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1. Introduction: the class of pseudo contractive maps with fixed points is a subclass of the hemi contraction. By 

using G-iteration process which is introduced by Das and Debata [3], we are studying convergence of common 

fixed point for continuous hemi contractive mapping in Banach space. 

 

2. Preliminaries: 

Definition 2.1 [2] (i) A mapping T with domain D(T) and range R(T) in a Banach space is called 

pseudocontrative mapping, if for all there exists  such that 

         

(ii) [4] A mapping T with domain D(T) and range R(T) in E is called a hemicontrative  mapping if 

F (T)  and for all x  F (T) such that, 

+  

Theorem 2.2: Dhage [1] has proved a fixed point theorem satisfying the inequality: 

+ ,

 

Definition 2.3: Let   be a normed space and !:   →   is a self mapping then ! is said to satisfy a Lipschitz 

condition with constant " if  for all  if " < 1 then ! is called a 

contraction mapping. 

Our main theorem is related to the concept of quasi-contraction, initiated by Ljubomir ciric [5] in .We define  

hemi  -contraction in following manner: 

Let   be a normed space then a self mapping ! of   is called  hemi  -contraction contractive mapping if 

 for all #, 

$   , where 0 <  < 1. 

extened the definition of hemi  -contraction for a pair of mapping. we defining hemi  -contraction pair of 

mapping as follows: 

Definition 2.4: Let   be a normed space then  and  be two self mappings of   are called hemi  - 

contractive pair of mapping IfIf : 

 for 

all #, $   , where 0 <  < 1. 

 

3. MAIN RESULTS: 

Theorem 3.1: Let   be a closed subset of normed linear space % and let !:   →   be a hemi  - mapping and 

{  } be the sequence of G-iterates associated with ! then G-iteration process is defined in the following 

manner:  

Let  X and 

 
Where {  },{  },{  },{ },{ },and { } satisfying 

(i) =  =  = 1 
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(ii) 0 < < 1, 0 < < 1, 0 < < 1, 0 < < 1, 0 <  < 1           for & > 0 

(iii)   ≥  ,   ≥  ,  ≥  ,  ≥  ,  ≥                 for & ≥ 0 

(I v   =   =  =  = '     where ' > 0 

(v)   

(v I ) =0 

IfIf    X then ( is the fixed point of T 

Proof: If {  } converses on (  X 

i.e.   = (.  

We shall show that ( is the fixed point of !. 

Consider, 

 

 
                

 

                    

+

+                   

 

 

              

                                                                                                                                                  (3.1.1)                                                                                                                      

We observed by the definition of G-iteration that 

 

 
And 

 

                          

 

Now putting above values in (3.1.1) then we have 

 
Letting  then we have 

 
)  Since 0 <  < 1 and ' > 0 

Hence ( =!z is a fixed point of ! 

Theorem 3.2: Let   be a closed convex subset of normed linear space % and let !1 and !2 be hemi  - 
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contractive pair of self mapping of   and {#& } be the sequence of G-iterates associated with !1 and !2 then G-

iteration process is defined in the following manner: 

Let #0, #1  X and 

 
And 

 
Where {  },{  },{  },{ },{ },and { } satisfying 

(i) =  =  = 1           if n=0 

(ii) 0 < < 1, 0 < < 1, 0 < < 1, 0 < < 1, 0 <  < 1           for & > 0 

(iii)   ≥  ,   ≥  ,  ≥  ,  ≥  ,  ≥                 for & ≥ 0 

(iv   =   =  =  = '     where ' > 0 

(v)   

(vi)  = 0 

IfIf    X then ( is the common fixed point of !1 and !2  

Proof: if {  } converges on (  X 

i.e.   

We shall show that ( is the fixed point of T. 

Consider, 

 

 

 

 
        

(3.2.1) 

We observe by the definition of G-iteration that 

  

+  

Now putting the values in (3.2.1) then we have 

 

 

 
Letting then we have 

 
)  Since 0 <  < 1 and ' > 0 

Hence ( =  is a fixed point off . 

Similarly we can show that 

 
)  Since 0 <  < 1 and ' > 0 
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Hence ( =  is a fixed point off . 

Finally we can say that ( is a common fixed point of andd . 

This completes the proof. 
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