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Abstract 

Power system stabilizers (PSSs) are used to generate supplementary control signals for the excitation 

system to damp electromechanical oscillations. This paper presents an approach based on genetic algorithm 

for tuning the parameters of PSSs in a multi-machine power system. The stabilizers are tuned to 

simultaneously shift the lightly damped and undamped electromechanical modes of all plants to a 

prescribed zone in the s-plane. A multiobjective problem is formulated to optimize a composite set of 

objective functions comprising the damping factor, and the damping ratio of the lightly damped 

electromechanical modes. The performance of the proposed PSSs under different disturbances, loading 

conditions, and system configurations is investigated for different multi-machine power systems. The 

non-linear simulation results are presented under wide range of operating conditions; disturbances at 

different locations as well as for various fault clearing sequences to show the effectiveness and robustness 

of the proposed PSSs and their ability to provide efficient damping of low frequency oscillations.  

Keywords:  Power System Stabilizer, Electromechanical Oscillations, Genetic algorithm, Multi-machine 

power system. 

1. Introduction 

Damping of electromechanical oscillations in multi-machine power systems is the most important issue for 

a secure operation. Rogers et al. (1999) have reported that these oscillations may sustain and grow to cause 

system separation if no adequate damping is available. A well established classification separates them into 

two types: (i) local mode, corresponds to an oscillations of one or more generators in an area with respect to 

the rest of the system. Pai (2004) states that the local mode has a frequency of 1-3.0 Hz. (ii) Inter-area mode 

oscillations, is concerned with the oscillations of a group of generators in one area against a group in 

another area, usually connected by a long or a weak tie line. Bikash Pal (2005) states that these oscillations 

usually in a frequency range between 0.2-1 Hz. A common approach to damp these oscillations and 

improve system dynamic stability is the use of conventional lead-lag power system stabilizers (CPSSs). 

Rouco (2001) argued that these power system stabilizers are effective in damping local modes, and if 

carefully optimized may also be effective in damping inter-area modes up to a certain transmission 

loading . 

Design of CPSS is based on the linear control theory which requires a nominal power system model 

formulated as linear, time invariant system. CPSS based on this approach can be very well tuned to an 
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operating condition and will provide excellent damping over a certain range around the design point. 

However, CPSS parameters may not be optimal for the whole set of possible operating conditions and 

configurations. Larsen (1981) and Tse (1993) argued that despite the potential of modern control techniques 

with different structures, power system utilities still prefer a conventional lead-lag power system stabilizer 

(CPSS) structure. The reasons behind that might be the ease of online tuning and the lack of assurance of 

the stability related to some adaptive or variable structure techniques. Kundur et al.  have presented a 

comprehensive analysis of the effects of the different CPSS parameters on the overall dynamic performance 

of the power system. It is shown that the appropriate selection of CPSS parameters results in satisfactory 

performance during system upsets. 

Many different techniques has been reported in the literature pertaining to optimum location and 

coordinated design problems of CPSSs. Generally, most of these techniques are based on phase 

compensation and eigen value assignment. Fleming (1981), Abe (1983) and Arredondo(1997) presented 

different techniques of sequential design of PSSs to damp out one of the electromechanical modes at a time. 

Generally, the dynamic interaction effects among various modes of the machines are found to have 

significant influence on the stabilizer settings. Therefore, considering the application of stabilizer to one 

machine at a time may not finally lead to an overall optimal choice of PSS parameters. Moreover, the 

stabilizers designed to damp one mode can produce adverse effects in other modes. In addition, the optimal 

sequence of design is a very involved question. The sequential design of PSSs is avoided by Gooi (1981), 

Lefebvre(1983), Lim(1985), Chen(1987) and Yu(1990), where various methods for simultaneous tuning of 

PSSs in multi-machine power systems are proposed. Unfortunately, the proposed techniques are iterative 

and require heavy computation burden due to system reduction procedure. This gives rise to time 

consuming computer codes. In addition, the initialization step of these algorithms is crucial and affects the 

final dynamic response of the controlled system. Hence, different designs assigning the same set of eigen 

values were simply obtained by using different initializations. Therefore, a final selection criterion is 

required to avoid long runs of validation tests on the nonlinear model. 

Recently, genetic algorithms (GAs) have received much attention as an effect method to find global or near 

global solution of difficult and complex design problems. Compared with the other conventional methods 

described above, mathematical properties such as differentiability, convexity and nonlinearity are of no 

concern. Abdel Magid (1999),Schmitendorf(1992) and Hasanovic (2002) argued that another advantage of 

GAs is that they can be easily coupled with already developed analysis and simulation tools .  

In this paper optimization of the parameters of CPSS using GA is proposed. A multiobjective problem is 

formulated to optimize a composite set of objective functions comprising the damping factor, and the 

damping ratio of the lightly damped electromechanical modes. The problem of robustly selecting the 

parameters of the power system stabilizers is converted to an optimization problem which is solved by GA 

with the eigen value-based multiobjective function. Eigen value analysis and nonlinear simulation results 

have been carried out to assess the effectiveness of the proposed PSSs under different disturbances, loading 

conditions, and system configurations. Results obtained from eigenvalues and nonlinear time domain 

simulation are compared with results that obtained by CPSS.  

2. Problem Statement 

2.1 Power system model 

A power system can be modelled by a set of nonlinear differential equations as   f( X, U)X 


, where X is 

the vector of the state variables, and U  is the vector of input variables. In this study, all the generators in 

the power system are represented by their fourth order model and the problem is to design the parameters of 

the power system stabilizers so as to stabilize a system of ‘N’ generators simultaneously. The fourth order 

power system model is represented by a set of non-linear differential equations given for any i
th

 machine, 

   sωiω  
dt

idδ


            (1) 
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where   d  and q  direct and quadrature axes,  

         i  and i  are rotor angle and angular speed of the machine, 

        miP  and eiP  the mechanical input and electrical output power,  

        

'
diE  and 

'
qiE  are the d-axis and q-axis transient emf due to field flux , 

        
fdiE , diI  and qiI are the field voltage, d-axis stator current and q- axis stator current,  

        diX ,  '
diX  and qiX , 

'
qiX  are reactance along d-q axes, 

        
 '

0dT ,  '
0qT  are d-q  axes open circuit time constants, 

        aiK , aiT  are AVR gain and time constant 

        
refiV  , tiV  are the reference and terminal voltages of the machine 

For a given operating condition, the multi-machine power system is linearized around the operating point. 

The closed loop eigen values of the system are computed and the desired objective function is formulated 

using only the unstable or lightly damped electromechanical eigen values, keeping the constraints of 

keeping all the system modes stable under any condition. 

2.2 PSS Structure 

The speed based conventional PSS is considered in the study. The transfer function of the PSS is as given 

below. 
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where   is the deviation of the speed of the rotor from synchronous speed. The second term in Eq. (7) 

is the washout term with a time constant of wT . The third term is the lead–lag compensation to counter the 

phase lag through the system. The washout block serves as a high-pass filter to allow signals in the range of 

0.2–2.0 Hz associated with rotor oscillations to pass unchanged. This can be achieved by choosing a high 

value of time constant ( wT ). However, it should not be so high that, it may create undesirable generator 

voltage excursions during system-islanding. Compromising, it may have a value anywhere in the range of 

1–20 s . On the other hand, the lead–lag block present in the system provides phase lead (some rare cases 

lag also) compensation for the phase lag that is introduced in the circuit between the exciter input (i.e. PSS 

output) and the electrical torque. In this study the parameters to be optimized are{ iK , i  T1 , i  T2 ; i=1,2 

3,...m },assuming iT1 = iT3  and iT2 = iT4 .   

2.3 Objective Function 

1) To have some degree of relative stability. The parameters of the PSS may be selected to minimize the 

following objective function: 

        

2],
1 0,  

0[  1 ji

np

j ji

J 


 







        (8)

 

where ‘ np ’ is the number of operating points considered in the design process, and ji,  is the real part of 

the i
th

 eigen value of the j
th

 operating point, subject to the constraints that finite bounds are placed on the 

power system stabilizer parameters. The relative stability is determined by the value of 0 . This will 

place the closed-loop eigenvalues in a sector in which as shown in Fig. 1. 

 

 

 

Figure 1: Closed loop eigenvalues in a sector 

2) To limit the maximum overshoot, the parameters of the PSS may be selected to minimize the following 

objective function: 
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where  ji, is the damping ratio of the i
th

 eigen value of the j
th

 operating point. This will place the 

closed-loop eigenvalues in a wedge-shape sector in which ji, > 0 as shown in Fig. 2. 

 
 

Figure 2: Representation of eigenvalues in wedge shape sector 

 

3) The single objective problems described may be converted to a multiple objective problem by assigning 

distinct weights to each objective. In this case, the conditions 0,  ji  and 0,  ji  are imposed 

simultaneously. The parameters of the PSS may be selected to minimize the following objective function: 
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This will place the system closed-loop eigenvalues in the D-shape sector characterized by 0,  ji  and 

0,  ji as shown in Fig. 3. 

 

Figure 3: Representation of eigenvalues in D-shape sector 

 

It is necessary to mention here that only the unstable or lightly damped electromechanical modes of 

oscillations are relocated. The design problem can be formulated as the following constrained optimization 
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problem, where the constraints are the PSS parameter bounds: 

Minimize J  subject to  

                  
 i   Ki    K iK

maxmin
  

                   
 i   Ti    T iT

max11min1   

                  
 i   Ti    T iT

max22min2   

The proposed approach employs GA to solve this optimization problem and search for optimal or near 

optimal set of PSS parameters { iK , i  T1 , i  T2 ; i=1,2 3,...m} where ‘m ‘is the number of machines. 

Typical ranges of the optimized parameters are [0.01, 50] for iK  and [0.01 to 1.0] for  i  T1 and i  T2 . 

3. Genetic Algorithm 

3.1 Introduction 

Genetic Algorithms are general purpose optimization techniques based on principles inspired from the 

biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and 

survival of the fittest. They are member of a wider population of algorithm, Evolutionary Algorithms. The 

idea of evolutionary computing was introduced in the year 1960 by I.Rechenberg in his work “Evolution 

strategies” (“Evolutionsstrategie”, in original). His idea was then developed by other researchers. Genetic 

Algorithm was invented by John Holland and thereafter numbers of his students and other researchers have 

contributed in developing this field. With the advent of the GA, many non-linear, large-scale combinatorial 

optimization problems in power systems have been resolved using the genetic computing scheme. The GA 

is a stochastic search or optimization procedure based on the mechanics of natural selection and natural 

genetics. The GA requires only a binary representation of the decision variables to perform the genetic 

operations, i.e., selection; crossover and mutation. Fig 4 shows the binary representation of decision 

variables to perform the genetic operations 

 

Figure 4: Binary representation of decision variables 

3.2 Biological Background 

All living organisms consist of number of cells. Each cell consists of  same set of chromosomes. 

Chromosomes are strings of DNA and serves as a model for the whole organism. A chromosome’s 

characteristic is determined by the genes. Each gene has several forms or alternatives which are called 

alleles, producing differences in the set of characteristics associated with that gene. The set of chromosome 

which defines a phenotype (individual) with certain fitness is called the genotype. The fitness of an 

organism is measured by success of the organism in its life. According to Darwinian theory the highly fit 

individuals are given opportunities to reproduce whereas the least fit members of the population are less 

likely to get selected for reproduction and so “die out”. 

------ 1 1 0 1 0 

1x  

1 0 0 1 0 0 1 

2x  

0 1 0 

3x  

0 0 1 0 

nx  
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3.3Working mechanism of GA: 

In nature, a combination of natural selection and procreation permits the development of living species that 

are highly adapted to their environments. GA is an algorithm that operates on a similar principle. When 

applied to a problem the standard genetic algorithm proceeds as follows: an initial population of individuals 

(represented by chromosomes) ‘n’ is generated at random. At every evolutionary step, called as generation, 

the individuals in the current population are decoded and evaluated according to predefined quality 

criterion referred to as fitness function. To form a new population (next generation), individuals are selected 

according to their fitness. Then some or all of the existing members of the current solution pool are 

replaced with the newly created members. Creation of new members is done by crossover and mutation 

operators. 

3.3.1. Selection: According to Darwin’s evolution theory the best ones should survive and create new 

offspring. There are many methods to select the best chromosomes, for example roulette wheel selection, 

rank selection, steady state selection etc. Roulette wheel selection method has been used in this work to 

select the chromosomes for crossover because of its simplicity and also the fitness values do not differ very 

much in this work. 

Roulette wheel selection: Parents are selected according to their fitness. The better the chromosomes are, 

the more chances to be selected they have. A roulette wheel (pie-chart) is considered where all 

chromosomes in the population are placed in according to their normalized fitness. Then a random number 

is generated which decides the chromosome to be selected. 

3.3.2. Crossover: The main operator working on the parents is crossover, which happens for a selected pair 

with a crossover probability (pc). Crossover takes two individuals and cuts their chromosome strings at 

some randomly chosen position, to produce two “head” segments and two “tail” segments. The tail 

segments are then swapped over to produce two new full-length chromosomes. As a result the two offspring 

each inherit some genes from each parent. Crossover is not usually applied to all pairs of individuals 

selected for mating. A random choice is made, where the likelihood of crossover being applied is typically 

between 0.6 and 1.0. If the crossover is not applied, offsprings are produced simply by duplicating the 

parents. The crossover operation performed on two parents ‘A’ and ‘B’  is given below 

 

 

 

 

 

 

                    

3.3.3. Mutation: Mutation is applied to each child individually after crossover. It randomly alters each gene 

with a small probability(pm). Mutation provides a small amount of random search and helps ensure that no 

point in the search space has a zero probability of being examined. The mutation operation performed on 

two child strings obtained after crossover operation is given below 

 

 

 

 

                                 

These three operators are applied repeatedly until the off springs take over the entire population. When new 

solution of strings is produced, they are considered as a new generation and they totally replace the parents 

in order for the evolution to proceed. 

Parent A     0  0  0  0  0  1  0  1 

  Parent B     1  1  1  0  1  0   0  1  

   Child A      0  0  1  0  1  0   0   1   

 Child B       1  1  0  0  0  1  0   1 

Child A      0  1  0  1  1  

0  1 

New Child A      0  1 1  1  1  

0  1 
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It is necessary to produce many generations for the population converging to the near optimum or an 

optimum solution, the number increasing according to the problem complexity.  A linear mapping rule 

given by Eqn. (11) is used in this work to convert the binary coded strings into their corresponding values 

of 1x  and  2x .  

        isofvaluedecoded
12







il

L
ixU

ixL
ixix               (11) 

 

 

Where L
ix  and U

ix  are the problem constraints. In the above equation, the variable ix  is coded in a 

substring iS  of length il . The decoded value of a binary substring iS  is calculated as 





1

0
2

l

i
iSi  , 

where )1,0(is . 

Elitism: The performance of a simple GA is quite well improved by the elitism procedure. Without elitism, 

the best results can be lost during the selection, crossover and mutation operations. Hence the best solution 

(parent string) of every generation is copied to the next so that the possibility of its destruction through a 

genetic operator is eliminated. 

4. Test Case-I 

In this test case, the WSCC 3-machine, 9-bus power system shown in Fig. 5 is considered. For illustration 

and comparison purposes, it is assumed that all generators are equipped with PSSs. Three different 

operating conditions in addition to the base case are considered. 

4.1 PSS Design and Eigen value Analysis 

To assess the effectiveness and robustness of the proposed GAPSS over a wide range of loading conditions, 

four operating cases are considered. The generator and system loading levels at these cases are given in 

Tables 1 and 2, respectively. Table 3 and 4 represent the optimal parameters of conventional PSS and 

proposed GAPSS respectively. The electromechanical–mode eigen values and corresponding damping 

ratios without PSSs for all cases are given in Table 5. Table 5 also shows the comparison of eigenvalues and 

damping ratios for different Cases. It is clear that these modes are poorly damped and some of them are 

unstable. The electromechanical–mode eigenvalues and the corresponding damping ratios with the 

proposed GAPSS’s for the objective function J is given in the table. It is obvious that the 

electromechanical–mode eigen values have been shifted to the left in s-plane and the system damping with 

the proposed GAPSSs greatly improved and enhanced. 
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Figure 5: WSCC Three-machine Nine-bus Power System 

 

It is clear that these modes are poorly damped with CPSS and these electromechanical–mode eigenvalues 

have been shifted to the left in s-plane and the system damping is greatly improved and enhanced with the 

inclusion of PSS. 

 

 

Table 1: Loads in PU on system 100-MVA base 

Load Base Case Case 1 Case 2 Case 3 

 P Q P Q P Q P Q 

A 1.25 0.50 2.0 0.80 0.65 0.55 1.50 0.90 

B 0.90 0.30 1.80 0.60 0.45 0.35 1.20 0.80 

C 1.0 0.35 1.50 0.60 0.5 0.25 1.00 0.50 

Table 2: Generator loadings in PU on the Generator own base 

Gen Base case Case 1 Case 2 Case 3 

 P Q P Q P Q P Q 

1 0.72 0.27 2.21 1.09 0.36 0.16 0.33 1.12 

2 1.63 0.07 1.92 0.56 0.80 -0.11 2.0 0.57 

3 0.85 -0.11 1.28 0.36 0.45 -0.20 1.50 0.38 

 

Table 3: Optimal Parameters of Conventional PSS 

Gen K  1T  2T  

1 4.3321 0.4057 0.2739 

2 2.4638 0.3716 0.2990 

3 0.3997 0.3752 0.2961 

G2 

2 7 8 

Load C 

G3 

9 3 

Load A 

5 

4 

Load B 

6 

1 

G1 
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Table 4: Optimal Parameters of Proposed GAPSS 

Gen K  1T  2T  

1 5.5380     0.4399     0.0100     

2 5.5433    0.6958     0.3421     

3 14.9741     0.0531     0.4210 

Table 5: Comparison of Eigen values and Damping ratios for different cases 

 Without PSS CPSS GA PSS 

Base 

Case 

-0.2367 ± 8.5507i,  0.0277 

-11.1752 ±10.4687i,  0.7298 

  -0.8017 ± 9.0603i,  0.0881 

-11.1414 ± 9.4032i,  0.7642              

-3.8200 ±10.1200i,   0.3500 

-3.7000 ± 3.0700i,   0.7700 

Case-1 
  -0.1421 ± 8.4615i,  0.0168              

-11.2788 ±11.3006i,  0.7064              

  -0.8024 ± 8.9184i,  0.0896           

-11.1601 ±10.3813i,  0.7322                 

-1.0700 ± 1.6800i,   0.5400 

-3.2400 ± 4.1100i,   0.6200 

Case-2 
  -0.8199±8.1535i,    0.1001     

  -10.4600 ±12.2400i, 0.6497              

  -1.2583 ± 8.4817i,   0.1468     

-10.3426 ±11.4081i,  0.6717                       

-2.7300 ± 8.8200i,   0.3000  

-9.8300 ± 7.1400i,   0.8100        

Case-3 
   0.0990 ± 8.5483i,  -0.0116    

 -11.4841 ±11.0256i,  0.7214              

-0.3549 ± 8.9847i,   0.0395  

-11.3684 ±10.0945i,  0.7478                          

-0.8800 ± 1.5000i   0.5100                          

-3.7400 ± 3.7700i   0.7000 

 

4.2: Non Linear time domain simulation 

To demonstrate the effectiveness of the proposed GAPSS’s over a wide range of loading conditions, two 

different disturbances are considered as follows. 

Case(a): A 6-cycle fault disturbance at bus 7 at the end of line 5–7 with case 1. The fault has been cleared 

by tripping the line 5-7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Speed deviation of 2
nd

 and 3
rd

 generators for Case (a) 

Case(b): A 6-cycle fault disturbance at bus 7 at the end of line 5–7with case 3. The fault is cleared by 

tripping the line 5–7 with successful reclosure after 1.0 s 
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Figure 7: Speed deviation of 2
nd

 and 3
rd

 generators for Case (b) 

The system responses to the considered faults with and without the proposed GAPSS’s are shown in Figs. 6 

and 7 respectively. It is clear that the proposed GAPSS’s provide good damping characteristics to low 

frequency oscillations and greatly enhance the dynamic stability of power systems. 

5. Test Case-II 

To demonstrate the effectiveness of the proposed method on a larger and more complicated power system, 

the readily accessible 10-generator 39-bus New England system is adopted. Fig. 6 shows the configuration 

of the test system. All generating units are represented by fourth-order model and their static exciters are 

equipped with PSS. Details of the system data are given Pai(1989).  

5.1 PSS Design and Eigen Value Analysis 

To design the proposed GAPSS, three different operating conditions that represent the system under severe 

loading conditions and critical line outages in addition to the base case are considered. Fleming et al (1993) 

have reported that these conditions are extremely hard from the stability point of view. They can be 

described as; 

1) base case (all lines in service); 

2) outage of line connecting bus no. 14 and 15; 

3) outage of line connecting bus no. 21 and 22; 

4) increase in generation of G7 by 25% and loads at buses 16 and 21 by 25%, with the outage 

of  line 21–22. 

The tuned parameters of the ten PSS using conventional root locus approach and proposed genetic 

optimization algorithm are shown in the Table 6. The small signal analysis of the test system was carried 

out without connecting the PSS. The electromechanical modes and the damping ratios obtained for all the 

above cases with the proposed approach and CPSS in the system are given in Table 7. The unstable modes 

for different operating conditions were found out and highlighted in the above Table. 
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Figure 8: New England 10 generator 39 bus system 

It is clear that these electromechanical modes are poorly damped and some of them are unstable. Here 30 

parameters are optimized namely, iii  and  T , TK 31 ; i=1,2,3,..10. The time constant wT is set to be 10. In 

this study 0  and 0  are chosen to be -1.0 and 0.2 respectively. Several values for weight ‘a’ were 

tested. The results presented here are for a=10. From the eigenvalue analysis, for the base case it is clear 

that all modes are well shifted in the D-stability region with min increased from 0.072% to 2.61% and 

max from -0.0046 to -0.3012. Similarly for case-1, min  increased from 1.35% to 2.62% and max  

from -0.0826 to -0.3024 ; for case-2,  min  increased from 0.08% to 2.96% and max  from -0.0051 to 

-0.3260 ; and for case-3 min  increased from 0.04% to 2.43% and max  from -0.0023 to -0.2791. 

Therefore, it is obvious that the critical mode eigen values have been shifted to the left in s-plane and the 

system damping is greatly improved and enhanced with the proposed GAPSSs. 

 

Table 6: Parameters of Conventional and Proposed GA method 

CPSS Parameters GA PSS Parameters 

K T1 T2 K T1 T2 

10.4818   

0.6799   

0.2396  

1.1531         

17.0819  

13.4726    

4.3773   

0.6211    

0.6185     

0.5778  

0.5727  

0.6143  

0.6163 

0.5636    

0.1789   

0.1796  

0.1923  

0.1940 

0.1809     

0.1803    

0.1971  

32.200   

3.6000    

34.800    

24.400   

32.200 

14.000  

32.200    

0.5333     

0.8000     

0.5333     

0.5667     

0.8667     

0.7333     

0.5333    

0.2333     

0.3933     

0.2067     

0.1267     

0.3400     

0.3133     

0.3667     
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0.5709  

1.6059   

19.8488 

0.6099    

0.5429    

0.5027 

0.1822  

0.2046    

0.2210 

3.6000    

21.800     

8.8000     

 0.5333     

0.5333     

0.9000  

0.4200     

0.2600     

0.2867 

 

Table 7: Comparison of eigenvalues and damping ratios for different cases 

 Without PSS CPSS GA PSS 

 

 

 

Base 

Case 

 

-1.1878 ±10.6655i,  0.1107              

-0.3646 ± 8.8216i,   0.0413              

-0.3063 ± 8.5938i,   0.0356              

-0.2718 ± 8.1709i,   0.0332              

-0.0625 ± 7.2968i,   0.0086              

-0.1060 ± 6.8725i,   0.0154              

 0.2579 ± 6.1069i,  -0.0422              

 0.0620 ± 6.1767i,  -0.0100              

 0.0794 ± 3.9665i,  -0.0200  

 -1.5226 ±11.7232i,  0.1288              

 -1.3326 ±11.2726i,  0.1174              

 -1.9859 ±11.1499i,  0.1753              

 -0.9837 ± 9.0350i,   0.1082              

 -0.5380 ± 8.5014i,   0.0632              

 -0.1568 ± 7.3758i,   0.0213              

 -1.0658 ± 7.2601i,   0.1452              

 -0.0046 ± 6.3800i,   0.0007              

 -1.2016 ± 4.5676i,   0.2544   

-1.1509 ±11.4696i,   0.0998                  

 -0.4693 ±11.4972i,  0.0408               

 -0.3012 ±11.5151i,  0.0261                        

 -0.9554 ±10.1115i,  0.0941                        

 -0.6069 ± 8.9271i,  0.0678                        

 -1.0313 ± 7.9303i,  0.1290                        

 -0.5381 ± 7.1383i,  0.0752                        

 -3.5472 ± 2.9544i,  0.7684                        

 -1.2658 ± 2.8107i,  0.4106     

                                                                   

 

 

 

 

Case-1 

 

-1.1888 ±10.6603i,  0.1108              

-0.3642 ± 8.8221i,   0.0412              

-0.3087 ± 8.5753i,   0.0360              

-0.2727 ± 8.1706i,   0.0334              

-0.0643 ± 7.2859i,   0.0088              

-0.1000 ± 6.7243i,   0.0149              

 0.2997 ± 6.1030i,  -0.0490              

 0.0824 ± 5.7423i,  -0.0143              

 0.0844 ± 3.8066i,  -0.0222 

-1.5173 ±11.7109i,  0.1285              

-1.3362 ±11.2695i,  0.1177              

-1.9880 ±11.1547i,  0.1755              

-0.9669 ± 9.0331i,   0.1064  

  -0.5240 ± 8.4869i   0.0616                         

-0.1593 ± 7.3687i,   0.0216              

-0.0826 ± 6.1146i,   0.0135              

-1.0081 ± 6.0958i,   0.1632              

-1.9766 ± 6.0065i,   0.3126              

 

-1.1545 ±11.4461i,   0.1004              

-0.4779 ±11.4935i,   0.0415              

-0.3024 ±11.5189i,   0.0262              

-0.9581 ±10.1115i,   0.0943              

-0.6022 ± 8.8041i,   0.0682              

-1.2073 ± 7.9923i,   0.1494              

-0.4442 ± 6.9509i,   0.0638              

-1.2449 ± 2.6661i,   0.4231              

-2.1581 ± 2.4042i,   0.6680 

 

 

 

 

Case-2 

 

-1.1686 ±10.6268i,   0.1093                   

-0.3413 ± 8.7548i,   0.0390                   

-0.3013 ± 8.4738i,   0.0355                  

-0.2575 ± 8.0464i,   0.0320                    

-0.0615 ± 7.3143i,   0.0084                  

 0.1283 ± 6.1862i, 

0.0207                      

  0.0427 ± 6.0556i,  -0.0070                  

 0.2018 ± 5.8565i,  -0.0344                   

 0.1659 ± 3.7438i,  -0.0443    

 

-1.3152 ±11.2723i,   0.1159                        

-1.4305 ±11.2210i,   0.1265                        

-2.0125 ±11.0700i,   0.1789                   

-0.5674 ± 8.4623i,   0.0669               

-0.7944 ± 8.1979i,   0.0964               

-0.1547 ± 7.3961i,   0.0209                

-0.0051 ± 6.3664i,   0.0008                   

-0.9179 ± 5.9988i,   0.1513                  

-0.9712 ± 3.5259i,   0.2656      

-1.1550 ±11.3826i,   0.1010                        

-0.5047 ±11.4755i,   0.0439                      

-0.3348 ±11.3197i,   0.0296                    

-1.0116 ±10.0916i,   0.0997                   

-0.6046 ± 8.2732i,   0.0729                  

-1.3450 ± 7.0309i,   0.1879                  

-0.3260 ± 7.1950i,   0.0453                   

-1.1795 ± 2.8455i,   0.3829                    

-2.1806 ± 2.4528i,   0.6644       
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Case-3 

 

-1.1645 ±10.6163i,   0.1090              

-0.3256 ± 8.8902i,   0.0366              

-0.2977 ± 8.4483i,   0.0352              

-0.2587 ± 8.0346i,   0.0322              

-0.0575 ± 7.3333i,   0.0078              

 0.1557 ± 6.1630i,  -0.0253              

 0.0586 ± 6.0959i,  -0.0096                 

 0.2089 ± 5.6778i,  -0.0368              

 0.2352 ± 3.6446i,  -0.0644              

 

-1.3405 ±11.3267i,   0.1175              

-1.3380 ±11.2101i,   0.1185              

-2.0206 ±11.0315i,   0.1802                

-0.5650 ± 8.4482i,    0.0667              

-0.7508 ± 8.1182i,    0.0921              

-0.1506 ± 7.4154i,    0.0203              

-0.0023 ± 6.3596i,    0.0004              

-0.6910 ± 5.8629i,    0.1171               

-0.7668 ± 3.3898i,    0.2206      

-1.1638 ±11.3603i,   0.1019                       

-0.5379 ±11.4627i,   0.0469                     

-0.2791 ±11.4750i,   0.0243                    

-1.0219 ±10.0795i,   0.1009                   

-0.6143 ± 8.2200i,   0.0745                  

-1.3956 ± 6.9823i,   0.1960                  

-0.2836 ± 7.1579i,   0.0396                 

-1.1205 ± 2.8562i,   0.3652                  

-2.1899 ± 2.4765i,   0.6624      

5.2 Nonlinear time domain simulation 

To demonstrate the effectiveness of the PSSs tuned using the proposed multiobjective function over a wide 

range of operating conditions, the following disturbance is considered for nonlinear time simulations. 

Case (a): A six-cycle three-phase fault, very near to the 14th bus in the line 4–14, is simulated. The fault is 

cleared by tripping the line 4–14. The speed deviation of generators G5 & G6 are shown in Fig. 9.  

Case (b): A six-cycle fault disturbance at bus 33 at the end of line 19-33 with the load at bus-25 doubled. 

The fault is cleared by tripping the line 19-33 with successful reclosure after 1.0 s. Fig. 10 shows the 

oscillations of 4
th

 and 5
th

 generators. 

Case (c) Another critical five cycle three-phase fault is simulated very near to the 22nd bus in the line 

22–35 with load at bus-21 increased by20%, in addition to 25th bus load being doubled as in Case(b). The 

speed deviations of generators G7 & G8 are shown in Fig. 11. 

 

 

 

 

 

 

 

 

 

Figure 9.  Speed deviations of 5
th

 and 6
th

  generators for Case (a). 

 

 

 

 

 

 

 

 

 

 



Innovative Systems Design and Engineering    www.iiste.org 

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online) 

Vol 2, No 4, 2011 

 

152 

 

 

 

Figure 10.  Speed deviations of 4
th

 and 5
th

 generators for Case (b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Speed deviations of 6
th

 and 7
th

 generators for Case (c). 

In all the above cases, the system performance with the proposed GAPSSs is much better than that of 

CPSSs and the oscillations are damped out much faster. In addition, the proposed GAPSSs are quite 

efficient to damp out local and inter area modes of oscillations. This illustrates the potential and superiority 

of the proposed design approach to get optimal set of PSS parameters. 

6. Conclusions 

In this study, optimal multiobjective design of robust multi-machine power system stabilizers (PSSs) using 

GA is proposed. The approach effectiveness is validated on two multi-machine power systems. In this paper, 

the performance of proposed GAPSS is compared with conventional speed-based lead-lag PSS. A 

multiobjective problem is formulated to optimize a composite set of objective functions comprising the 

damping factor, and the damping ratio of the lightly damped electromechanical modes. The problem of 

tuning the parameters of the power system stabilizers is converted to an optimization problem which is 

solved by GA with the eigen value-based multi-objective function. Eigen value analysis under different 

operating conditions reveals that undamped and lightly damped oscillation modes are shifted to a specific 

stable zone in the s-plane. These results show the potential of GA algorithm for optimal settings of PSS 

parameters. The nonlinear time-domain simulation results show that the proposed PSSs work effectively 

over a wide range of loading conditions and system configurations. 
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