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Abstract 

The aim of this paper is to prove some common fixed point theorems for intuitionistic fuzzy metric space using 

E.A property. 

 

Introduction 

In 1957, Fuzzy set was defined by Zadeh [15], Kramosil and Michalek [9] introduced fuzzy metric space. In  

1986, Jungck [6] introduced the notion of compatible mappings and utilized the same to improve commutativity 

conditions in common fixed point theorems . This concept has been frequently employed to prove existence 

theorems on common fixed points. However, the study of common fixed points of non-compatible mappings is 

also equally interesting which was initiated by Pant [12] . Recently, Aamri and Moutawakil [1] and Liu et al. [11] 

respectively, defined the property (E.A) and proved some common fixed point theorems in metric spaces. Imdad 

et.al. [5] extended the results of Aamri and Moutawakil [1] to semi metric spaces and Kubiaczyk and Sharma[10] 

defined the property (E.A) in PM spaces and used it to prove results on common fixed points wherein authors 

claim to prove their results for strict contractions which are merely valid upto contraction. In this paper , we 

prove the fixed point theorems for weakly compatible mappings using an implicit relation in intuitionistic fuzzy 

metric space satisfying the common  property(E.A) . 

 

2 Preliminaries 

Definition 2.1 [13]: A binary operation  is continuous t-norm if  is satisfying the 

following conditions: 

(i)  

(ii)  

(iii)  

(iv)  

Definition 2.2 [13]: A binary operation  is continuous t-norm if  is satisfying the 

following conditions: 

(i)   is commutative and associative; 

(ii)  is continuous; 

(iii)  

(iv)  

Definition 2.3 [2]: A 5 – tuple  is said to be an intuitionistic fuzzy metric space (shortly IFM- 

space) if X is an arbitrary set,  is a continuous t- norm ,  is a continuous t-conorm and  are fuzzy sets on 

  satisfying the following conditions for all  andd , 

(i)  for all  and  

(ii)   for all  

(iii)    

(iv)   for all   and ; 

(v)   

(vi)   

(vii)   

(viii) for all ; 

(ix)   

(x)   
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(xi)   

(xii)   

(xiii)   

Then  is called an intuitionistic fuzzy metric space. The functions  and  denote 

the degree of nearness and the degree of non-nearness between x and y with respect to t, respectively. 

Remark (2.1): Every fuzzy metric space  is an intuitionistic fuzzy metric space of the form 

 such that t- norm  and t-conorm   are associated as 

                  

Example (2.1): Let  be a metric space, define t-norm  and t-conorm 

and for all  and  , 

 
Then  is an intuitionistic fuzzy metric space. We call this intuitionistic fuzzy metric  

induced by the metric d the standard intuitionistic fuzzy metric. 

Definition 2.4 [13]: Two self mappings A and B of an intuitionistic fuzzy metric space  is said 

to be non-compatible if there exists at least one sequence  such that  

  

               

Or the limit does not exists. 

Definition 2.5 [4]: Let  be an intuitionistic fuzzy metric space. Let  and  be self maps on . 

Then a point  in  is called a coincidence point ofof  and  iff  In this case,  is 

called a point of coincidence of  and . 

 In 1996, Jungck [6] introduced the notion of weakly compatible maps as follows. 

Definition 2.6 [7]:  A  pair of self mappings  of a intuitionistic  fuzzy metric  space  is 

said to be weakly compatible if they commute at their coincidence points i.e  for some  in  then 

. 

It is easy to see that two compatible maps are weakly compatible but converse is not true. 

Definition 2.7: Let   be an intuitionistic fuzzy metric space. Two self-mapping  

are said to be compatible if and only if   

(a) Sequence  in X is said to be Cauchy sequence if, for alll  and , 

        for  

(b) A Sequence  in  is said to be Convergent to a point  if ,for all ,  

          for . 

Definition 2.8: Let  is an intuitionistic fuzzy metric space. Two self-mappings   

are said to be compatible if and only if  and for all  

whenever {  in  such that  for some . 

Definition 2.9: Let   be a intuitionistic fuzzy metric space. Two self-mappings   

are said to satisfy the (E.A) if there exists a sequence {  in  such that 

                                         

Definition 2.10: Two pairs  and  of self-mappings of a intuitionistic fuzzy metric space 

 are said to satisfy the common property  if there exist two sequences {  and {  

in  and some  in   such that 

                                     

Example 2.2: Let be a intuitionistic fuzzy metric space with   and 
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Define self- mappings  on  as and  for all  

Then with sequences {  and {     in  such that 

                                    

This shows that the pairs  and  share the common property  

Definition 2.11:  Two self mappings  and  of a Fuzzy intuitionistic metric space  sare said to 

be weakly compatible if the mappings commute at their coincidence points  i.e   for some  

implies 

                                           

We shall call  a point of coincidence of  and . 

Definition 2.12: Implicit Relation 

Let  be the set of all real continuous functions    non-decreasing in the argument 

satisfying the following condition: 

For all  and:  such that  for all then there 

exists a unique common fixed point of and . 

Lemma 2.13 [8]: Let be a set  and  be owc self maps of X. If  and  have a unique point of coincidence, 

 then  is the unique common fixed point off  and    

3 Main Results 

Theorem 3.1: Let   be an intuitionistic fuzzy metric space and let  be self –

mappings of . Let the pairs  and  be owc. If there exists  for all   and   

                       

and 

              

                         ...(1) 

Proof:  Let the pairs and  be owc, so there are points  such that  and . 

We claim that . If not, by inequality (1)  

   

    

                              

                                            

    

    

                            

   

                                           

A contradiction, therefore , ie  Suppose that there is another point Such that 

 then by (1). We have   , so  and  is the unique point 

of coincidence of  and   Similarly there is a unique point  such that . 

Thus z is a common fixed point of  and . The uniqueness of the fixed point holds from (1). 

Theorem 3.2:  Let  be a complete intuitionistic fuzzy metric space and let  and  be self-

mappings of  Let the pairs and  be owc. If there exists  for all   and  
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and 

                      

...(2) 

Then there exists a unique common fixed point of  and . 

Proof: Let the pairs and  be owc, so there are points  such that  and . 

We claim that  . If not, by inequality (2) We have 

          

                                    

                                 

   

                                    

         

                      

                                 

  

                                  

Thus we have,   ie  .Suppose that there is another point Such that 

then by (2) we have  , so  and  is the unique point of 

coincidence of  and  Similarly there is a unique point  such that . Thus z is a common 

fixed point of  and .  

Corollary 3.3 Let  be a complete fuzzy metric space and let  and  be self- mappings of . 

Let the pairs and  be owc. If there exists  for all  and  

   

and 

                      

   ...(3) 

Then there exists a unique common fixed point of  and . 

Proof: We have 
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And therefore from theorem 3.2,   and  have a common fixed point. 

Corollary 3.4:  Let   be a complete fuzzy metric space and let  and  be self –mappings of 

. Let the pairs and  be owc. If there exists  for all  and  

     

and 

                               

                                                                                          ...(4) 

Then there exists a unique common fixed point of  and . 

The proof follows from Corollary 3.3. 

Theorem 3.5: Let  be a complete fuzzy metric space. Then continuous self- mappings  and  of 

 have a common fixed point in  if and only if there exists a self mappings  of  such that the following 

conditions are satisfied 

(i)  

 

(ii) The pairs  and  are weakly compatible, 

 

(iii) There exists a point  such that for all  and  

 

   

and  

  

                                                                                                                                                         ...(5) 

Then  and  have a unique common fixed point. 

Proof:  Since compatible implies owc, the result follows from Theorem 3.2. 

Theorem 3.6:  Let be a complete fuzzy metric space and let  and  be self- mappings of . Let 

 and  are owc. If there exists  for all  and  

    
and 

    
                                                                                                                                                                               ...(8) 

For all  where . Then  and  have a unique common fixed point. 

Proof: Let the pairs  be owc, so there are points  such that  . Suppose that there exist 

another point for which . We claim that . By inequality (8) 
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A contradiction, since . Therefore  Therefore  and  is unique. 

From lemma 2.13 ,  and  have a unique fixed point. 
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