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Abstract 

Proteomics is the study of proteins and their interactions in a cell. Within the wide field of functional OMICS, 

proteomics has become a useful tool and the emphasis is shifting from genomics to the protein compliment of the 

human organism. Because proteome reflects more accurately on the dynamic state of a cell, tissue, or organism, 

much is expected from proteomics to yield better disease markers for diagnosis and therapy monitoring. Hence the 

present review was to review proteomics technologies and their applications for crop improvement. The advent of 

proteomics technologies for global detection and quantitation of proteins creates new opportunities and challenges 

for those seeking to gain greater understanding of diseases. High-throughput proteomics technologies combining 

with advanced bioinformatics are extensively used to identify molecular signatures of diseases based on protein 

pathways and signalling cascades. Mass spectrometry plays a vital role in proteomics and has become an 

indispensable tool for molecular and cellular biology. However, future developments may enable faster and more 

sensitive proteomics studies and Proteomics alone cannot provide all the information required for understanding 

cellular processes. Therefore Complementary approaches in genomics, metabolomics and bioinformatics will have 

to be used together with proteomics to permits a more holistic view of biological systems and their alterations in 

disease, so that the maximum benefit can be realized. 
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1. INTRODUCTION 

Proteomics is a recent member of the ‘omics’ family that has gained rapid momentum at the turn of the century, 

particularly in the area of therapeutics. In 1994, around 20 years ago,  is considered  the year of birth  for 

“proteomics”, being  the  term an extension of the  word  “proteome”  first  coined  by  Marc  Wilkins  while  being  

a  Ph.D. student at Australia's  Macquarie University (Agrawal et al., 2013). Proteomics is the large scale study of 

proteins particularly their composition, structures, functions, and interactions of the proteins directing the activities 

of cell (Wilkins et al., 1995). The main theme of interest proteomics it gives a much better understanding of an 

organism than genomics because genomics can give a rough estimation of expression of a protein. It is much more 

complicated than genomics, mostly because while an organism’s genome is more or less constant, the total protein 

expression profile always changes with time, micro and macro environmental conditions (Holman et al., 2013). 

The main goal of proteomics is to study, know and understand “how”, “where”, “when”, and “what for” 

are  the several hundred  thousand of  individual protein forms produced  in  a  living  organism,  how  do  they  

interact  with  one  another  and  with  other molecules to construct  the cellular building, how can  they be modified 

and work  in order to fit in with programmed growth and development, and to interact with their biotic and a biotic 

environment (Smith et al.,2013). 

In the last decade, there have been many improvements in protein separation a technique, including two-

dimensional polyacrylamide gel electrophoresis (2-D PAGE), liquid chromatography (LC) and much progress has 

also been recently achieved in the analysis of proteins from tryptic digests using mass spectrometry (MS) and 

database searching. The newest generation of MS combined with good separation techniques is capable of 

providing rapid and confident protein identifications (Buts et al., 2014).  

Plant proteomic projects include structural proteomics of the whole organism, organs, tissues, cells, and 

sub cellular compartments, as well as comparative proteomics on various processes (Holman et al., 2013). Much 

attention has been paid to proteomic studies on crop plants in recent years subjected to various a biotic stresses 

and biotic factors such as looding, drought, salinity, acidity, and nutrient limitation (Petricoin et al., 2011). 

The global scale analysis of plant proteins is expected to yield more direct understanding of function and 

regulation than analysis of genes. To meet the current challenges of food insecurity, genes and proteins that control 

crop architecture and or stress resistance in a wide range of environments will need to be identified to facilitate the 

biological improvement of crop productivity (Emam et al., 2014). So the objective of this paper is to review 

proteomics technologies and its application for crop improvements.  

 

2.  Genomics to Proteomics 
With the completion of the Human Genome Project, the emphasis is shifting to the protein compliment of the 

human organism. This has given rise to the science of proteomics, the study of all the proteins produced by cell 

and organism, which involves the identification of proteins in the body and the determination of their roles in 

physiological and patho physiological functions. The term “proteome” refers to all the proteins expressed by a 
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genome. While a genome remains unchanged to a large extent, the proteins in any particular cell change 

dramatically as genes are turned on or off in response to the environment. Since it is proteins that are directly 

involved in both normal and disease-associated biochemical processes, a more complete understanding of disease 

may be gained by looking directly into the proteins within a diseased cell or tissue. Genomics has provided a vast 

amount of information linking gene activity with disease, but it does not predict PTM that most proteins undergo. 

Therefore, DNA sequence analysis does not predict the active form of a protein and RNA quantitation does not 

always reflect the corresponding protein levels. It is believed that through genomics and proteomics, new disease 

markers and drug targets can be identified, which will ultimately help design products to prevent, diagnose, and 

treat diseases. 

 
 Fig1. Schematic representation of omics technologies 

 

2.1. TYPES OF PROTEOMICS 

Based on the protein response under stress conditions proteomics are classified into different groups. 

2. 1.1. Expression proteomics 

Expression  proteomics  is  used  to  study  the  qualitative  and  quantitative  expression  of total proteins under 

two different conditions. Like the normal cell and treated or diseased cell can be compared to understand the 

protein that is responsible for the stress or diseased state or the protein that is expressed due to disease of a given 

environments.2-D gel electrophoresis, mass spectrometry technique were used to observed the protein expressional 

changes, which is present and absent in tumour tissue, when compared with normal tissue. Which are over 

expressed and under expressed can be identified and characterized protein activities multi-protein complexes, and 

signalling pathways (Hinsby et al., 2003). Identification of these proteins will give valuable information about 

molecular biology of tumour formation and disease-specific manner for use as diagnostic markers or therapeutic 

targets. 

2.1. 2. Structural proteomics 

Structural proteomics helps to understand three dimensional shape and structural complexities of functional 

proteins. Structural proteomics can give detailed information about the structure and function of protein complexes 

present in a specific cellular organelle. . Different technologies such as X-ray crystallography and NMR 

spectroscopy were mainly used for structure determination (Junjie et al., 2015). 

2.1. 3. Functional proteomics 

Functional proteomics explains understanding the protein functions as well as unrevealing molecular mechanisms 

within the cell then depend on the identification of the interacting protein partners. The association of an unknown 

protein with partners belonging to a specific protein complex involved in a particular mechanism would in fact, be 

strongly suggestive of its biological function. Furthermore detailed description of the cellular signalling pathways 

might greatly benefit from the elucidation of protein- protein interactions (Kamal et al., 2015). 

 

2. 2. Proteomics Technologies 

The complete characterization of a proteome is a formidable task and the degree of success achieved depends on 

the methods available and their amenability to automation and high throughput formats (Junjie et al., 

2015).Parameters such as the complexity of the protein mixture, levels of expression and medication and 

intracellular localization all impact the choice of proteomics technology to be used (Holman et al., 2013). In 

proteomic analysis both analytical and bioinformatics tools were used to characterize protein structure and 

functions. Analytical techniques 2-D gel electrophoresis, MALDI-TOF-MS was used. In case of bio-informatics 

numbers of software tools were also used. 



Innovative Systems Design and Engineering                                                                                                                                     www.iiste.org 

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)  

Vol.7, No.6, 2016 

 

9 

 
Fig 2. Work flow schemes in proteomics 

2.2.1. Two-dimensional polyacrylamide gel electrophoresis 

Two Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE) is used to separate proteins from a mixture 

providing information such as: molecular weight, isoelectric point, presence or absence of proteins in a sample 

and PTMs (Lodha, et al., 2013). It can achieve the separation of several thousand different proteins in one gel. 

High-resolution 2-D PAGE can resolve up to 10,000 protein spots per gel. Stains such as Coomassie blue, silver, 

SYPRO Ruby and Deep Purple can be employed to visualize the proteins (Wu et al., 2014b).The proteins are 

separated by charge (isoelectric point) in the first dimension and by mass in the second dimension. In isoelectric 

focusing, the proteins migrate in a pH gradient to the pH at which they have no net charge. The most common 

proteins are separated by isoelectric point in the horizontal direction and by size in the vertical direction and this 

map of protein spots can be considered as the “protein finger print” of that sample. 

 Typically, 2DE is used in expression proteomics studies where the focus is on studying alterations in 

protein expression profiles due to the appearance of a new protein spot, or the disappearance of a protein spot, or 

changes in the intensity of an existing protein spot. While the resolution of complex protein mixtures obtained 

with 2DE is far superior to that with conventional one-dimensional protein electrophoresis. Nowadays, 2-D PAGE 

analysis is often coupled with the MS technology and it has provided with higher resolution, improved 

reproducibility, and higher loading capacity for preparative purposes with the intent of subsequent spot 

identifications (Kim et al., 2013). 
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2. 2.2. Mass Spectrometry for Protein Characterization 

A relatively new and rapidly evolving development in proteomics research has been the application of mass 

spectrometry (MS) which, in conjunction with the development of comprehensive protein databases (Kamal et 

al.,2015) and advances in computational methods (Lahm and Langen,2000), is being used for high-throughput 

characterization and identification of proteins.MS can be used to determine the molecular weight as well as the 

amino acid composition of proteins at low concentrations (attomole to femtomoles and it is also easily adaptable 

to high-throughput formats, which has made it the method of choice for protein identification and characterization 

(Wu et al., 2014b). 

Mass spectrometry is an analytical technique that produces spectra of the masses of the atoms or 

molecules comprising a sample of material. The spectra are used  to determine  the elemental or isotopic signature 

of a sample, the masses of particles and of molecules, and to elucidate  the  chemical  structures  of  molecules,  

such  as  peptides  and  other  chemical compounds. It works by ionizing chemical compounds to generate charged 

molecules or molecule fragments and measuring their mass to charge ratios (Lodha et al., 2013).  

Frequently used ionization methods include electro spray ionization (ESI), matrix-assisted laser 

desorption/ionization (MALDI), and surface-enhanced laser desorption/ionization (SELDI). Matrix-assisted laser 

desorption-ionization (MALDI) and electro spray ionization (ESI) are two technologies that are commonly used 

for protein ionization (Yang, et al., 2015). 

2.2.3. MALDI-TOF-MS 

The MALDI process has as its energy source the laser pulse, as opposed to the electrostatic potential in ESI, to 

ionize peptides. Protein sample have been characterized by SDS PAGE by generating peptide maps. These peptide 

maps have been used as fingerprints of protein or as a tool to know the purity of a known protein in a known 

sample. Mass spectrometry gives a peptide map when proteins are digested with proteolytic enzymes like trypsin. 

This peptide map can be used to search a sequence database to find a good match from the existing database 

(Jacoby et al., 2013b). 

Time-of-flight (TOF) and quadrupole mass analyzers have been developed for use in mass spectrometers 

(Wu et al., 2014b), and of these, TOF analyzers are more common because of their ease of operation. TOFs are 

commonly used with a MALDI ion source, whereas quadrupole analyzers are combined with an ESI source. The 

accurate determination of protein molecular weights is mainly achieved using a MALDI-TOF instrument. These 

peptide mass finger prints are compared with a Data base of virtual peptide mass finger prints generated by the 

theoretical digestion of known proteins by specific proteases (Kamal et al., 2015). 

2.2.4. Electro spray ionization 

This technology involves the production of gaseous ions by application of a potential to a flowing liquid, resulting 

in the formation of a spray of small droplets with solvent-containing analyte. Solvent is removed from the droplet 

by heat or another form of energy such as collision with a gas, and multiply charged ions are formed. Finally, 

electrostatic repulsion is sufficiently high to cause desorption of the analyte ions, which are then passed to the 

mass spectrometer. In ESI mass spectrometry the protein sample is in solution, and a potential is applied to create 

a fine mist of charged droplets that are subsequently dried and introduced into the mass analyzer (Lahm and Langen, 
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2000). In contrast to MALDI, ESI produces highly charged ions without fragmentation of the ions in the gas phase 

(Mann et al., 2001). 

2.2.5. Chromatographic techniques 

Chromatography  comprises  different  group  of methods which  are  utilized  for  the  separation  of  closely  

related components of mixtures. Chromatography is a physical method of separation in which the components to 

be separated are  distributed  between  two  phases,  one  of which  is  stationary  (the  stationary  phase), while  

the  other  (the mobile  phase). The phases are chosen such that components of the sample have differing affinities 

for each phase.  The  most  commonly  employed  separation  technique  for  Bio analysis  is  high performance  

liquid  chromatography  (HPLC),  also  known  simply  as  LC.   

There are increasing applications in proteomics research due to its ability to analyze large, fragile bio 

molecules. With advancements in ionization methods and instrumentation, LC combined with MS has become a 

powerful technology for the characterization and identification of peptides and proteins in a complex mixture. This 

technology shows advantages over gel-based techniques in terms of speed, sensitivity, scope of analysis and 

dynamic range, since it can incorporate a wide choice of detection methods (Chandana et al., 2013). 

2.2.6. Protein Microarrays 

Protein chips, protein biochips or protein microarrays are micro proteomic technologies for studying protein 

interaction and function. This technology uses only a very small amount of crude sample (e.g. cell lysates, urine 

or serum) from the patient (Geho et al., 2010).Protein chips are viewed as the most promising tools for proteome-

wide analysis. This technology enables thousands of proteins to be analysed (a more rapid profiling approach 

compared with 2DGE) and it enables screening for specific types of post-translational modification. 

Based on the comparisons of protein mass profiles from any two samples from different biological and pathological 

conditions, potential bio markers or disease-related protein targets could be identified. It is used for  rapid profiling 

chip array system for a variety of studies, each exploiting the key strengths and advantages of this technology:(i) 

it being amendable to analyse small and usually limited quantities of biological samples (0.5–500 mol); (ii) the 

ability to detect and evaluate proteins without the need for tagging, labelling or processing; (iii) the sensitivity of 

the system with the ability to detect fmol concentrations of proteins; and (iv) the rapidity in obtaining results, thus 

making it amendable for analysis even in large epidemiological settings. 

2.2.7. Bioinformatics in proteomics 

MS generally generates a large amount of numerical data and bioinformatics tools therefore are essential to match 

these MS data to protein, EST, and genome sequence databases. Thus, the role of bioinformatics is fundamental 

in order to reduce the analysis time and to provide statistically significant results. To process data efficiently, new 

software packages and algorithms are continuously being developed to improve protein identification, 

characterization and quantification in terms of high-throughput and statistical accuracy. Most search engines have 

been developed in academic laboratories and some of those have now been commercialized. Examples of useful 

Web sites and their search engines are www. 

proteometrics.com,http://prospector.ucsf.edu/,http://195.41.108.38/PepSeaIntro.html, www.mann.embl-

heidelberg.de/Services/PeptideSearch/Pep-tideSearchIntro.html,and www.matrix-science.com/;for a complete 

listing. 

 

2.3. Proteomic Techniques Offer New Tools for Plant Biotechnology 

The knowledge of key proteins that play crucial roles in the proper growth and development of a plant are critical 

to propel the biotechnological improvement of crop plants (Hossain and Komatsu, 2013). These proteins maintain 

cellular homeostasis under a given environment by controlling physiological and biochemical pathways. A search 

of the published research literature revealed that genomics and proteomics are the two major wheels that keep the 

discovery of novel genes rolling, which can eventually be placed into the pipeline for crop improvement programs. 

To increase crop productivity, genes and proteins that are responsible for stress tolerance and disease resistance 

have to be identified continuously. Advancements in MS-based proteomics platforms have been considered to be 

“New Genomics” because MS has become an indispensable tool for the investigation of the PTMs to proteins, and 

protein interactions. A specific advantage of proteomics over other “Omics” techniques is the capacity to reveal 

post-translational modifications (PTMs), which is a prerequisite to determine the functional impact of protein 

modification on crop plant productivity. Finally, crop proteomics is expected to become an essential part of 

integrated “Omics” approaches. Furthermore, the development of various advanced tools for bioinformatics and 

computational science are connecting proteomics to other “-omics,” and the physiological data are further opening 

up new methods for crop improvement studies via the signalling, regulatory, and metabolic networks underlying 

plant phenotypes (Froehlich et al., 2013). 

2.3.1. Two-Dimensional Maps of Different Plant Tissues 

Jacoby et al. (2013) published several articles in which an attempt was made to map proteomes of different plant 

tissues from rice and Arabidopsis. The proteins of the different tissues were separated by 2-DE. In line with this 

consensus, several plant proteomics studies have been published recently that have focused on specific sub cellular 
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proteomes or protein complexes such as the plasma membrane, roots, mitochondria, and chloroplasts. In addition, 

a few interesting studies appeared concerning the symbiosis between roots of legumes and nitrogen fixing bacteria 

(Jacoby et al., 2013). 

2.3.1.1. Organ Specific Proteome Analysis of a Biotic Stress Response in Crop Plants      

2.3.1.1.1. Proteomics of Leaf Photosynthesis and Senescence to Understand Crop Productivity 
Leaf photosynthesis is the main source of plant biomass influencing potential crop yield. Recently, Chu et al. (2015) 

analyzed changes in protein profiles upon the development of chlorophyll deficiency in Brassica napus leaves and 

provided new insights into the regulation of chlorophyll biosynthesis and photosynthesis in crops. Several studies 

have focused on the proteomics of leaf senescence, mainly on the investigation of nitrogen mobilization from 

leaves during leaf senescence (Avice and Etienne, 2014). Chloroplast contains up to 75% of leaf nitrogen in the 

form of Rubisco enzyme components in the stroma and complex of photo system II in the thylakoid membrane 

(Roberts et al., 2012). Advances in organelle proteomic studies integrated with large scale genomic approaches 

and determination of enzymes with proteolytic activity have addressed the complexity of chloroplast proteolytic 

machinery during leaf senescence and investigated different classes of senescence-associated proteases with 

unique physiological roles according to their expression profiles along the senescence progress (Roberts et al., 

2012). Glycolytic enzymes involved in sucrose synthesis are of particular interest with respect to crop yield, and 

have been identified by sub cellular proteomic studies of senescence, photosynthesis, and stress-responding 

processes in rice leaves (Zhang et al., 2011a). 

2.3.1.1.2. Xylem and Phloem Proteomics of Root-to-Leaf Signalling Pathways During Stress 

Maximizing crop yields also depends on the leaves receiving an optimal supply of nutrients from the root system 

via the xylem vessels. ). Xylem proteomic and secretomic studies have recently become one of the major areas of 

interest in understanding plant development and responses to environmental perturbations, and illustrated several 

types of xylem sap containing proteins that participate in cell wall development and repair process (Zhang et al., 

2014a), leaf senescence (Wang et al., 2012), a biotic stress responses (Alvarez et al., 2008), biotic stress defense 

mechanisms (Gonzalez et al., 2012), and intercellular and intracellular communication (Agrawal et al., 2010). 

Additional studies of protein and metabolite composition of xylem sap and apoplast in soybean (Glycine max) 

provide further investigation of expression profiles and signaling roles of corresponding proteomes, and ultimately 

reveal more root contributions to pathogenic and symbiotic microbe interactions, and root-to-shoot communication 

(Krishnan et al.,2011). Other proteomic studies were predominantly focused on the analysis of phloem sap 

exudates from agriculturally important plants oilseed rape (Froehlich et al., 2012), identifying several hundred 

physiologically relevant proteins and ribo nucleoprotein complexes. The phloem sap proteomes showed enhanced 

presence of proteins involved in redox regulation, defense and stress responses, calcium regulation, RNA 

metabolism and G-protein signalling. Some of the important insights into the operation of the sieve tube system 

were revealed through proteomics studies. 

2.3.1.1.3. Root Proteomics of Symbiotic Systems to Improve Legume Productivity 
The symbiosis between N-fixing bacteria and legumes results in formation of root nodules and is very important 

in agriculture. A number of proteomic studies have attempted to investigate mutual impacts between symbiotic or 

pathogenic bacteria and the root of host plant in the rhizosphere under a multitude of biotic and a biotic stresses 

from the soil (Knief et al., 2011). Differential plant and bacteroid responses to drought stress have been revealed 

by proteomic analysis two different groups reported protein expression studies in nitrogen fixing root nodules of 

soybean and white sweet clover, respectively (Reid et al., 2012). 2DE was also used to identify differentially 

expressed proteins during the symbiotic interaction between the bacterium Sinorhizobium meliloti strain 1021 and 

white sweet clover. Over 250 proteins were induced or up-regulated in the nodule, compared with the root, and 

over 350 proteins were down regulated in the bacteroid form of the rhizobia, compared with cultured cells. 

Bacteroid cells showed down-regulation of several proteins involved in nitrogen acquisition, indicating that the 

bacteroid were nitrogen proficient. Both studies are excellent examples of the potential of proteomics in plant 

symbiotic interactions (Molesini et al., 2013). 

2.3.1.1.4. Progress in Crop Proteomics for Stress Responses 
Stressful conditions often lead to delayed seed germination, reduced plant growth, and decreased crop yield. 

Komatsu and Hossain (2013) highlighted the need for organ-specific proteomic analyses to identify proteins that 

are commonly accumulated in organs under a wide range of a biotic stresses (Komatsu and Hossain, 2013). Jacoby 

et al. (2013) described the application of the emerging proteomic technology of multiplexed selective-reaction 

monitoring MS, which has increased accuracy and throughput, for enhancing these approaches and providing a 

clear method to rank the relative importance of the growing cohort of stress-responsive proteins. In addition to 

crops, proteomic techniques have been applied to the study of some plants that serve as model systems in plant 

science and several agriculturally important fruits (Chan, 2013) under a biotic and biotic stresses. 

Takahashi et al. (2013) examined responses to freezing stress, which causes serious problems for agricultural 

management, and found that the plasma membrane plays significant roles in signal perception and cellular 

homeostasis, indicating that plasma membrane proteins are the most important factors in determining the 
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environmental stress tolerance of plants. Salt stress severely decreases crop production and growth; however, 

certain crop cultivars show significant tolerance against the negative effects of salinity. Many salt-responsive 

proteins have been detected in major crops and are thought to increase resistance to salt stress. Hossain and 

Komatsu (2013) described the recent contributions of proteomic studies toward the understanding of heavy metal 

stress responses in plants, particularly the use of redox proteomic approaches for studying heavy metal-induced 

protein oxidation 

2.3.1.1.5. Post-translational modification 

Proteomics has the significant advantage of being able to discern not only changes in expression levels but also in 

PTMs. Analysis of a protein for PTM such as phosphorlylation and glycosylation are very important for 

understanding issues such as activity, stability, and turnover. 2-DE and MS is especially useful for the analysis of 

expressed proteins with PTM, such as alkylation, glycosylation, and phosphorlylation, which may be the most 

important regulatory proteins in a biological cell. Protein ubiquitination is a key regulatory mechanism that 

controls protein abundance, localization and activity. Several large-scale analyses of protein ubiquitination in 

plants have been reported (Mitsui et al., 2013). For example, in Arabidopsis, affinity purification using an anti-

ubiquity antibody and the subsequent use of MS/MS analysis has been performed to identify ubiquitinated proteins 

(Mitsui et al., 2013). 

2.3.1.1.6. Analyses of Food Quality, Safety and Nutritional Values 

The field of proteomics has been used to analyze the differences between the nutritional values of food crops 

through the analysis of their proteomes. Mitsui et al. (2013) reported that heat stress increased the expression of 

invertases in tomato fruits, thus increasing their sucrose content and producing sweeter tomatoes. Proteomics have 

investigated the reason that heat treatment for peach fruits will improve the peach fruit quality and shelf-life, and 

the reason was the differentially expressed proteins that were involved in fruit development and ripening (Zhang 

et al.,2011a). A combination of 2-DE and IgE reactive proteins using an allergic patient’s sera has been applied as 

an approach to characterize the allergencity of food proteins (Chan, 2013). Proteomic analysis of rice leaf, root, 

and seed showed the presence of many allergenic proteins in the seeds, which implicate the uses of proteomic 

analysis of foods for the presence of allergens (Aghaei and Komatsu, 2013). 

 

2.4. Challenges in Utilization of Proteomics Studies 

Certain disadvantages are limiting the use of proteomics. Proteins are dynamic and interacting molecules, and their 

changeability can make proteomic snapshots difficult. There is the need for a more sensitive analytical system and 

the absence of an effective method for large-scale data comparison (Petricoin, 2011). Unlike DNA sequencing, 

protein sequencing is a relatively costly and laborious process. The other challenge is that there are a few protein 

sequences available and if available they are either too short or highly conserved thus difficult to study variation 

(Seung et al., 2006). Within the proteome, the many observed layers of complexity begin with an RNA processing 

mechanism called alternative splicing in which a single gene can produce multiple versions of a protein (Roberts 

et al., 2012). Post translational modifications are also another source of protein variation. 

 

3. Summary and Conclusion  
Proteomics has emerged as an indispensable methodology and will remain to be one of the fastest growing areas 

in research for large scale protein analysis in functional genomics. Proteomics is a useful and powerful tool for 

investigating protein changes induced by various conditions. The global scale analysis of proteins is expected to 

yield more direct understanding of function and regulation than analysis of genes. Gel-based 2-DE proteomic 

approaches combined with gel-free MS-based quantitative proteomic techniques have been widely used for crop 

proteome analysis. The complex mixtures of proteins with the dynamic range of protein concentrations in plant 

cells have been analyzed more in-depth using a combination of separation techniques based on sub cellular 

proteomics in different stress responding organs and tissues. The recent proteomic studies have contributed to 

elucidation of complex relationship between stress tolerance and crop productivity, which would enable the 

development of novel breeding strategies resulting in an increase in crop productivity and environmental 

performance. 

 

4. Future line of work 

The present technological achievements are well suited for high throughput screening of proteomic states. Yet, 

automation of the various steps of proteomic procedures, e.g. cell disruption, 2DE-separation, peptide generation, 

MS identification and data interpretation are far beyond reality. However, future developments may enable faster 

and more sensitive proteomics studies especially on chips or microarray techniques. To meet the current challenges 

of food insecurity, genes and proteins that control crop architecture and/or stress resistance in a wide range of 

environments will need to be identified to facilitate the biological improvement of crop productivity; however, 

proteomics alone cannot provide all the information required for understanding cellular processes. Therefore, 

complementary approaches in genomics, metabolomics and bioinformatics will have to be used together with 
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proteomics to permits a more holistic view of biological systems and their alterations in disease, so that the 

maximum benefit can be realized. As a result, systems biology approaches will continue to detect connections 

between broad cellular functions and pathways of biochemical and genetic analysis of the biological system in 

questions. 

 

ACKNOWLEDGMENT 

I would like to express my sincere gratitude to my advisor Gizachew Haile (PhD) for his intellectual and 

professional guidance and commitment, follow ups and tireless efforts in giving advice throughout the period of 

this study. 

 

5. Reference 

Aghaei, K.and Komatsu, S., 2013. Crop and medicinal plants proteomics in response to salt stress. Plant Sci. 4:8 

10.3389. 

Agrawal, G. K., Sarkar, A., Righetti, P. G., Pedreschi, R., Carpentier, S. and Wang, T., 2013. A decade of plant 

proteomics and mass spectrometry: translation of technical advancements to food security and safety 

issues. Mass Spectrom. Rev. 32, 335–365.  

Avice, J. C. and Etienne, P., 2014. Leaf senescence and nitrogen remobilization efficiency in oilseed rape 

(Brassica napus L.). J. Exp. Bot. 65, 3813–3824.  

Buts, K., Michielssens, S., Hertog, M. L., Hayakawa, E., Cordewener, J. and America, A. H., 2014.  Improving 

the identification rate of data independent label free quantitative proteomics experiments on non-model 

crops: a case study on apple fruit. J. Proteomics 105, 31–45.  

Chan, Z., 2013. Proteomic responses of fruits to environmental stresses. Plant Sci. 3:311 

10.3389/fpls.2012.00311 (PMC free article) (PubMed) (Cross Ref). 

Chandana, N., Harithapavani, K., Deepa, R.N. and Maduri, J., 2013. A Review on Liquid Chromatography 

Tandem Mass Spectroscopy. 

Chu, P., Yan, G. X., Yang, Q., Zhai, L. N., Zhang, C. and Zhang, F. Q., 2015. ITRAQ-based quantitative 

proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. 

J. Proteomics 113, 110–126.  

Emam, M. M., Khattab, H.E., Helal, N., M. and Deraz, A.E., 2014.  Effect of selenium and silicon on yield 

quality of rice plant grown under drought stress. Aust J Crop Sci 8:596–605. 

Froehlich, A., Gaupels, F., Sarioglu, H., Holzmeister, C., Spannagl, M. and Durner, J., 2012. Looking deep inside: 

detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. 

Plant Physiol. 159, 902–914.  

Geho, D.H, Lahar, N. Ferrari, M. Petricoin, E.F. and Liotta, LA., 2010. Opportunities for nanotechnology-based 

innovation in tissue proteomics. Biomed. Micro devices, 2; 6: 231–9. 

Gonzalez, J. F., Degrassi, G., Devescovi, G., De Vleesschauwer, D., Höfte, M.and Myers, M. P., 2012. A 

proteomic study of Xanthomonas oryzae in rice xylem sap. J. Proteomics 75, 5911–5919.  

Hinsby, A.M., Olsen J.V., Bennett K.L., 2003. Molecular and Cell Proteomics 2: 29-36. 

Holman, J. D., Dasari, S. and Tabb, D. L., 2013. Informatics of protein and posttranslational modification 

detection via shotgun proteomics. Methods Mol. Biol.1002, 167–179.  

Hossain, Z. and Komatsu, S., 2013. Contribution of proteomic studies towards understanding plant heavy metal 

stress response. Front. Plant Sci. 3:310.  

Jacoby, R. P., Millar, A. H. and Taylor, N. L., 2013b. Application of selected reaction monitoring mass 

spectrometry to field-grown crop plants to allow dissection of the molecular mechanisms of a biotic 

stress tolerance. Front. Plant Sci.4:20.  

Junjie, H., Christof, R. and Natalian, V., 2015. Advances in plant proteomics toward improvement of crop 

productivity and stress resistance. 

Kamal, A. H. M., Rashid, H., Sakata, K. and Komatsu, S., 2015. Gel-free quantitative proteomic approach to 

identify cotyledon proteins in soybean under flooding stress. J. Proteomics 112, 1–13.  

Kim, S.G., Wang, Y., Lee, K.H., Park, Z.Y., Park, J., Wu, J., Kwon, S.J. and Lee, Y.H., Agrawal, G.K., Rakwal, 

R., 2013. In-depth insight into in vivo a poplastic secretome of rice-Magnaporthe oryzae interaction.  J.  

Proteomics 78, 58-71. 

Knief, C., Delmotte, N. and Vorholt, J. A., 2011. Bacterial adaptation to life in association with plants - A 

proteomic perspective from culture to in situ conditions. Proteomics 11, 3086–3105.  

Krishnan, H. B., Natarajan, S. S., Bennett, J. O. and Sicher, R. C., 2011. Protein and metabolite composition of 

xylem sap from field-grown soybeans (Glycine max). Planta, 233, 921–931.  

Lahm, H.W. and Lagen, H., 2000. Mass spectrometry: a tool for the identification of proteins separated by gels. 

Electrophoresis 21:2105–14. 

Lodha, T.D., Hembram, P.and Basak, N., 2013. A  Successful  Approach  to  Understand  the from phylloclade  



Innovative Systems Design and Engineering                                                                                                                                     www.iiste.org 

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)  

Vol.7, No.6, 2016 

 

15 

of  rice  leaves  free  from  cytosolic proteins: Application  to  study  rice-Magnaporthe  Oryzae 

interactions. Physiol. Mol. Plant Pathol. 88, 28-35. 

Mann, M., Hendrickson, R.H. and Pandey, A., 2001. Analysis of proteins and proteomes by mass spectrometry. 

Annu. Rev. Bio chem. 70:437–73. 

Mitsui, T., Shiraya, T., Kaneko, K. and Wada, K., 2013. Proteomics of rice grain under high temperature stress. 

Plant Sci. 4:36. 

Molesini, B., Cecconi, D., Pii, Y. and Pandolfini, T., 2013. Local and systemic proteomic changes in Medicago 

truncatula at an early phase of Sinorhizobium meliloti infection. J. Proteome Res. 13, 408–421.  

Petricoin, E.F, Zoon, K.C, Kohn, E.C, Barrett, J.C. and Liotta, L.A., 2011. Clinical proteomics: Translating bench 

side promise into bedside reality, 1: 683–95. 

Reid, D.E., Hayashi, S., Lorenc, M., Stiller, J., Edwards, D., Gresshoff, P.M., 2012. Identification of systemic 

responses in soybean nodulation by xylem sap feeding and complete transcriptome sequencing reveal a 

novel component of the auto regulation pathway. Plant Biotechnology, 10: 680–689 

Roberts, I.N., Caputo, C., Criado, M. V. and Funk, C., 2012. Senescence associated proteases in plants. Physiol. 

Plant. 145, 130–139.  

Seung, Y. R., Julie, D. and Dong, X., 2006. Bioinformatics and its Applications in Plant Biology. Annual Review 

of Plant Biology. 57: 335-360. 

Smith, L. M. and Kelleher, N.  L., 2013.  A single term describing protein complexity. Nature methods, 10, 186-

187. 

Takahashi, D., Li, B., Nakayama, T., Kawamura, Y. and Uemura, M., 2013. Plant plasma membrane proteomics 

for improving cold tolerance. Front. Plant Sci. 4:90  

Wilkins, M.R., Sanchez, J.C., Gooley, A.A., Appel, R.D., Humphery- Smith, I., Hochstrasser, D.F. and Williams, 

K.L., 1995. Biotechnology and Genetic Engineering Reviews, 13: 19-50. 

Wu, C., Shi, T., Brown, J. N., He, J., Gao, Y. and Fillmore, T. L., 2014b. Expediting SRM assay development 

for large-scale targeted proteomics experiments. J. Proteome Res. 13, 4479 - 4487.  

Yang, Y., Hu, M., Yu, K., Zeng, X. and Liu, X., 2015. Mass spectrometry-based proteomic approaches to study 

pathogenic bacteria-host interactions.  Protein Cell, 6, 265-274. 

Zhang, L., Yu, Z., Jiang, L., Jiang, J., Luo, H. and Fu, L., 2011a. Effect of post-harvest heat treatment on proteome 

change of peach fruit during ripening. J. Proteomics, 74, 1135–1149. 

Zhang, Z., Xin, W., Wang, S., Zhang, X., Dai, H. and Sun, R., 2014a. Xylem sap in cotton contains proteins that 

contribute to environmental stress response and cell wall development. Funct. Integr. Genomics, 5:17–

26.  

 

 

 

 


