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Abstract: 
Hybrid Power Systems (HPSs), particularly renewable energy-mix systems, use a wide variety of enabling 
technologies to overcome the difficulties associated with Renewable Energy (RE) resource variability in both 
standalone and grid-connected systems. According to the Egyptian national program towards reaching the 2020 
objectives together with the continuous declination of the RE generation cost, extensive development and 
deployment of RE are witnessed from the government, academia, utilities and industry in Egypt. Therefore, this 
paper mainly aims at highlighting the potential of RE-hydrogen concept application for rural electrification in the 
small villages in Egypt in comparison with batteries. After introducing the comprehensive literature review that 
demonstrates the advantages and drawbacks of the RE standalone systems that mostly necessitates an Energy 
Storage System (ESS) support. 
The optimal.conomic design of the HPS that feeds the required electric load of the small Mansheat Taher village 
at Beni-Suef Governorate, Egypt is considered. For this purpose, five different HPS configurations are studied 
such as: PV-wind-battery, PV-Fuel Cell (FC), wind-FC, PV-wind-FC, and PV-wind-battery-FC systems. The 
models of various systems are optimally designed, sized based on the daily data for energy availability and the 
demand using HOMERTM software. From the viability analysis of the simulation results, HPS system of 
xxxxxxx that provides a total net present cost of $1,233,317 is considered the most economic and feasible 
option. The cost of energy is 0.1424 $/kwh with a required initial capital of $916,728. 
A case study area, Monshaet Taher village at Beni-Suef Governorate, Egypt with (29° 1' 17.0718"N, 30° 52' 
17.04"E) is identified for economic feasibility in this work. HOMER optimization model plan was designed with 
annual average solar radiation scaled of 5.93 (kWh/m2/day), annual average wind speed for the location is 4.92 
m/s. 
Keywords: Batteries, Energy Storage; Fuel Cells; Hybrid System; Renewable Energy; Rural Electrification. 
1. Introduction: 

The World Bank organization has reported that, Egypt is the third largest population country in Africa and it is 
the third highest gross national income (GNI) [1] comparing other countries. The economy of Egypt is still 
suffering from problems since the revolution of 2011 as the country experienced a sharp decline in tourism 
revenue and foreign direct investment, according to the International Monetary Fund (IMF) [2]. Egypt faces 
more challenges in providing sufficient energy sources, especially oil and natural gas, which amounted to a 
reliable 95% of the total Egypt's energy needs. Reserches and studies show that, Egypt possesses a reserve of 
primary energy resources; Egypt will face a deficit to cover its demand for these resources due to rapid 
utilization and increase of extraction costs. Not surprisingly the government is seeking to diversify its energy 
sources to meet the fuel deficit, which could make Egypt always been a net importer of fuel, which affects the 
reserves foreign exchange in the central bank [3]. 
The generating capacity of Egypt, as of May 2015, was about 31.5 Giga Watts, slightly higher than the expected 
creast demand of power in 2015 of 30 GW, related to Middle East Economic Survey (MEES) [4]. About 88.4% 
of Egypt's electricity is fueled by fossil fuel (natural gas, with the remainder being fueled by petroleum and 
renewable energy (mostly hydroelectricity) [5]. Egypt has a great potential for renewable energy: the coastal 
areas on the Red Sea are among the world’s finest wind regions and the large desert areas in the country enjoy 
intense solar radiation. The Government, moreover, has supported the development of renewable energy for a 
long time. The Government is clearly obliged to further developing renewable energy and has set the – ambitious 
– target that by 2022 renewable energy will supply 20% of the growing electricity demand in Egypt. In addition, 
the promotion of renewable energy will help to develop an indigenous renewable energy industry. In December 
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2014, Egypt has enacted a new Renewable Energy Law (Law 203/2014) which is a major step towards 
establishing a comprehensive legal framework for renewable energy projects [6]. 
2. Previous Studies in Egypt 
Different distributed generation (DG) systems including photovoltaic, fuel cell and wind turbine forming a DC 
micro-grid are modeled, controlled and simulated [7]. The DC micro-grid is simulated in grid-connected mode 
under different operating conditions. An energy system comprising three energy sources, namely PV, wind and 
fuel cells, is proposed [8]. Fuzzy logic control is employed to achieve maximum power tracking for both PV 
and wind energies and to deliver this maximum power to a fixed dc voltage bus. The fixed voltage bus supplies 
the load, while the excess power feeds the water electrolyzer used to generate hydrogen for supplying the fuel 
cells.  
A hybrid Photovoltaic fuel cell generation system employing an electrolyzer for hydrogen generation is 
designed and simulated and is applicable for remote areas or isolated loads [9]. The system incorporates a 
controller designed to achieve permanent power supply to the load via the PV array or the fuel cell, or both 
according to the power available from the sun. [10] Presents a hybrid wind/FC renewable energy utilization 
scheme for electrical energy supply to Village/Island or remote areas. The integrated renewable scheme utilized 
a multi regulator error driven coordinated controller to ensure effective energy utilization, common DC and AC 
bus stabilization, enhanced power quality and near maximum energy utilization under varying operating 
conditions and/ or load excursions. The design of an optimum efficient cost PV-wind-fuel cell hybrid system 
that meets a known electric load of small scale brackish reverse osmosis desalination unit and a tourism motel 
[11]. 

3. Description of the proposed systems 
In this work, Monshaet Taher village at Beni-Suef governorate, has been selected for the development of an 
integrated renewable energy system in Egypt. Beni-Suef is an important agricultural trade center on the west 
bank of the Nile with total area estimated of 7,169 km. The total area of the village is about 1463 acres, 
cultivated area represents according to a statement of the Ministry of Agriculture 1447 acres, representing 
98.6% of the area of the village. In Monshaet Taher village, there are about 450 households with 7000 of local 
people [12]. Farming is the dominant source of income for rural households in this region and the remaining 
primary income source is shop owner, petty trader and casual labor. The renewable energy project can change 
the lifestyle of the people of the Monshaet Taher. 
The objective of this paper is to design an optimal economic power renewable energy system that feeds the 
required electric load of Monshaet Taher village. The models have been designed to provide an optimal system 
configuration based on daily data for energy availability and demands. Five renewable energy power systems 
are presented in this paper to select the most optimum one of them which is PV-wind-battery, PV-fuel cell, 
wind-fuel cell, PV-wind-fuel cell, and PV-wind-battery-fuel cell hybrid systems as shown in Fig. 1. The system 
combines a water electrolyzer and a hydrogen storage tank to supply the fuel cell stack with hydrogen. The DC 
power required for hydrogen generation is supplied through the DC bus during surplus PV/wind power. The 
generated hydrogen is stored in tanks to be used by the fuel cells when the PV and wind energy sources fail to 
supply the load demand [8]. 
Technical and economic analyses were performed using the National Renewable Energy Laboratory’s 
(NREL’s) HOMER software tool that facilitates optimum design of renewable hybrid systems. HOMER 
simulates system operation during its entire lifetime, whereas required input data refer to capital expenses, 
operation and maintenance and replacement costs [13]. 
Monshaet Taher is a village which electricity grid has been already connected with low reliability so the 
capacity and continuity of electricity supply is limited. The village consists of 450 houses and others public 
affairs. The average load of the village is approximately 3102 kWh/day (or 129 kW) with 236 kW peak and has 
a load factor of 0.548 (which equates to the average load divided by the peak load, the load factor is 129 kW / 
236 kW = 0.548). 

4. Hourly load demand curves 
Load demand curves have been performed by utilizing a logical assumption suggesting that load demand varies 
in time, depends on the inhabitant presence in a room; that is why load demand curves are irregular and quite 
choppy over the time. Fig. 3 exhibits the typical profile of the electrical load which is used in the case study, 
while Fig. 4 shows the Monthly average load of the study area. 

5. Renewable Energy Resources 
5.1.1. Solar radiation: 



Innovative Systems Design and Engineering                                                                                                                                     www.iiste.org 
ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)  
Vol.8, No.1, 2017 
 

44 

The solar resource used for Monshaet Taher village at a location of 29°2' N latitude and 31°6' E longitude was 
taken from NASA Surface Meteorology and Solar Energy website [14]. The annual average solar radiation was 
scaled to be 5.93 kWh/m²/Day. The scaled data of global radiation and Clearness index of the study area is 
shown in Fig. 5. 

5.1.2. Wind resource  
The ten years average monthly wind speed data was taken from the NASA resource website based on the 
location of the study area location [14]. The annual average wind speed for the location is 4.92 m/sec. The 
scaled data of wind resource of the study area is shown in Fig. 5 while the characteristic wind speed 
distribution is shown in Fig. 6. 

6. Hybrid System Modeling 
The optimal system combination will lead to the optimal system design with the lowest leveled cost of 

energy. HOMER software application is used to design, evaluate technically and financially the options for the 
proposed power systems. HOMER can optimize the system configuration, and perform sensitivity analyses, 
therefore the designer can make the right decision when the supplying load is needed to optimize with 
minimization of energy cost [13].The optimization process consists in finding the optimal value of decision 
variable chosen by the designer and over which he has optimal control and for which HOMER can consider 
multiple possible values in its optimization process.The input data including solar, wind resource data, 
electricity usage of the Monshaet Taher village and the components of the hybrid system are put in HOMER 
software tool built as a model plan. The capital, replacement and O&M costs of the various system components 
have been given in Table 1. 

6.1. Photovoltaic panels 
The input data for the simulation model applied involved the following parameters: 20 years lifetime of the 
module and 20% ground reflectance. A derating factor of 0.9 was applied to the electric production from each 
panel. This factor reduces the PV production by 10% to approximate the varying effects of temperature and 
dust on the panels. The panels were modeled as fixed and tilted south at an angle equal to the latitude of the site 
(29.03). Photovoltaic sizes considered 0 to 1000 kW (step = 50 kW). 

6.2. Batteries 
In this analysis, we used the Trojan IND29-4V Deep-cycle batteries used in off-grid and unstable grid 
applications are heavily cycled at partial state of charge (PSOC). Operating at PSOC on a regular basis can 
quickly diminish the overall life of a battery, which results in frequent and costly battery replacements. Ah 
maximum capacity of the battery is 2166, 81% round trip efficiency, and 20% minimum state of charge. 
Lifetime of the batteries is 20 years, and lifetime throughput is 10,900 kWh [13, 15]. Number of batteries 
considered 0 to 250 (step =25). 

6.3. Wind generator 
The power curve of the wind turbine (serving as a function of wind speed of the generic 10 kW wind generator) 
is shown in Fig. 7; it has a rated capacity of 10 kW and the number of wind generators is to be considered as 
100. 

6.4.  Electrolyzer  
Water electrolyzer consists of several cells connected in series. Two electrodes of the electrolyzer are separated 
by an aqueous electrolyte or solid polymer electrolyte. Electrical current through the electrolyzer enables the 
de-composition of water into hydrogen and oxygen. The replacement cost of the electrolyzer is assumed to 
lower than the capital cost because some components included in the capital cost have longer life time than the 
stack itself [17]. 

6.5. Fuel cells 
A fuel cell is an energy conversion device, which converts the chemical energy of a fuel and oxidant, often 
hydrogen and oxygen, to electrical energy fuel cells are similar to batteries, however, unlike battery a fuel cell 
must be continuously provided with fuel, rather than deriving energy from materials contained within the cell, 
and the products of the electrochemical reaction must be removed the cell. The operating efficiency of fuel cell 
approaching about 60 % nearly twice the efficiency of conventional internal combustion engines [18]. The 
outputs of the fuel cell are DC current and water. Fuel cells are very attractive option to be used with 
intermittent sources of generation like the PV. The feasibility of fuel cell in coordination with PV systems has 
been successfully demonstrated for both grid-connected and stand-alone applications [19]. A Proton exchange 
membrane (PEM) fuel cell was chosen because of its passive operation, high efficiency, silent and its ability to 
provide power quickly from a standby configuration [16]. 
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6.6. Hydrogen Storage  
Hydrogen as an energy carrier must be stored to overcome daily and seasonal discrepancies between energy 
source availability and demand. Hydrogen storage has an economic advantage over lead acid batteries for long-
term storage. Currently, pressurized tanks are still the most cost-effective means of hydrogen storage for most 
applications [20]. It is known that a stand-alone energy system needs a storage system to provide energy for the 
cases of inappropriate weather conditions, instantaneous overload conditions, or demand for energy after sunset 
[21]. 

7. Simulation Results  
The simulation results of the proposed five power system configurations are displayed in Table 2.  The first 
power system, (PV-Wind-Battery) offers the lower NPC and Leveled cost of energy (LCOE). On the other 
hand, the fourth power system, (PV-Wind- Fuel Cell) has higher Initial Capital Costs, NPC and LCOE. By 
adding batteries to power system five, (PV-Wind- Fuel Cell), it leads to 41% in NPC and 39% in LCOE less 
than power system four, and then power system five becomes the second best optimal power system. 
According to the results of the optimization process, the optimal power system comprises a 226 kW PV array, a 
230 kW wind turbine, a 166 kW converter and 189 batteries. The proposed system gives a total net present cost 
of $1,233,317 and the cost of energy is 0.1424 $/kWh while the initial capital required is $916,728. 

As shown in Fig. 9 (a) and (b) the load is supplied with a hybrid system comprising of PV array, wind generator 
and battery storage. As shown in Fig. 9 (a), the PV/Wind hybrid system is able to provide energy approximately 
all time of the year. It can be observed that, the load could be met right through the year .The battery state of 
charge varies between 35% and 76% as shown in Fig. 9 (b). For the selected system the PV panels operates for 
4,384 hours (capacity factor 24.36%), produces 482,478 kWh per year, with total rated capacity of 226 kW. The 
leveled cost of solar electricity is 0.066 $/kWh. The 10kW-Wind Turbine produce 346,524 kWh/year, with total 
rated capacity of 230 kW, operating for 8,760 hours/year (capacity factor of 17.20 %). The leveled cost of wind 
electricity is 0.059 $/kWh.  
Fig. 9 presents the monthly data for PV-Fuel Cell hybrid system. It can be observed that the load could be met 
right through the year without excess energy. It clear from Fig. 10 that, the PV panels is the dominant producer 
of electricity, for the selected system the PV panels operates for 4,384 hours (capacity factor 24.36%), produces 
1,562,075 kWh per year, with total rated capacity of 667 kW. The leveled cost of solar electricity is 0.064 
$/kWh. While PEM fuel cells produce 365,855 kWh/year (capacity factor of 20.9 %), with total rated capacity 
of 200 kW, operating for 4510 hours/year, with fixed generation cost of 16.50 $/hr. 
Fig. 10 presents the monthly data for Wind-Fuel Cell hybrid system. It can be observed that the load could be 
met right through the year with excess energy. It can be observed from Fig. 11 that the 10kW-Wind Turbine is 
the dominant producer of electricity, for the selected system the 10kW-Wind Turbine operates for 8,760 hours 
(capacity factor 17.2%), produces 1,506,628 kWh per year, with total rated capacity of 1000 kW. The leveled 
cost of wind electricity is 0.055 $/kWh. While PEM fuel cells produce 105,973 kWh/year (capacity factor of 
8.57 %), with total rated capacity of 100 kW, operating for 4911 hours/year, with fixed generation cost of 14.3 
$/hr. it can be noticed that this system uses 100 wind turbine while system1 used only 23 turbine.  
It can be observed from Fig. 11 that the PV panels is the dominant producer of electricity, for the selected 
system the PV panels operates for 4,384 hours (capacity factor 24.361%), produces 1,061,518 kWh per year, 
with total rated capacity of 479 kW. The leveled cost of solar electricity is 0.0665 $/kWh. The 10kW- Wind 
Turbines produce 376,657 kWh/year, with total rated capacity of 250 kW, operating for 8,760 hours/year 
(capacity factor of 17.2 %). The leveled cost of wind electricity is 0.059 $/kWh. While PEM fuel cells produce 
207,294 kWh/year (capacity factor of 11.8 %), with total rated capacity of 200 kW, operating for 5,006 
hours/year, with fixed generation cost of 8 $/hr. 
Fig. 12(a) presents the monthly data for PV-Wind-Fuel Cell - Battery hybrid system. It can be observed that the 
system easily satisfies loads through the year. The battery state of charge varies between 40% and 86% as 
shown in Fig. 12(b). For the selected system the PV panels operates for 4,384 hours (capacity factor 24.36%), 
produces 579,489 kWh per year, with total rated capacity of 272 kW. The leveled cost of solar electricity is 
0.066 $/kWh. The 10kW-Wind Turbine produce 376,657 kWh/year, with total rated capacity of 250 kW, 
operating for 8,760 hours/year (capacity factor of 17.2 %). The leveled cost of wind electricity is 0.059 $/kWh. 
While PEM fuel cells produce 49,472 kWh/year, with total rated capacity of 100 kW, operating for 785 
hours/year, with fixed generation cost of 4 $/hr. 

8. Conclusions 
Hybrid renewable energy Systems are going to play a key role as the global electricity networks slowly 
minimize their dependence on fossil fuels. This is especially valid in the case of developing countries including 
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Egypt. Using a fuel cell to generate electricity induces a low efficiency but allows building a quiet energy 
generator consuming no materials.   
In this paper, the design of an optimum–efficient cost hybrid renewable energy system that meets a known 
electric load of small village in Egypt was developed. The computer pro-gram (HOMER Pro.) solves the 
optimization problem. In addition, the comparison between the five suggested different power system 
configurations was illustrated with details. These systems are compared with respect to the total net present 
cost (NPC) and leveled cost of energy. The PV-wind- battery hybrid system, offers the much lower NPC and 
LCOE. On the other hand, PV-Wind- Fuel Cell hybrid system has higher initial capital costs, NPC and LCOE. 
The high PV-wind-fuel cell system cost over PV- wind-buttery system is due to the high capital cost of fuel cell 
system and electrolyzer compared to battery. Therefore, the major obstacle in using hydrogen as a storage 
medium is the high cost associated with it. 
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Fig.1: Schematic diagram of the proposed system: (a) PV-wind-battery hybrid system, (b) PV-wind-fuel 

cell hybrid system, (c) PV-wind-battery-fuel cell hybrid system, (d) PV-fuel cell hybrid system, and (e) wind-
fuel cell hybrid system. 

 

 
Fig. 2: Daily load of the study area 

 
Fig. 3: Monthly averages load of the study area 
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Fig. 4: Solar energy profile of the study area 

 

 
Fig. 5: Wind energy profile at the selected village 

 
Fig. 6: Wind speed distribution at the selected village 
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Fig. 7: The wind turbine power curve 

 
(a) 
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(b) 

Fig. 8: Monthly data for power system 1. 

 
Fig. 9: Monthly data for power system 2. 
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Fig. 10: Monthly data for power system three. 

 
Fig. 11: Monthly data for power system four. 
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(a) 

 
(b) 

Fig. 12: Monthly data for power system five. 
 

Table1: Cost details of the various equipment used in the proposed scheme 

  
Cap

ital 
 ($) 

Replaceme
nt ($) 

O&M 
($/yrs.s) 

Lifeti
me 

(yrs.s
) 

PV module 1 
kW 

1,5
00 1,350 5  20  

Wind Turbine: generic 10 kW 1 
piece 

10,0
00 9,500 50  25  

Battery: IND29-4V [15] 1 
piece 275 275 3  10  

PEM fuel cells [16] 5 
kW 

3,0
00 2,500 0.08 

$/(h.kW) 
40,00

0 h 
Electrolyzer 3 

kW 
2,0

00 1,800 10  20  
Hydrogen tank 1 

kg 500 500 5  20  
Converter [13] 3 

kW 
1,5

00 1,300 5 15  
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Table 2. Optimization sizing results. 

 
 

Item Power System 1 
PV-Wind-Battery 

Power System 2 
PV-Fuel Cell 

Power System 3 
Wind-Fuel Cell 

Power System 4 
PV-Wind-Fuel Cell 

Power System 5 
PV-Wind- Fuel Cell-Battery 

Optimization  
Sizing Results 

 226 kW PV 
Array 

 667 kW PV 
Array 

 100 x 10kW 
Wind turbine 

 497 kW PV 
Array 

 272 kW PV 
Array 

 23 x 10kW 
Wind turbine 

 200 kW Fuel 
cells 

 100 kW Fuel 
cells 

 25 x 10kW Wind 
turbine 

 25 x 10kW 
Wind turbine 

 189(63*3) 
strings Trojan 
IND29-4V 

 161 kW 
Converter 

 156 kW 
Converter 

 200 kW Fuel 
cells 

 100 kW Fuel 
cells 

 166 kW 
Converter 

 500 kW 
Electrolyzer 

 100 kW 
Electrolyzer 

 164 kW 
Converter 

 158 kW 
Converter 

 
 120 kg 

Hydrogen tank 
 80 kg Hydrogen 

tank 
 300 kW 

Electrolyzer 
 165(55*3) 

strings Trojan 
IND29-4V 

    160 kg Hydrogen 
tank 

 100 kW 
Electrolyzer 

 
  

  40 kg Hydrogen 
tank 

Capital cost ($) 916,728 2,074,063 1,484,792 2,358,242 1,487,256 
O & M ($) 86,001 305,634 578,852 490,521 154,660 

Replacement 
 cost ($) 336,557 898,146 368,811 615,847 394,944 

Net Present 
 cost ($) (NPC) 1,233,317 3,031,109 2,357,260 3,224,402 1,899,946 

Leveled cost  of energy  
(LCOE) ($/kwh) 

0.1424 0.356 0.2675 0.3588 0.2184 

Production 
(kWh/year) 

 PV array: 
58.2% 

 PV array: 
79.54% 

 Wind turbines: 
95% 

 PV array: 
64.51% 

 PV array: 
57.63% 

 Wind turbines: 
41.8% 

 Fuel cells: 
20.46%  Fuel cells: 5%  Wind turbines: 

22.89% 
 Wind turbines: 

37.46% 

  
 

 Fuel cells: 12.6%  Fuel cells: 
4.92% 

fixed generation cost ( 
fuel cells) 

($/hr) 
- 16.50  14.3  8  4  

Carbon Dioxide 
 Emissions 0 kg/yrs. -224.22 kg/yrs. -64.948 kg/yrs. -127 kg/yrs. -30.319 kg/yrs. 


