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Abstract 

In this paper, we build an epidemiological model to investigate the dynamics of spread of dengue fever in human 

population. We apply optimal control theory to a simple SEIRS disease model of dengue fever transmission 

dynamics. Controls representing education and drug therapy treatment are incorporated to reduce the latently 

infected and actively infected individual populations, via application of the Pontryagins Minimum Principle of 

optimal control theory. Our overall aim is to minimize the spread of the disease in the population, and at the 

same time control the efforts required for education and treatment roll-out. Based on these,  we carry out  

optimization using an   SEIRS model, and in the process demonstrate how optimal strategies can be implemented 

towards minimizing the damage caused by the dengue fever disease.  

Keywords: epidemiological model, SEIRS, dengue fever, optimal control, Pontryagins Minimum Principle, 

fourth-order Runge-Kutta 

 

1. Introduction 

Dengue fever is a painful, debilitating mosquito-borne disease caused by one of the four closely related dengue 

viruses (Noorani& et al 2012). It is transmitted by the bite of an infected Aedes mosquito. Until now, more than 

100 million cases of dengue fever occur worldwide in the Indian subcontinent, Southeast Asia, Southern China, 

Taiwan, The Pacific Islands, The Caribbean, Mexico, Africa, Central and South America, Southern United 

States, and Southern Australia. In Indonesia, dengue cases increase yearly in almost all regions (WHO 2009). 

The virus can be spread partly due to an increase in urbanization and also by climate change. As a result of 

serious damage resulting from the effects of dengue fever spread, all over the world, an effective control strategy 

is vital. A very important aspect of the  strategy related to dengue fever spreading is quick and effective action 

(WHO2009).  

Dengue hemorrhagic fever (DHF) is a more severe form of dengue infection. It can be fatal if unrecognized 

and not properly treated in a timely manner. However it has been shown that with good medical management, 

mortality due to DHF can be less than 1% (Buletin2010). The virus circulates in the blood of an infected person 

for 2-7 days, at approximately the same time that the person develops a fever. Patients who are already infected 

with the dengue virus can transmit the infection via the Aedes mosquito just after the first symptoms appear 

(during 4-5 days; maximum 12). Hence, in order to devise effective means of control,  it is important to 

understand the epidemiology of dengue fever transmission. The disease can be transmitted more than once 

because of four different but related strains of dengue virus. As a result, if a person has suffered from one virus, 

there can be a repeat occurrence if a different strain is subsequently involved. It has been observed that, many 

who suffer repeat infections have it worse. They come down with dengue hemorrhagic fever and suffer massive 

internal bleeding and possible liver damage. As previously noted, the virus causing dengue fever comes in four 

strains, and immunity to one seems to make infection by a second strain more dangerous 

When the incidence of a dengue disease starts to increase in any population, people start to look for 

methods that are best to combat the outbreak or at least control the number of infections (Laurencia& et al. 

2015). Experiments for producing and testing those control measures, such as education, antiviral drugs, are 

costly and time consuming, so any tool that will enable us to predict the outcome is highly valuable. 

Mathematical models are a powerful tool for investigating dengue fever diseases (Lungu et al 2007). They 

provide useful predictions about the potential transmission of a disease and the effectiveness of possible control 

measures. Many infectious diseases are spread by biting insects and ticks or other organisms, collectively known 

as vectors, which transfer pathogens between humans or other animals. The emergence or reemergence of such 

vector-borne diseases seems especially to have stimulated recent interest. Epidemiology has become an 

important issue for modern society. The relationship between mathematics and epidemiology has been 

increasing. For the mathematician, epidemiology provides new and exciting branches, while for the 

epidemiologist; mathematical modeling offers an important research tool in the study of the evolution of 

diseases. In 1760, a smallpox model was proposed (Daniel Bernoulli 1760) and is considered by many authors 

the first epidemiological mathematical model. Theoretical papers by (Kermack and McKendrinck, 1991) 

between 1927 and 1933 about infectious disease models, have had a great influence in the development of 

mathematical epidemiology models (James 2002). Most of the basic theory had been developed during that time. 

Mathematical models are being increasingly used to elucidate the transmission of several diseases. These 

models, usually based on compartment models, may be rather simple, but studying them is crucial in gaining 
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important knowledge of the underlying aspects of the dengue fever diseases spread out (Hindmarsh& et al. 

2005), and to evaluate the potential impact of control programs in reducing morbidity and mortality. After the 

Second World War, the strategy of public health has been focusing on the control and elimination of the 

organisms that cause the diseases. The appearance of new antibiotics and vaccines brought a positive perspective 

of the disease eradication. However, factors such as resistance to the medicine by the micro organisms, 

demographic evolution, accelerated urbanization, increased travelling and climate change, led to new diseases 

and the resurgence of old ones. In 1981, the human immune deficiency virus (HIV) appeared and since then, 

became as important sexually transmitted disease throughout the world. Furthermore, malaria, tuberculosis, 

dengue and yellow fever have re-emerged and, as a result of climate changes, have been spreading into new 

regions (Helena &Teresa 2012).Recent years have seen an increasing trend in the representation of mathematical 

models in publications in the epidemiological literature, from specialist journals of medicine, biology and 

mathematics to the highest impact generalist journals, showing the importance of interdisciplinary approaches in 

the study of diseases. Their role in comparing, planning, implementing and evaluating various control programs 

is of major importance for public health decision makers. The optimal control definition and its possible 

formulations are introduced, followed by SEIRS epidemiological models. The Pontryagin Minimum Principle is 

presented with the aim of finding the best control policy. The system of equations consists of   human population 

compartments. The numerical method used to solve the system is the fourth-order Runge-Kutta method. 

 

2. Dengue Fever Transmission Model with Education 

Quantitative methods are often applied to achieve optimization of investments in the control of  disease. This is 

necessary in order to obtain maximum  benefits from a fixed amount of financial resources. In this case, our 

efforts will be directed towards the dynamics of the aedes mosquito vector as well as some management 

protocols aimed at controlling or alleviating the spread of dengue fever. Such management principles involving  

the termination of  the  reproduction cycle of  mosquitoes by avoiding the accumulation of still water in open-air 

recipients and spraying potential zones of reproduction are of vital importance as well as educating the local 

population on issues related to basic hygiene through the television (TV) and radio.  

 

2.1. Model Assumptions and mathematical formulation 

1. The population is uniform and mixes homogeneously. The total population size, 

N(t)=S(t)+E(t)+I(t)+R(t) at any time t>0, where N stands for the total population, E for exposed I for 

infected, S for susceptible and R for recovered.   

2. The natural birth rate b and death rates μ n are assumed to be different. 

3.  Each individual in the population is considered as having an equal probability of contacting the disease 

with a contact rate β. 

4.  An infected individual makes contact and is able to transmit the disease with βN  per unit time, that is, 

the contact rate is proportional to the total population size. 

5.  The fraction of contacts by an infected with a susceptible is S/N. Therefore the number of new 

infections in unit time per infective becomes (βN)(S/N). This rate is called an infection rate. This gives 

the rate of new infections or those leaving the susceptible category as (βN(S/N)I = βSI, which is called 

an incidence of the disease. This type of incidence is called bilinear incidence i.e., proportional to the 

product of the number of infective individuals and the number of susceptible individuals. 

6.  The number of infected individuals move from the exposed compartment per unit time is δE at time t. 

7.  The exposed E move from their compartment to I-compartment at a constant rate δ, so that 1/δ is the 

mean latent period. 

8.  The infectious I move from their compartment to R-compartment at a constant rate γ, so that 1/γ is the 

mean infectious period. 

9.  The rate of susceptible, exposed, infected and recovered individual removed from each compartments 

through natural death and disease induced death are μnS, μnE, μnI,  μnR and μdI respectively. 

10. The recovered individual R move from their compartment to susceptible(S)-compartment at a constant 

rate α, 

An optimal control problem is formulated by incorporating one of the intervention strategies into our basic 

mathematical model (equation(1)).  

 u(t) is the control which represents the education ratio of susceptible individuals being educated per unit 

of time with bounds between 0 and 1. 

 The inflow of population to the susceptible class is obtained, by combining assumptions 2, 5, 9, 10 and 

control (education).  

 A number of individuals leaves S and enter E, at the same time, a fraction of exposed E moves to 

infectious group I with a latent rate δ.  δE  represents an individual’s move from exposed to infectious. 

Some of the exposed group die through natural death rate μn, μnE represents   movement from exposed 
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to death. 

 Some individuals leave E and enter into the infected individuals I with latent rate δ.  

 A part of the population leaves I and enter the recovered group with recovery rate γ.   Combination of 

assumptions 2, 5, 9, 10 in addition to the control u, gives the rate of recovered. 

The differential equation from the assumptions and Fig. 1 for t≥0  can be represented  by a system of 

ordinary differential equation : 

 
An optimal control strategy aimed at minimizing the objective (cost) functional J of the cost of education 

for a susceptible population is given as: 

 
  Subject to: 

 
S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0 

where, A is balancing cost factor due to the infective and B is the weight on the cost of education. Fig. 1 is a 

compartmentalized representation of the mathematical formulation and optimization strategy for education. 

 
 

3. Combination of  Education and Treatment by Drug therapy 

Antiviral drugs are known to be very helpful in decreasing or preventing disease symptoms at the first sign of a 

dengue outbreak even when there is no evidence of fever. Before we  incorporate drug therapy as part of our 
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treatment protocol and control measures. We will now deal with how the application of drug therapy affects 

some of the model compartments.  

 Consider  control variables u1, u1E as representing  an individual’s move from exposed to recovered. 

The exposed populations change per unit of time becomes, 

                           
 In addition, a  number of individuals leaves the infected group I and enter the recovered group with 

recovery rate γ.  A  number of individuals also leave the susceptible and exposed groups S and E to 

enter  the recovered group with controls u and u1 respectively. This gives rate of recovered as : 

                        
The differential equation of the diagram for t≥ 0 is given in a system of ordinary differential equation. 

Introducing the controls representing the education and drug therapy treatment the model of eq(1) becomes 

                       
Where, S(0), E(0), I(0), R(0) are the initial conditions. The definitions of above model parameters are listed 

in Table 1. The control functions, u(t) and u1 (t) are bounded, Lebesgue integrable functions(Lebesgue 2015). 

The control, u1 (t), represents the effort on drug therapy treatment of latently infected individuals to reduce the 

number of individuals that may be infectious. While the control u(t) is the effort on education of susceptible 

individuals to increase the number of recovered individuals. 

A is balancing cost factor due to the infective, B and B1 are the weight on the cost of education  

and drug respectively. Fig. 2 is the overall representation of the model formulation. 

 
Table 1: Value of variables and parameters 

Symbols Description Value reference 

μn 

β  

b 

Natural death rate  

Contact rate 

Average birth rate  

1/(71*365) per year  

0.375 per year 

1/(71*365) per year 

(Helena 2012) 

 

μd Disease related death rate 1/11 per year Assumption 

δ  

γ  

Exposed rate  

Recovery rate 

1/4 per year 

1/3 per year 

(Helena 2012) 

 

α  Recovering rate of remove disease to Susceptible 0.00008 per year Assumption 

A  

B  

Balancing cost factor due to the infective  

The weight on the cost of education 

100 

0.04 

(Esayas 2015) 

B1 The weight on the cost of treatment 0.06 Assumption 
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The control problem involves that in which the number of individuals with latent and active dengue fever 

infections and the cost of applying education and drug therapy treatment controls u(t) and u1(t) are minimized 

subject to the differential equations (6). This performance specification involves the numbers of individuals with 

latent and susceptible respectively, as well as the cost for applying education control (u) and drug therapy 

treatment control (u1), in individuals with dengue fever. The objective functional is defined as:  

 
Where T is the final time and the coefficients, A, B, B1 are balancing cost factors due to scales and 

importance of the three parts of the objective function. To find an optimal control pair, u and u1,such that 

 
Where, U=(u(t),u1(t))|(u(t),u1(t))measurable, ai≤(u(t),u1(t))≤ bi, i = 1,2, t∈ [0,T] is the control set. 

 

4. Analysis of optimal Control 

The necessary conditions that an optimal pair must satisfy come from the Pontryagins Maximum Principle 

(Helena 2012). This principle converts (5) and (6) into a problem of minimizing point- wise a Hamiltonian H, 

with respect to (u,u1). First we formulate the Hamiltonian from the cost functional (6) and the governing 

dynamics (5) to obtain the optimality conditions. Pontryagin introduced the adjoint function to affix to the 

differential equation to the objective functional. The necessary conditions needed to solve the basic problem, the 

calculus of this OC problem can be followed stepwise: 

Step 1: Formulate the Hamiltonian for the problem and by applying Pontryagin’s principle to the Hamiltonian, 

we obtain the following results. Find optimal control u*, u1* and the corresponding solution S*, E*, I* and R* of 

equation (5). 

Step 2: Write the adjoint differential equation, the optimality condition and transversality boundary condition (if 

necessary). Using the Hamiltonian to find the differential equation of the adjoint λ, we obtained There exist 

adjoint variable λ1, λ2 , λ3 and λ4 that satisfy adjoint condition. 

 
 

4.1.  Adjoint functions 

 

 

 

 
 

with transversality conditions λi(T) = 0 ,i=1,...,4. 

The optimality condition is given by, 

 
Step 3: Solve for u* and u1* in terms of S*, E*, I*, R* and λ 

 
In this way we obtain an expression for the OC: 
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Next, we obtain an expression for the OC: 

 
Step 4: Solve the four differential equations for S*, E*, I*, R* and λ with boundary conditions, substituting u* 

and u1* in the differential equations with the expression for the optimal control from the previous step. 

Step 5: After finding the optimal state and adjoint, solve for the optimal control. 

We solve that system of differential equations for the optimal state and adjoint and then obtain the so called 

optimal control. Solution of  the optimal control in problem terms of S*, E*, I*, R* and λ, represents the 

characterization of the optimal control (u*). The state equations and the adjoint equations together with the 

characterization of the optimal control and the boundary conditions constitute the optimality system. 

Remark 1: If the Hamiltonian is linear in the control variable u, it can be difficult to calculate u∗ from the 

optimality equation, since would not contain u. Specific ways of solving these kind of problems can be found 

in (Suzanne & John 2007). 

 

Backward-forward Sweep Method 

From the model the optimal control problem becomes, 

 
     Subject to: 

 
 

With initial value, 

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0 And 

 
     Subject to 

 
As previously indicated,, any solution to the above optimal control problem must also satisfy 

 
Where, i=1,2,...,4 ,x1 = S, x2 = E, x3 = I, x4 = R 
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The optimal controls are, 

 
 

 
The optimality condition can usually be manipulated to find a representation of u∗ in terms of t, state 

variables and λ. If this representation is substituted back into the ODEs for the state variables and λ then the 

equations (11) and (12) form a two-point boundary value problem. The Runge-Kutta method is then applied  to 

solve initial value problems, and resolve the optimality system of  the optimal control problem. This approach is 

generally referred to as the Forward-Backward Sweep method. Information about convergence and stability of 

this method can be found in(Suzanne & John 2007). The process begins with an initial guess on the control 

variable. Then, the state equations are simultaneously solved forward in time and adjoint equations are solved 

backward in time. The control is updated by inserting the new values of states and adjoints into its 

characterization, and the process is repeated until convergence occurs.  

 

5. Numerical illustrations and conclusions 

Numerical solutions to the optimality system comprising of the state equations (5)and adjoint equations are 

carried out using MATLAB and using parameters in Table 1 and the following weight factors and initial 

conditions: A = 100, B = 0.04, B 1 = 0.06, S(0)=86.46%, E(0) =4.5%, I(0) = 9.042%, R(0) = 0%. The algorithm 

is the forward-backward scheme; starting with an initial guess for the optimal controls u and u1 , the state 

variables are then solved forward in time from the dynamics (5) using a Runge-Kutta method of the fourth order. 

Then those state variables and initial guess u and 1u   are used to solve the adjoint equations backward in time 

with given final conditions (16) and (17), again employing a fourth order Runge-Kutta method. The controls u 

and u1 are updated and used to solve the state and then the adjoint system. This iterative process terminates when 

current state, adjoint, and control values converge sufficiently(Helena &Teresa  2012). 

 

5.1. Results for Optimal education only 

With this strategy, education (u) is utilized in the disease control while the control on drug therapy treatment (u1) 

is set to zero, with weight factors B1=0, A=100, B=0.04. For this strategy, we observed that the number of 

susceptible individuals is higher when education and drug therapy treatment are absent (Fig. 3). For the latently 

exposed (E) individuals in Figure 4, it can be seen that with the presence of education the percentage rate of the 

exposed is lower than when there is no education. The same trend is followed in Fig. 5, where the percentage of 

the infected group (I) is lower when exposed to education. However  the  percentage of the recovered individuals 

(R) with education is higher than when there is no exposure to education.  Figures 5 and 6 are respectively lesser 

and greater respectively than the percentage of infected individuals and recovered individuals in the absence of 

education and drug therapy treatment. 

 

5.2. Optimal drug therapy treatment only 

The control (u1) on drug therapy treatment is utilized while the control on education(u) is set to zero, with weight 

factors A = 100, B = 0.04, B1 = 0.06. For this strategy, it can be observed in  Figure 7, that controls with 

education and drug therapy treatment lowers the percentage of susceptible individuals (hardly perceptible in the 

diagram)  than with education alone. This is because the recovered individuals go back to susceptible group and 

increase the susceptible group at higher rate. For the latently infected individuals in Figure 8, it can be seen that 
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in the absence of education, and with an initially exposed population of 4.5%; during the first 5 weeks there is 

hardly any change in the percentage of the individuals exposed  both with education and with education and 

treatment. It is obvious that the impact of education takes time to be felt or manifested in the dynamics. However 

there is a dramatic change in the dynamics after this period as the percentage of the exposed  with education and 

treatment becomes significantly lower than for those with education alone. For the infected individuals in Figure 

9,with an initially infected population of 9.04%, it can be seen that  using both intervention mechanisms is better 

than using education as only control mechanism. As earlier observed, there is a time lag of about ten weeks  for 

the impact of education to be reflected in the dynamics. The same trend is observed in Fig. 10 for the percentage 

of the recovered  where the time lag for education is about five weeks before influence of education with 

treatment shows a higher percentage  than with education alone.   

 

5.3. Optimal education and drug therapy treatment 

With this strategy, the controls on education (u) and drug therapy treatment (u1) are utilized, with weight factors 

A=100, B = 0.04, B1= 0.06. Figure 11 shows that the percentage of susceptible individuals with education and 

treatment  is lower than the susceptible population in the absence of education and drug therapy treatment.  

Figure 12, shows that without control the percentage of exposed individuals is higher than would be the case 

with education and treatment  options. The positive effect of treatment and education is further confirmed in Fig. 

13 where there is a higher percentage of individuals recorded without any control measures. Fig. 14 shows that 

as more people get exposed to treatment and education there the more they are likely not to get infected.  

 

6. Concluding remarks 

The results displayed herein not only confirm the validity of  the mathematical formulation derived herein but 

also illustrate how to optimally apply control measures involving treatment and education for the control of 

dengue fever. Utilizing education and drug therapy treatment lead to better disease control in the population than 

utilizing drug therapy treatment only.  In addition, the application of only one form of control measure although 

though it  results in a delayed peak in the percentage of exposed and infected,  is not as effective as using both 

controls. Thus control programs that specialize in an optimal application of multi-control measures can 

effectively reduce or alleviate the effects of dengue fever spread.  

Further work should include other control variables like the effect of bio-immunology on the spread of 

dengue fever, the use of medicated mosquito nets, development and application of vaccines, creation sterile 

mosquito males for the control of mosquito population etc. 
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