Results with Random Fuzzy Metric Spaces

Sharad Gupta¹ Ramakant Bhardwaj² Kamal Choubey³ 1.Research Scholar, AISECT University Bhopal 2.Department of Mathematics, TIT Bhopal 3.Department of Mathematics, Govt .M.V.M. Bhopal

Abstract

In this paper we obtain some fixed point results in random fuzzy metric space of two mappings. **Keywords:** Fixed point, Random Fuzzy metric space. **Mathematical Subject Classification**: 45H10, 54H25.

Introduction and Preliminaries

The concept of fuzzy metric space or a fuzzy set is introduced by Zadeh in 1965, Some times for the measurement of an ordinary length, it proves the concept of a fuzzy metric space. The author divides the results in two groups, in which a set X maps on fuzzy metric space defines the totality of all fuzzy points of a set and also the distance between objects is fuzzy and the objects together may or may not be fuzzy. By this the fuzzy objects has a numerical distances. Later then the concept of fuzzy metric space is introduced by Kramosil and Michalek it proves the the contraction principles.

Definition 1.1. An algebraic structure (X, M, *) is called a fuzzy metric space if a non-empty set X, * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$, satisfying the following conditions for each $x, y, z \in X$ and each t and s > 0,

- (1) M(x, y, t) > 0,
- (2) M(x, y, t) = 1 if and only if x = y,
- (3) M(x, y, t) = M(y, x, t),
- (4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$
- (5) $M(x, y, .): (0, \infty) \rightarrow [0,1]$ is continuous.

Let (X, M, *) be a fuzzy metric space. for t > 0 and the open ball B(x, r, t) with center $x \in X$ radius 0 < r < 1 is defined as

$$B(x,r,t) = \{y \in X : M(x,y,t) > 1-r\}$$

A subset $A \subset X$ is called open If for each $x \in A$, there exist t > 0 and 0 < r < 1 such that $B(x, r, t) \subset A$. Let τ denotes the family of all open subsets of X. Then is called the topology on X induced by the fuzzy metric M. This topology is Hausdorff and first countable. A subset A of X is said to be F-bounded if there exist t > 0 and 0 < r < 1 such that M(x, y, t) > 1 - r for all $x, y \in A$.

Lemma 1.2: Let (X, M, *) be a fuzzy metric space. Then for all $x, y \in A$. we have a non decreasing function M(x, y, t) with respect t.

Definition 1.3: Abinary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t- norm if it satisfies the following conditions

- (1) * is associative and commutative,
- (2) * is continuous,
- (3) a * 1 = a for all $a \in [0,1]$,
- (4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0,1]$,

Two typical examples of continuous t-norm are a * b = ab and $a * b = min\{a, b\}$.

Definition 1.4: Let (X, M, *) be a fuzzy metric space. M is said to be continuous on $X^2 \times (0, \infty)$ If

$$\lim_{n \to \infty} M(x_n, y_n, t_n) = M(x, y, t)$$

Whenever a sequence $\{(x_n, y_n, t_n)\}$ in $X^2 \times (0, \infty)$ converges to a point $(x, y, t) \in X^2 \times (0, \infty)$, i.e.

$$\lim_{n \to \infty} M(x_n, x, t) = \lim_{n \to \infty} M(y_n, y, t) = 1 \text{ and } \lim_{n \to \infty} M(x, y, t_n) = M(x, y, t)$$

Lemma 1.5: Let (X, M, *) be a fuzzy metric space. Then M is continuous function on $X^2 \times (0, \infty)$.

Definition 1.6:Let f and g be self –mappings on a fuzzy metric space (X, d). Then the mappings are said to be weakly compatible if they commute at their coincidence point, that is, fx = gx implies that fgx = gfx.

Definition 1.7: A sequence $\{x_n\}$ in a fuzzy metric space (X, M, *) is said to be convergent to a point $x \in X$ if $\lim_{n \to \infty} M(x_n, x, t) = 1$. The space (X, M, *) is said to be complete If every Cauchy sequence in X is convergent in X.

Definition 1.8: A fuzzy metric space (X, M, *) is said to be precompact if for each 0 < r < 1 and each t > 0 there is a finite subset $A \in X$ such that $X = \bigcup_{a \in A} B(a, r, t)$. A fuzzy metric space (X, M, *) is called compact if (X, τ) is a compact topological space. Also it is clear that every compact set is closed F-bounded.

Definition 1.9: Throughout this paper (Ω, Σ) denotes a measurable space. $\xi : \Omega \to X$ is a measurable selector. X is any non empty set. \star is continuous t-norm, **M** is a fuzzy set in $X^2 \times [0, \infty)$. A binary operation $*:[0,1]x[0,1] \to [0,1]$ is called a continuous t-norm if ([0,1],*) is an abelian Topological monodies with unit 1 such that a $*b \ge c * d$ whenever

 $a \geq \ c \ and \ b \geq d \ , \ \ For \ all \ a, \ b, \ c, \ d, \ \in \ [0, \ 1]$

Example of t-norm are a * b = a b and $a * b = min \{a, b\}$

Definition1.9 (a): The 3-tuple (X, M, Ω *) is called a **Random fuzzy metric**

space, if X is an arbitrary set,* is a continuous t-norm and M is a fuzzy set in $X^2 \ge [0,\infty)$ satisfying the following conditions: for all

$$\xi x, \xi y, \xi z \in X \text{ and } s, t > 0,$$

 $(RFM-1): M(\xi x, \xi y, 0) = 0$

 $(RFM-2): M(\xi x, \xi y, t) = 1, \forall t \succ 0, \Leftrightarrow x = y$

 $(RFM-3): M(\xi x, \xi y, t) = M(\xi y, \xi x, t)$

 $(RFM-4): M(\xi x, \xi z, t+s) \ge M(\xi x, \xi y, t) * M(\xi z, \xi y, s)$

$$(RFM-5): M(\xi x, \xi y, \xi a): [0,1] \rightarrow [0,1]$$
 is left continuous

In what follows, (X, M, Ω ,*) will denote a random fuzzy metric space. Note that M (ξx , ξy , t) can be thought of as the degree of nearness between ξx and ξy with respect to t. We identify $\xi x = \xi y$ with M (ξx , ξy , t) = 1 for all t > 0 and M (ξx , ξy , t) = 0 with ∞ .In the following example, we know that every metric induces a fuzzy metric.

Example Let (X, d) be a metric space.

Define a * b = a b, or $ab = min \{a, b\}$) and for all $x, y \in X$ and t > 0,

$$M(\xi x, \xi y, t) = \frac{t}{t + d(\xi x, \xi y)}$$

Then (X, M, $\Omega_{,}^{*}$) is a fuzzy metric space. We call this random fuzzy metric M induced by the metric d the standard fuzzy metric.

Definition1.9 (b): Let $(X, M, \Omega, *)$ is a random fuzzy metric space.

(i) A sequence $\{\xi x_n\}$ in X is said to be convergent to a point $\xi x \in X$,

$$\lim M(\xi x_n, \xi x, t) = 1$$

(ii) A sequence $\{\, {\boldsymbol{\xi}}\, x_n\}$ in X is called a Cauchy sequence if

$$\lim_{n\to\infty} M(\xi x_{n+p},\xi x_n,t) = 1, \forall t \succ 0 \text{ and } p \succ 0$$

(iii) A random fuzzy metric space in which every Cauchy sequence is convergent is said to be Complete.

Let (X.M,*) is a fuzzy metric space with the following condition.

(RFM-6) $\lim M(\xi x, \xi y, t) = 1, \forall \xi x, \xi y \in X$

. Definition1.9 (c): A function M is continuous in fuzzy metric space iff whenever

$$\xi x_n \to \xi x, \xi y_n \to \xi y \Rightarrow \lim_{n \to \infty} M(\xi x_n, \xi y_n, t) \to M(\xi x, \xi y, t)$$

Definition1.9 (d): Two mappings A and S on fuzzy metric space X are weakly commuting iff M (AS ξ u, SA ξ u, t) \geq M (A ξ u, S ξ u, t)

Main Results

- **Theorem 2.1:** Let R and S be self-maps of on a F-bounded Random fuzzy metric space (X, , N, *) satisfying (i) $R(X) \subseteq S(X)$, S(X) is complete. If (R,S) is a weakly compatible pair.
 - (ii) N($R\xi x, R\xi y, u$)

$$\geq \varphi \left[\min \left\{ \begin{aligned} N(S\xi x, S\xi y, u), N(S\xi x, R\xi x, u), N(S\xi y, R\xi y, u), N(S\xi x, R\xi y, u) \\ N(S\xi y, R\xi x, u), & \frac{N(S\xi x, R\xi x, u) + N(S\xi y, R\xi y, u)}{1 + N(S\xi x, S\xi y, u)}, \\ \frac{N(S\xi x, R\xi x, u) + N(S\xi x, R\xi y, u), N(S\xi y, R\xi x, u) + N(S\xi y, R\xi y, u)}{1 + N(S\xi x, R\xi y, u), N(S\xi y, R\xi x, u) + N(S\xi y, R\xi x, u))} \right\} \right]$$

 $\forall \ \xi x, \xi y \in X \ and \ \forall \ u > 0, where \ \varphi : [0,1] \rightarrow [0,1] \ is \ continuous \ and \ monotonically increasing \ such \ that \ \varphi(t) > t, \forall \ t \in [0,1).$

Then R and S have a unique common random fixed point in X. **Proof:** Let $\xi f_0 \in X$ from $R(X) \subseteq S(X)$, there exist a sequence $\{\xi f_n\}$ in X such that $R\xi f_n = S\xi f_{n+1} = \xi E_n$ for some n Case (i) Suppose $\xi E_{n+1} = \xi E_n$ for some n, Then $R\xi z = S\xi z$, where $\xi z = \xi f_{n+1}$ Denotes $K = R\xi z = S\xi z$ Since (R,S) is a weakly compatible pair, we have $R_k = S_k$ Therefore from (ii) we have $N(R_k, \xi k, \xi u) = N(\xi R_k, \xi R_z, u)$ $\geq \varphi \left[\min \left\{ \begin{array}{l} N(\xi S_{k}, \xi S_{z}, u), N(\xi S_{k}, \xi R_{k}, u), N(\xi S_{z}, \xi R_{z}, u), N(\xi S_{k}, \xi R_{z}, u) \\ N(\xi S_{z}, \xi R_{k}, u), \frac{N(\xi S_{k}, \xi R_{k}, u) + N(\xi S_{z}, \xi R_{z}, u)}{1 + N(\xi S_{k}, \xi S_{z}, u)}, \\ \frac{N(\xi S_{k}, \xi R_{k}, u) + N(\xi S_{k}, \xi R_{z}, u), N(\xi S_{z}, \xi R_{k}, u) + N(\xi S_{z}, \xi R_{z}, u)}{1 + N(\xi S_{k}, \xi R_{z}, u), N(\xi S_{z}, \xi R_{k}, u) + N(\xi S_{z}, \xi R_{z}, u)} \right\} \right]$ $= \varphi[min\{N(\xi R_k, \xi k, u)\}]$ $> \{N(\xi R_k, \xi k, u)\}, iF \{N(\xi R_k, \xi k, u)\} < 1$ Hence $\xi R_k = \xi k$ Thus $\xi S_k = \xi R_k = \xi k$ If v is another common fixed point of Rand S, Then $N(\xi k, \xi v, u) = N(\xi R_k, \xi R_v, u)$ $= \varphi[min\{N(\xi k, \xi v, u), 1, 1, \}N(\xi k, \xi v, u), N(\xi k, \xi v, u), 1, 1\}]$ $= \varphi[N(\xi k, \xi v, u)]$ $> [N(\xi k, \xi v, u)]$ ifN(k, v, u) < 1Hence $\xi k = \xi v$. Thus ξk is the unique common fixed point of *S* and *R*. Case (ii) Assume that $\xi E_{n+1} \neq \xi E_n \forall n \in N$, $let \xi \beta_n(u) = inf\{N(\xi E_i, \xi E_j, u); i > n, j > n\}$ $\forall u > 0$. Then $\{\xi \beta_n(u)\}$ is a monotonically increasing sequence of real number betweeen 0 and 1 for all u > 0. Hence $\lim \xi \beta_n(u) = \xi \beta_n(u)$ for some $0 \le \xi \beta_n(u) \le 1$ for any $n \in N$ and integer $i \geq n$,

 $j \ge n$, we have $N(\xi E_i, \xi E_j, u) = N(R\xi x_i, R\xi x_j, u)$

$$\geq \varphi \left[\min \left\{ \begin{array}{l} N(\xi E_{i-1}, \xi E_{j-1}, u), N(\xi E_{i-1}, \xi E_{i}, u), N(\xi E_{j-1}, \xi E_{j}, u), N(\xi E_{i-1}, \xi E_{j}, u) \\ N(\xi E_{j-1}, \xi E_{i}, u), \frac{N(\xi E_{i-1}, \xi E_{i}, u) + N(\xi E_{j-1}, \xi E_{j}, u)}{1 + N(\xi E_{i-1}, \xi E_{j-1}, u)}, \\ \frac{N(\xi E_{i-1}, \xi E_{i}, u) + N(\xi E_{i-1}, \xi E_{j}, u), N(\xi E_{j-1}, \xi E_{i}, u) + N(\xi E_{j-1}, \xi E_{j}, u)}{1 + N(\xi E_{i-1}, \xi E_{j}, u), N(\xi E_{j-1}, \xi E_{i}, u) + N(\xi E_{j-1}, \xi E_{i}, u)} \right\} \right\}$$

 $\geq \varphi[\xi\beta_{n-1}(u)], since \ \varphi \ is \ monotonic \ increasing$ Hence $\xi \ \beta_n(u) \geq \varphi[\xi\beta_{n-1}(u)]$ Let $\xi\beta_n(u) \geq \varphi[\xi\beta_{n-1}(u)]$ then at $n \to \infty$ we get

 $\xi\beta_n(u) \ge \varphi\xi\beta_n(u) > \xi\beta_n(u) \text{, if } \xi\beta_n(u) < 1$

Hence $\xi \beta_n(u) = 1$ so that $\lim \xi \beta_n(u) = 1$

Thus for given for given $\epsilon > 0, \exists n_0 \in N$ such that $\xi \beta_n(u) > 1 - \epsilon, \forall n > n_0$. Therefore $n > n_0, m \in N$ we have

$$M(\xi E_n, \xi E_{n+m}, u) > 1 - \epsilon$$

Hence $\{\xi E_n\}$ is a Cauchy sequence in X. Since S(X) is Complete, it follows that $\xi E_n \to \xi z$ for some $z \in S(X)$. Hence there exists $w \in X$ such that z = SwNow,

$$N(\xi R_{w}, \xi R x_{n}, u) \geq \varphi \left[\min \left\{ \begin{array}{l} N(\xi S_{w}, \xi S x_{n}, u), N(\xi S_{w}, \xi R_{w}, u), N(\xi S x_{n}, \xi R x_{n}, u), N(\xi S_{w}, \xi R x_{n}, u) \\ N(\xi S x_{n}, \xi R_{w}, u), \frac{N(\xi S_{w}, \xi R_{w}, u) + N(\xi S x_{n}, \xi R x_{n}, u)}{1 + N(\xi S_{w}, \xi S x_{n}, u)}, \\ \frac{N(\xi S_{k}, \xi R_{k}, u) + N(\xi S_{k}, \xi R_{z}, u), N(\xi S_{z}, \xi R_{k}, u) + N\xi(S_{z}, \xi R_{z}, u)}{1 + N(\xi S_{w}, \xi R x_{n}, u), N(\xi S x_{n}, \xi R_{w}, u) + N(\xi S x_{n}, \xi R_{w}, u)} \right\} \right]$$

Let $\lim_{n \to \infty} we get$

(i)
$$N(R\xi x, R\xi y, u) \ge \varphi \left[\min \left\{ \begin{array}{c} N(\xi y, R\xi x, u), \frac{N(\xi x, R\xi x, u) + N(\xi y, R\xi y, u)}{1 + N(x, y, u)}, \\ \frac{N(\xi x, R\xi x, u) + N(\xi x, R\xi y, u), N(\xi y, R\xi x, u) + N(\xi y, R\xi y, u)}{1 + N(\xi x, R\xi y, u), N(\xi y, R\xi x, u) + N(\xi x, \xi y, u) N(\xi y, R\xi x, u)} \right\} \right\}$$

$$\forall \xi x, \xi y \in X \text{ and } \forall u > 0, where \ \varphi : [0,1] \rightarrow [0,1] \text{ is continuous and monotonically}$$

increasing such that $\varphi(t) > t, \forall t \in [0,1)$.

Then R has a unique common fixed point in X.

Now we proves the following theorem in compact fuzzy metric spaces by using the methodology of Shih and Yeh **Theorem 2.3:** Let $(X, \Omega, N, *)$ be a compact random fuzzy metric space $S, R : X \to X$ be satisfying:

- (i) R is continuous, SR = RS and
- (ii) $N(R\xi x, R\xi y, u) > min\{N(\xi x_1, \xi y_1, u); \xi x_1, \xi y_1 \in Q(x) \cup Q(y)\}$ For all $\xi x, \xi y \in X$ with $\xi x \neq \xi y, \forall u > 0$ where $Q(\xi x) = \{g\xi x : g\xi \in \tau\}, \tau$ being the semi group of self maps on X generated by $\{S, R, I\}, (I \text{ is the Identity map on } X)$. Then S and R have a unique common fixed point $z \in X$.

Proof: We know that $R^n X$ is Compact and $R^{n+1}X \subseteq R^n X$ for n = 1, 2, 3, ----

Let $X_0 = \bigcap_{n=1}^{\infty} R^n X$, X_0 is a non empty compact subset of X, $RX_0 = X_0$ and $SX_0 \subseteq X_0$.

Since N is continuous on $X_0^2 \times (0, \infty)$ and X_0 is compact it follows that for each u > 0, N(.,.,u) has a minimum value. Hence $\exists \xi v_1, \xi v_2 \in X_0$ such that

$$N(\xi v_1, \xi v_2, u) = \inf\{N(\xi x, \xi y, u); \xi x, \xi y \in X_0\} \text{ For each } u > 0.$$

since $TX_0 = X_0 \exists \xi y_1, \xi y_2 \in X_0$ such that $R\xi y_1 = \xi v_1$ and $R\xi y_2 = \xi v_2$, suppose $\xi y_1 \neq y_2$ Then from (ii) we have

$$N(\xi v_1, \xi v_2, u) = N(R\xi y_1, R\xi y_2, u)$$

$$> min\{N(\xi x, \xi y, u); \xi x, \xi y \in Q(\xi y_1) \cup Q(\xi y_2)\}$$

$$\geq \mathrm{N}(\xi v_1, \xi v_2, u)$$

It is a contradiction. Hence $\xi y_1 = \xi y_2$ and $\xi v_1 = \xi v_2$.

Hence X_0 is a singleton set, say $\{v\}$ Thus v is a common fixed point of S and R.

Corollary 2.4: Let R be a continuous self map on a compact random fuzzy metric space $(X, \Omega N, *)$ satisfying

 $\forall \xi x, \xi y \in X \text{ with } \xi x \neq \xi y \text{ and for all } u > 0.$ Then R has a unique common fixed point in X.

References

- A. Razani, R. Saadati, and H. Adibi, "A common fixed point theorem in \mathcal{L} -fuzzy metric spaces", Chaos, 1. Solitons and Fractals, Chaos(2006), 01-023.
- A. George and P. Veeramani, "On some results in fuzzy metric space", Fuzzy sets Syst., 64(1994), 395-399. 2.
- B. Singh and S. Jain,"Semi compatibility and fixed point theorems in fuzzy metric space using implicit 3. relation", Internat. J. Math.Math.Sci.16(2005),2617-2629.
- 4. B. Singh and S. Jain, "Semi compatibility, compatibility and fixed point theorems in fuzzy metric space", J. Chung Cheong Math. Soc., 18(1)(2005), 1-22.
- 5. B. Singh and M.S. Chauhan, "Common Fixed points of compatible maps in fuzzy metric spaces", Fuzzy Sets Syst., 115(2000), 471-475.
- 6. G. Jungck and B.E. Rhoades, "Fixed points for set valued functions without continuity", Indian J. Pure Appl. Math., 29 (3)(1998), 227-238.
- 7. H. K. Pathak, Y. J. Cho and S. M. Kang, "Remarks on r-Weakly commuting mappings and common fixed point theorems", Bull. Korean Math. Soc. 34(2)(1997)247-257.
- 8. I. Kramosil and J. Michalek, "Fuzzy metric and statistical metric spaces", Kybernetica 11 (1975), 326-334.
- J. Rodrigues Lopez and S. Romaguera, "The Hausdroff Fuzzy metric on compact sets", Fuzzy sets Sys. 147(2004), 273-283.
- 10. L. A. Zadeh, "Fuzzv sets", Inform and control, 8(1965), 338-353.
- 11. M. Imdad Javid Ali, Jungck's, "Common fixed point theorem and E.A property", Acta Math. Sinica 24(1) (2008) 87-94.
- 12. M. Grabiec, "Fixed points in Fuzzy metric spaces", Fuzzy Sets Syst., 27(1988), 385-389.
- 13. M.H. Shih and C.C. Yeh. "On fixed point theorems of contractive type", Proc.Amer. Math. Soc. 85(1982), 465-468.
- 14. O. Hahzic and E. Pap, "A fixed point theorem for multi valued mappings in probabilistic metric spaces and an application in fuzzy metric spaces", Fuzzy sets Syst. 127(2002), 333-344.
- 15. R. P. Pant, "Common fixed points of non-commuting mappings", J. Math. Anal. Appl. 188(1994) 436-440.
- 16. R. P. Pant, "A common fixed point theorem under a new condition", Indian J. Pure Appl. 188 (1994) 436-440.
 17. R. Vasuki, "Common fixed points for R-weakly commuting maps in fuzzy metric spaces", Indian J. Pure Appl. Math. 30 (1999) 419-423.
- 18. R. Chugh and S. Kumar, "Common fixed point theorems in fuzzy metric spaces", Bull. Cal. Math. Soc. 94(1)(2002), 17-22.
- 19. S. Kumar and S. K. Garg, "Expansion mapping theorems in metric spaces", Int. J. Contemp. Math. Sci. 4(2009)1749-1758.
- 20. S.N. Sharma, S. N. Mishra and S.L. Singh, "Common fixed points of maps on fuzzy metric spaces", Int. J. Math. Math. Sci. 17(1994), 253-258.
- 21. V. Gregori and S. Romaguera, "Some properties of fuzzy metric spaces", Fuzzy Sets Syst. 115(2000), 485-489.
- 22. Volker, Kratschmer, "A unified approach to fuzzy-random-variables" Seminar notes in Statistik and Oonometrie Fachbereich Wirtschaftswissenschaft, Universitat des Saarlandes Saarbrucken, Germany, 1998, pp. 1-17.
- 23. Y. J. Cho, "Fixed points in fuzzy metric spaces", J. Fuzzy Math., 5(1997), 949-962.