (Naggar, 1999).  
5.1 Testing the means, standard deviations, and skew coefficients for data homogeneity: Using the historical data series, the sample mean x(j), standard deviation s(j), and skew coefficient Ĉs(j) were computed for each calendar month (j) by the relations(Yevjevich (1972a)),                N x( j ) = ∑ (x( i , j))/N                                                                               (1)             i=1                 N s( j ) = {∑ (x(i,j) −x(j))2/(N−1)}1/2                                                           (2)                 i=1                   N  Ĉs( j )=N2{∑ (x(i,j) −x(j))3/N}/{(N−1)(N−2)(s(j)3}                                (3)                   i=1 Where, X(i,j) = observation at year i and month j, N = number of years. Then, the series were divided into sub-series as follows, 2 series each containing  half of the data, 3 series each containing third of the data, and 4 series each containing quarter of the data. Therefore, a total number of 2+3+4= 9 sub-series were obtained. In a similar manner, the means, standard deviations, and skew coefficients for the nine series were calculated and plotted together with (for example) the 95% confidence limits for the means and standard deviations. The 95% confidence limits for the means and standard deviations are given by, For the means:  x(j) ± 1.96 × s(j)/N                     (4) For the standard deviations:  s(j) (N-1)1/2/χ2α/2                              (5a)                                            : s(j) (N-1)1/2/χ21-α/2                                   (5b) Where: 
α = 1− 0.95= .05,  
χ2α/2 and χ21-α/2 are the Chi-square values. Then the results obtained should be compared with the allowable values (Kottegoda (1970)). If they satisfy the limits then the data is considered homogenous. 
 
5.2 Testing the stationarity of the data: If the properties of a time series do not change with the absolute time it is called stationary. A stochastic process 
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is said to be strictly stationary if the probability distribution function and its associated parameters are invariant to shift in time (Al-Dabbagh (1986)). To test the stationarity, the historical data is divided into two series of equal length. Then, The cumulative distribution for each half is computed and drawn  The serial correlation coefficients for each half is computed and drawn If there is a good agreement in then the historical data is considered to be stationary. 
 
5.3 Testing the normality of the data: The normal probability density function is useful in hydrology. Yevjevich (1972b) listed a number of cases where its use is beneficial. One of these cases is the Data Generation. Testing the goodness of fit to normal probability distribution is done using the Chi-square test. Normalization can be done if needed using the Box & Cox power transformation which was suggested by Chandra et al. (1978). The transformation is given by,                y = (xλ -1)/λ               λ ≠ 0                                                                 (7a)                y = log(x)                   λ = 0                                                                  (7b) Where:  x = observed (original) value, y = transformed value, 
λ = transformation coefficient.  The above transformation was selected because it proved to be an efficient one-parameter transformation and moreover, to avoid using other trial and error transformation methods.  The values of λ were obtained graphically (and checked by curve fitting) by plotting λ against skew coefficients and choosing the value of λ which gives zero coefficient. After transforming the data, Chi-square test for normality should be then done for both original and transformed data.  
 
5.4 Testing the periodicity: Salas et al. (1985) described the periodicity as the periodic change of statistical characteristics with time. To trace it, the serial correlogram for the historical data and transformed data should be drawn. If the periodicity is clearly noticed, it should be removed using both parametric and non-parametric methods as follows,  
5.4.1 Parametric Method for Separating Periodicity: To economize on the number of statistics needed for mathematical description of time series, the periodic component can be separated by superimposed harmonics. Fourier series can be used to describe the periodic mean M(j) and the periodic standard deviation S(j),    M(j)= (1/w)∑Qj+∑(AkCos (2πkj/w) BkSin (2πkj/w)                                        (8)    M(j)= (1/w)∑σj+∑(AskCos (2πkj/w) BskSin (2πkj/w)                                      (9)   j= 1,2,………w (w=12 for monthly flow) k=1,2,………m (m= number of harmonics) Qj and σj are the mean and standard deviation for the month j respectively and,    Ak =(2/w)∑Qj Cos(2πkj/w)                                                                               (10)     Bk =(2/w)∑Qj Sin(2πkj/w)                                                                                 (11)   and,   Ask =(2/w)∑ σj Cos(2πkj/w)                                                                             (12)   
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Bsk =(2/w)∑ σj Sin(2πkj/w)                                                                              (13)  
5.4.2 Non-Parametric Method for Separating Periodicity: The method is given by the following simple transformation Z(i,j) of a time series Q(i,j), Z(i,j) = Q(i,j)- Q(i,j)/S(j)                                                                                   (14) i = 1,2,….N j= 1,2,…..W where,  Z(i,j) = the standardized series with mean zero and variance one. N= number of years, W= number of positions inside the year (=12 for monthly data)  For an individual monthly sample, the mean Q(j) can be estimated by:   Q(j) =∑Q(i,j)/N                                                                                              (15)   And the individual monthly standard deviation:   S(j) = [ ∑(Q(i,j)-Q(j))2/(N-1)]1/2                                                                      (16)   It is noted that the number of statistics computed is equal to 2x Number of positions, i.e 24 (=2x12) for monthly data, 730 (=2x365) for daily data… and so on. This is considered as one of the disadvantages of the non-parametric method, especially for daily and or hourly data where a large number of statistics are needed to be computed. The method was used by many researchers (Young and Pisano(1968))   
6. Selection of the Data Generation Model The model selected in this paper is the Autoregressive-Moving Average Model (ARMA). The model was proposed by Carlson et al. (1970). It differs from the Autoregressive models in the sense that it has a moving average component, which adds more flexibility and makes it possible to build a model with a minimum number of parameters. Formulation of the models is given in the following sections.  
7. Development of ARMA Model  An autoregressive model of order p and a moving average model of order q may be combined together to form a mixed autoregressive-moving average model called ARMA and denoted by ARMA (p,q). Considering a periodic time series yi,j , the ARMA model for yi,j can be written as,   yi,j = µj + σj zi,j                                                                                    (17) where µj and σj are the periodic mean and periodic standard deviation of the season j.   zi,j may be represented by an ARMA model with either constant or time varying(periodic) coefficients. The general form of ARMA(p,q) model with constant coefficients is, zt  = ϕ1zt-1 + ϕ2zt-2 +…..ϕpzt-p – (θ1εt-1 + θ2εt-1+…..θqεt-q) + εt           (18a) or         p               q zt  = ∑ϕjzt-j  –∑θiεt-i   + εt                                                                  (18b)         j=1            i=1 or          p             q zt  = ∑ϕjzt-j  –∑θiεt-i              ,( θ0 = -1)                                             (18c)          j=1          i=0 where 
ϕ1 ,  ϕ2 ,…..ϕp  are the autoregressive coefficients, 
θ1 ,  θ2 ,…..θq  are the moving average coefficients, 
εt  is the independent normal variable, t = w(i-1) + j   (= 12(i-1) + j  for monthly series). While the general form of A RMA with periodic coefficients is,  
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          p                     q  zi,j  = ∑ϕk,j zi,j-k  –∑θm,jεi,j-m   + εi,j                                                        (19)          k=1                  m=1 Where  ϕk,j   are the periodic autoregressive coefficients for k=1,…p and j=1,…w,  
θm,j are the moving average periodic coefficients for m =1,..q and j=1,…w,  
εi,j is an independent normal random variable for year (i) ,and time interval (j). To choose between constant or periodic coefficient models the autocorrelation function were drawn for the standardized series as shown in Fig. (9). From the figures no periodicity is noticed. Therefore, constant coefficient model is selected. A summarized procedure for the development of the model is given in the following steps (Naggar, 1999). Step 1: Transformation. The box and cox power transformation is utilized to get the series which is normal or approximately normal. Step 2: Stationarization. The transformed series was stationarized using Fourier series. Step 3: Autocorrelation and partial autocorrelation. The autocorrelation and partial autocorrelation should be calculated and drawn. Step 4: Identification. Use the autocorrelation and partial autocorrelation functions plots in the identification of the time series which indicated the possibility of AR MA model. Step 5: Initial estimate of the autoregressive parameter. The premier estimate of autoregressive parameter ϕ1 has been obtained from the difference equation known as Yule-Walker equation given by: 
ρk = ϕ1ρk-1 + ϕ2ρk-2 +…….ϕpρk-p                                             (20) Where: 
ϕ1, ϕ2 ,…..ϕp are the autoregressive coefficients.  Step 6: Premier estimate of the moving average parameter. The initial estimate of the moving average parameter 
θ1 has been obtained by:  Finding the values of lag-k  autocovariance cj using, N- k             ck = ∑ (zt –z)(zt+k – z)/(N-k)                                                (21)        t=1 Finding the value of the autocovariance cj’ using the formula given by Box and Jenkins (1976),         p                 p                    cj’ =∑ϕj2 cj + ∑ (ϕ0ϕ1 + ϕ1ϕi+1 + …ϕp-iϕp)dj                          (22)          i=0            i=1 Where dj  = cj+1 +cj-1 ; j = 1,2,…q ; ϕ0 = -1 cj = c-j            Hence,            c0’ = ϕ02  c0 +ϕ12  c0 + ϕ0ϕ1 (c1  +  c-1) = c0 +ϕ12  c0 –2ϕ1 c1                      (23a)           c1’ =ϕ02 c1 + ϕ12 c1 +ϕ0ϕ1 (c2 + c0) = c1 +ϕ12 c1– ϕ1(c2 + c0)              (23b) Obtaining the values of c0’ and c1’ from the previous equations,    Substituting in (Salas et al.(1985)),   
σε2 =c0’/(1+ θ12 + θ22 +…θq2 )                                                 (24a) and           θ1= – (c1’/σε2)                                                                          (24b)   Solving equations (15a) and (15b), the value of σε2 and the initial estimate of θ1 were obtained. Step 7: Maximum likelihood estimates. Refined values of the ARMA parameters ϕ1 and θ1 can be obtained by minimizing the sum of squares of residuals. Step 8: Test the goodness of fit.  The Q-statistic test has been used for testing the goodness of fit as follows             L  Q = N ∑ rk2(ε)                                                                        (25)            k=1                        N-k                           N rk=(N/(N-k))∑ ((Xt-X)(Xt+k-X))/∑ (Xt-X)2                                                 (26)                      t=1                             t=1 Where: rk = lag k autocorrelation coefficient, Xt  = observation value at time t, Xt+k = observation value at time t+k, X = mean of observation values. 
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 L may be of the order 10-30 percent of sample size N( 20% is used here) . The statistic Q is approximately 
χ2(L-p-q).  If  Q < χ2(L-p-q) then  εt is independent which implies that the model is adequate. Step 9: Generation. The zt can be generated using,               zt =   ϕ1 zt-1 + εt  - θ1εt-1                                                           (27) It is necessary to give initial values for zt-1 and εt-1. These values are generally taken as the last values of the series. It is also necessary to multiply the random generated numbers εt-1 by σε2 to obtain random numbers with zero mean and variance σε2. Step 10: Inverse standardization.  Change the zt series to zi,j form, then yi,j is obtained  by inverse standardization of the zi,j as follows, yi,j =µj + σj zi,j                                                                            (28) Step 11: Inverse transformation. The yi,j was inverse-transformed by the relation, xi,j = (λyi,j +1)1/λ                                                                     (29) Where: xi,j = is the generated series, 
λ = is the Box and Cox transformation coefficient.  
8. Generation of Data using ARMA Model Initial and refined values of the model parameters should be obtained. The refined values are obtained by selecting values of Φ and θ in the neighbourhood of the initial estimates, then calculating the residuals and sum of the squares of the residuals. The most likelihood estimate corresponds to the minimum of the overall of squares surface. Results of the Q-statistic should also be found to ensure that the generated data has passed the test. Finally, the historical and generated data should be drawn in one graph to enable visual inspection of the two series and to check visually whether they belong to the same population. Comparison of the Statistical properties of the historical and generated data should also be done. In order to check the adequacy of the generated sets, the means and standard deviations of the seasons should be tested at the required probability level.   
Conclusions Data generation is a time series modelling for finding a mathematical model that represents a time series. The creation of synthetic time series starts with the generation of independent normal variables with mean zero and variance one, then adding the time and spatial dependence structure as well as periodic components, whichever necessary. The generation procedure includes the analysis of the historical data to check its suitability for generation, Selection, identification of the form, estimation of parameters, & check of  the data generation model and model application & testing of the results. The work to be done for testing the historical and the generated data is summarized taking the autoregressive moving average as an example of the data generation model.  
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