www.iiste.org

Some Fixed Point Theorems with G-Iteration in Banach Space with the Help of Hemi Contractive Mapping

Akanksha Sharma¹ Kalpana Saxena² Ramakant Bhardwaj³

1.Department of Basic Science, Oriental college of Technology, Bhopal (M.P.)

2.Department of Mathematics, Govt. Motilal Vigyan Mahavidyalya, Bhopal (M.P.)

3.Department of Mathematics, Technocrats Institute of Technology, Bhopal (M.P.)

Abstract : the purpose of this paper is to obtain fixed point theorems with hemi contractive mapping in Banach space.

Keywords: common fixed point, hemi contractive mapping, G-iteration 2000 mathematics subject classification: 47J25, 47H10, 54H25

1. Introduction: the class of pseudo contractive maps with fixed points is a subclass of the hemi contraction. By using G-iteration process which is introduced by Das and Debata [3], we are studying convergence of common fixed point for continuous hemi contractive mapping in Banach space.

2. Preliminaries:

Definition 2.1 [2] (i) A mapping T with domain D(T) and range R(T) in a Banach space is called pseudocontrative mapping, if for all $x, y \in D(T)$, there exists $j(x - y) \in J(x - y)$ such that $(Tx - Ty, j(x - y)) \le ||x - y||^2$

(ii) [4] A mapping T with domain D(T) and range R(T) in E is called a hemicontrative mapping if

 $F(T) \neq \emptyset$ and for all $x \in D(T) x^* \in F(T)$ such that,

$$||Tx - x^*||^2 \le ||x - x^*||^2 + ||x - Tx^*||^2$$

Theorem 2.2: Dhage [1] has proved a fixed point theorem satisfying the inequality:

 $||Tx - Ty|| \le a||x - Tx|| + ||y - Ty|| + (1 - 2a) \max\{||x - y|| + ||x - Ty|| ||y - Ty||, \frac{1}{2} ||x - Tx|| + ||y - Ty||, \frac{1}{2} ||x - Ty|| + ||y - Tx||$

Definition 2.3: Let X be a normed space and T: $X \to X$ is a self mapping then T is said to satisfy a Lipschitz condition with constant q if $||Tx - Ty|| \le q ||x - y||$ for all $x, y \in X$. if q < 1 then T is called a contraction mapping.

Our main theorem is related to the concept of quasi-contraction, initiated by Ljubomir ciric [5] in .We define hemi ω -contraction in following manner: Let X be a normed space then a self mapping T of X is called hemi ω -contraction contractive mapping if $||Tx - Ty||^2 \le \omega \max\{||x - y||^2, ||x - Tx||^2, ||y - Ty||^2, ||x - Ty||^2, ||y - Tx||^2\}$ for all x, $y \in X$, where $0 \le \omega \le 1$.

extende the definition of hemi ω -contraction for a pair of mapping. we defining hemi ω -contraction pair of mapping as follows:

Definition 2.4: Let X be a normed space then T_1 and T_2 be two self mappings of X are called hemi ω - contractive pair of mapping If :

 $\|T_1 x - T_2 y\|^2 \le \omega \max\{\|x - y\|^2, \|x - T_1 x\|^2, \|y - Ty\|^2, \|x - T_2 y\|^2, \|y - T_1 x\|^2\} \text{ for all } x, y \in X, \text{ where } 0 < \omega < 1.$

3. MAIN RESULTS:

Theorem 3.1: Let X be a closed subset of normed linear space N and let $T: X \to X$ be a hemi ω - mapping and $\{x_n\}$ be the sequence of G-iterates associated with T then G-iteration process is defined in the following manner:

Let $x_0, x_1 \in X$ and $x_{n+2} = (\mu_{n-}\lambda_n - s_n - a_n)x_{n+1} + (\lambda_n + s_n + a_n)Tx_{n+1} + (1 - \mu_{n-}\lambda_n + k_n + b_n)Tx_n + (\lambda_n - k_n - b_n)x_n$ Where $\{\mu_n\}, \{\lambda_n\}, \{k_n\}, \{s_n\}, \{a_n\}, \text{and } \{b_n\}$ satisfying (i) $\mu_0 = \lambda_0 = k_0 = 1$

(ii) $0 < \lambda_n < 1, 0 < k_n < 1, 0 < s_n < 1, 0 < a_n < 1, 0 < b_n < 1$ for n > 0(iii) $\mu_n \ge \lambda_n$, $\mu_n \ge k_n$, $\mu_n \ge s_n$, $\mu_n \ge a_n$, $\mu_n \ge b_n$ for $n \ge 0$ (Iv) $\lim_{n\to\infty} \lambda_n = \lim_{n\to\infty} s_n = \lim_{n\to\infty} k_n = \lim_{n\to\infty} a_n = \xi$ where $\xi > 0$ (v) $\lim_{n \to \infty} \mu_n = 1$ (vI). $\lim_{n\to\infty} b_n = 0$ If $\lim_{n \to \infty} x_n = z \in X$ then z is the fixed point of T **Proof:** If $\{\mathbf{X}_n\}$ converses on $z \in X$ i.e. $\lim_{n \to \infty} x_n = z$. We shall show that z is the fixed point of T. Consider, $\leq ||z - x_{n+2}||^2 + ||(\mu_{n-}\lambda_n - s_n - a_n)x_{n+1} + (\lambda_n + s_n + a_n)Tx_{n+1} + (\lambda_n + a_n)Tx_{n+1} + (\lambda_n$ $(1 - \mu_n - \lambda_n + k_n + b_n)Tx_n + (\lambda_n - k_n - b_n)x_n - Tz \parallel^2$ $\leq ||z - x_{n+2}||^2$ $\begin{array}{c} - \|z - x_{n+2}\|^{2} \\ + (\mu_{n} - \lambda_{n} - s_{n} - a_{n}) \|x_{n+1} - Tz\|^{2} \\ + (1 - \mu_{n} - \lambda_{n} + k_{n} + b_{n}) \|Tx_{n} - Tz\|^{2} \\ \leq \|z - x_{n+2}\|^{2} + (\mu_{n} - \lambda_{n} - s_{n} - a_{n}) \|x_{n+1} - Tz\|^{2} \\ + (\lambda_{n} - k_{n} - b_{n}) \|x_{n} - Tz\|^{2} \\ \end{array}$
$$\begin{split} & \max\{\|x_{n+1} - z \|^2, \|x_{n+1} - Tx_{n+1}\|^2, \|z - Tz \|^2, \|x_{n+1} - Tz\|^2, \|z - Tz\|^2, \|z - Tx_{n+1}\|^2\} + (1 - \mu_n - \lambda_n + k_n + b_n) \|Tx_n - Tz \|^2 + (\lambda_n - k_n - b_n) \|x_n - Tz \|^2 \end{split}$$

We observed by the definition of G-iteration that $||x_{n+1} - Tx_{n+1}||^2$

$$\leq \frac{1}{(\lambda_n + s_n + a_n)} \|x_{n+1} - x_{n+2}\|^2 + \frac{(\mu_n - 1)}{(\lambda_n + s_n + a_n)} \|x_{n+1} - Tx_n\|^2 + \frac{(\lambda_n - k_n - b_n)}{(\lambda_n + s_n + a_n)} \|x_n - Tx_n\|^2$$

$$= \frac{(\lambda_n - k_n - b_n)}{||z - Tx_{n+1}||^2} \leq ||z - x_{n+1}||^2 + ||x_{n+1} - Tx_{n+1}||^2$$

$$\leq ||z - x_{n+1}||^2 + \frac{1}{(\lambda_n + s_n + a_n)} \|x_{n+1} - x_{n+2}\|^2 + \frac{(\mu_n - 1)}{(\lambda_n + s_n + a_n)} \|x_{n+1} - Tx_n\|^2$$

$$+ \frac{(\lambda_n - k_n - b_n)}{(\lambda_n + s_n + a_n)} \|x_n - Tx_n\|^2$$

Now putting above values in (3.1.1) then we have

$$\begin{aligned} \|z - Tz \|^{2} &\leq \||z - x_{n+2} \|^{2} + (\mu_{n-}\lambda_{n} - s_{n} - a_{n}) \|x_{n+1} - Tz \|^{2} \\ &+ (\lambda_{n} + s_{n} + a_{n})\omega \max\left\{\frac{1}{(\lambda_{n} + s_{n} + a_{n})} \|x_{n+1} - x_{n+2}\|^{2} \\ &+ \frac{(\mu_{n} - 1)}{(\lambda_{n} + s_{n} + a_{n})} \|x_{n+1} - Tx_{n}\|^{2} \right\} \\ &+ (1 - \mu_{n} - \lambda_{n} + k_{n} + b_{n}) \|Tx_{n} - Tz \|^{2} + (\lambda_{n} - k_{n} - b_{n}) \|x_{n} - Tz \|^{2} \end{aligned}$$

Letting $n \to \infty$ then we have

Letting $n \to \infty$ then we have $\|z - Tz\|^2 \le (1 - 3\xi + 3\xi\omega \|z - Tz\|^2)$ $\Rightarrow \|z - Tz\|^2 = 0$ Since $0 < \omega < 1$ and $\xi > 0$ Hence z = Tz is a fixed point of T

Theorem 3.2: Let X be a closed convex subset of normed linear space N and let T_1 and T_2 be hemi ω -

www.iiste.org

contractive pair of self mapping of X and $\{x_n\}$ be the sequence of G-iterates associated with T_1 and T_2 then G-iteration process is defined in the following manner:

$$\begin{split} & \text{Id}\, x_{0}, x_{1}^{i} \in \text{X} \text{ and } \\ & x_{2n+2} = (\mu_{n} - \lambda_{n} - s_{n} - a_{n}) x_{2n+1} + (\lambda_{n} + s_{n} + a_{n}) T_{1} x_{2n+1} \\ & + (1 - \mu_{n} - \lambda_{n} + k_{n} + b_{n}) T_{2} x_{2n} + (\lambda_{n} - k_{n} - b_{n}) x_{2n} \\ & \text{And} \\ & x_{2n+3} = (\mu_{n} - \lambda_{n} - s_{n} - a_{n}) x_{2n+2} + (\lambda_{n} + s_{n} + a_{n}) T_{2} x_{2n+2} \\ & + (1 - \mu_{n} - \lambda_{n} + k_{n} + b_{n}) T_{1} x_{2n+1} + (\lambda_{n} - k_{n} - b_{n}) x_{2n+1} \\ & \text{Wher} (\mu_{n} + \lambda_{n} + \lambda_{n} + \lambda_{n} + \lambda_{n} + b_{n} + \lambda_{n}) x_{2n+1} + (\lambda_{n} - k_{n} - b_{n}) x_{2n+1} \\ & \text{Wher} (\lambda_{n} + \lambda_{n} + \lambda_{n} + \lambda_{n} + \lambda_{n} + a_{n} + a_{n} + a_{n} + \lambda_{n} + a_{n} + a_{n}) x_{2n+1} \\ & \text{(i)} (\mu_{n} - \lambda_{n} + k_{n} + \lambda_{n} + a_{n} + a_{n} + a_{n} + a_{n} + a_{n}) x_{2n+1} \\ & \text{(i)} (\mu_{n} - \lambda_{n} + k_{n} + \lambda_{n} + a_{n} \\ & \text{(i)} (\mu_{n} - \lambda_{n} + \lambda_{n} + \lambda_{n} + a_{n} \\ & \text{(i)} (\mu_{n} - \lambda_{n} + \lambda_{n} + \lambda_{n} + a_{n} + a_{n}$$

Hence $z = T_2 z$ is a fixed point of T_2 .

Finally we can say that z is a common fixed point of T_1 and T_2 . This completes the proof.

References :

[1]. Dhage, B.C. "On common fixed point maps in Banach spaces" Acta Ciencia Indica vol XII no.1(1987), 1-5.

[2]. F. E. Browder and W. V. Petryshyn "Construction of fixed points of nonlinear mappings in Hilbert space", J. Math.Anal. Appl. 20(1967), 197-228.

[3]. G,Das and J.P. Debata "Fixed Points of Quasinonexpencive mappings" Indian J. pure appl.Math.,17(11) (1986)1263-1269.

[4]. Liu Qihou "The convergence theorems of the sequence of Ishikawa iterates for hemicontractive mappings" journal of mathematical analysis and applications 148, (1990), 55-62

[5].Ljubomir ciric "Quasi-contrations in Banach Spases"Publications De L'Institut Mathematique Nouvelle serie, tome 21(35),1977,pp .41-48.