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Abstract 

The complex dynamic behaviors of air assisted pesticides spraying, especially inter-droplets interactions as well 

as effects of prevailing surrounding fluid environment before and after the spray breakup makes development of 

an ideal sprayer unattainable. Moreover, plants’ canopy architectures are sophisticated mainly due to variations in 

features’ orientation amongst species. A prior insight of the sprayer’s performance behavior at design phase can 

significantly help in avoiding unanticipated future failures. This situation has recently, inevitably paved way for 

the application of numerical analysis such as Computational Fluid Dynamic (CFD) modeling as a robust design 

tool. Furthermore, movement of spray droplets from the generator to the targets involve fluid flows, heat transfer 

and mass flow which are the principle fields in CFD simulation of transport phenomena. As the droplets travel, 

the surrounding environment is likely to interfere with their physical and chemical properties. The concern to fully 

utilize the technology has nowadays not only drawn the attention of manufacturing industry but has also captured 

the interests of researchers. Previous applications of CFD modeling have demonstrated its potential to ease the 

challenges of cost and time consumption that would have been encountered in physical experimental trials tests. 

Nevertheless, developing a standard ideal model still remains unattainable. Most researchers have developed 

simple model mainly of Lagrangian approach whose applications have primarily been on open-fields spraying 

despite the situation still remaining far underway. This paper gives a state-of-art review of the application of CFD 

modeling in air atomized pesticide spraying with an aim of highlighting future research needs. 
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1. Introduction 

The application of atomized spraying in crop pest control in recent years has been widely spreading in outdoor 

crop protection and gradually gaining popularity in greenhouse farming especially in developed countries. The 

technique has lately proven potentially effective in improving spray droplets deposition while reducing drift. 

Previous research reveals that air assisted pesticide spraying; improve pesticide distribution, lower environmental 

degradation that is primarily caused by of off-target deposition and evaporation of tiny droplets, reduce chemical 

losses to the soil as well as lower healthy risk exposure especially to workers in controlled environments such as 

in greenhouses. Unfortunately, the dynamic behavior of the technique is sophisticated especially the inter-droplets 

and resultant effects of the prevailing surrounding fluid fields before and after the spray breakup. A keen 

understanding of optimum sprayer’s parameter settings and their corresponding performance is therefore 

paramount; otherwise the droplets might disintegrate further into small droplets which are more susceptible to 

evaporation (Bayata & Bozdogan, 2005) especially on subjection to extreme prevailing environmental condition. 

The challenge remains on how to effectively predict the performance of the sprayer as early as at its design phase 

before releasing it to the market. Furthermore, the conventional use of physical experiment trials have proven to 

be time consuming, expensive or inefficient and to some extent unachievable. To curb the challenge, numerical 

analysis such as CFD modeling has widely been a useful tool that effectively projects the performance of the 

sprayer at its preliminary development phases. However, for reliable simulation results, physical experiment trials 

data has to be used as initial condition data inputs to compliment the simulation process (Garcia-Ramos et al.,2012). 

CFD modeling has a proven history as a simulation tool whose technique is utilized to simulate, analyze and 

optimize engineering designs (In-Bok Lee et al., 2013; Xu et al., 1998 ; Dekeyser, et al., 2013; Melese et al., 2010). 

It uses computer and applied mathematics to model fluid flow situations, heat, mass and momentum transfer (Xia 

& Sun, 2002; Lee et al., 2013; Sazhin, 2009; Date, 2005; Endalew et al., 2006; Andalew et al., 2009). Moreover, 

it takes the advantage of its ability to incorporate relative complex systems such as the sprayer’s nozzle 

characteristics (Ellis, 2010; Sidahmed et al., 2005) to predict the performance of a new design before its finally 

manufactured (Lee et al., 2013; Schaldach et al., 2000). The conspicuous results obtained through simulation gives 

reliable information that can be used in making good design decision as well as in project planning. In recent years, 

numerous CFD models coupled to commercial code such as FLUENT (inc. Lebanon, USA) code, have been used 

in research to simulate the performance of air assisted pesticide sprayers during and after their development phases. 

Keen focus has mostly been on droplets movement, airflow velocity after dispession from the sprayer’s nozzle(s), 

droplets displacement under simplified prevailing field conditions as well as droplets deposition. However, the 
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available information is far underway and still lacks coherence. A comprehensive summary of previous research 

on CFD simulation applications on air assisted pesticide sprayer pre-testing would give an insight on future 

research needs. On this regard, the objective of this review paper was to give a comprehensive state-of-the-art 

review of the application of CFD modeling as an engineering design tool on air assisted pesticide sprayers’ 

development as well as give highlights on future research needs for further studies. 

 

1.1 Air assisted spraying 

Air assisted spraying involve atomization of the droplets through injecting air streams at a high velocity toward 

the spray path so as to increase the droplets velocity and modify its trajectory for optimum spray delivery. The 

injected air streams consequently reinforce the spray droplets trajectories especially when directed at the optimum 

inclination angles towards the targets and enhance the spray capture. Hislop et al. (1995) noted that, inclining the 

sprayer nozzle away from its vertical can alter the droplets trajectory as well as increase the crops’ spray capture 

especially where the crops are vertical. The generated air jet blows the spray droplets throughout the plant and lift 

the foliage consequently, improving penetration and deposition of the droplets (Arthur et al., 2006; Andalew et al., 

2011; Ashenafi et al., 2015) on the surface of the plant. According to Ade (2007), air-assisted spraying entrain and 

deliver the droplets to the target; attaining improved spray penetration and a substantial reduction of spray drift 

and achieve a more uniform coverage on the plant surfaces. Nevertheless, the distribution and fate after application 

of the pesticides to both target and non-target depend on several factors especially; the sprayer’s design, application 

techniques (Gary et al., 2013; Dekeyser et al., 2014), respective sprayer’s components settings and prevailing 

weather conditions. Sanchez-Hermosill et al. (2013), attributed; poor pesticide distribution of low uniformity on 

plant canopy, heavy losses to the soil and high healthy risk exposure to workers, to the of use of low technology 

equipments. This concure with the analogy by Zhao et al. (2008); D.B. Watson et al. (1984) and Yvan et al., 

(2008), that optimum droplet size delivery in air assisted spraying would ensure maximized on-target deposition 

and minimize spray drift. Furthermore, air assisted spaying will reinforce and modify the trajectories of the droplets 

for an effective delivery. For an improved deposition and a good electrostatic control of the droplet trajectory, 

Zhao et al. (2008) highlighted that, a high charge-mass ratio is required. Moreover, if the velocity magnitude and 

direction are not properly adjusted, off-target deposition is likely to occur (Delele et al., 2005). Nevertheless, 

development of an ideal sprayer that is capable to achieve minimum drift and maximum deposition is complicated 

(Gan-Gan-Mor et al., 1996; Delele et al., 2007); the challenge still remains on how to predict the performance of 

the sprayer at early development stages before finally manufacturing for marketing. Due to limitation on the use 

of physical experiment trials, the use of CFD modeling coupled to commercial simulation code have been on the 

rise.  

 

1.2. Spray CFD modeling fundamentals  

The success of modeling majorly depends on the quality of initial data input. There are four basic elements that 

form the initial conditions data requirement in CFD simulation of pesticides spray characterization; the droplet 

size, droplet velocity, spray liquid density (Dorr et al., 2013) and nozzle characteristics (size, number and 

orientation). 

1.2.1 Droplet size 

The biological efficacy of air assisted pesticide sprayer can be influenced by respective droplet size (Nuyttens et 

al., 2007). The droplet size has a direct influence to the fate of the droplet thus the rate of deposition and/or drift 

of the applied chemicals. For CFD modeling purpose, the actual droplet size is required hence the need for data 

precision and accuracy. The challenge remain that, most sprays are ‘polydisperse’ (Gant, 2006; Sirignano, 1999) 

comprising of numerous sizes; from very fine to very coarse droplet sizes. Previous CFD modeling research has 

used different creteria to estimate the droplets diameter but the simplest and most commonly used is the use of 

respresentative droplets diameter method though this inevitably creates data descripancy. Occassinaly, empirical 

equations which characterize size distribution in terms of variables have been applied where the most widely 

prefered is the Rosin-Rammler distribution equation expresed as: 

                              1 − � = ��� �−	
 �� 

�
�                           (1) 

Where 

	� is the fraction of the total volume contained in droplets smaller than diameter D 

D is the droplet diameter 

�	is Rosin-Rammler diameter 

γ is a constand indicating the amount of spread of droplet sizes 

1.2.2 Spray droplet velocity 

Spray’s droplets velocity are very sophisticated and are dependent on respective droplets’ sizes; bigger droplet 

size corresponds to higher droplet velocities and vice versa (Nuyttens et al., 2009), although smaller droplets tend 

to have a more rapid acceleration or deceleration than larger droplets (Sirignano, 1999). Most CFD models assume 
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that initial velocity is equal to average liquid sheet velocity (Sidahmed et al., 1999; Dorr et al., 2013) and remain 

constant in the entire time steps. Under normal conditions, the velocity of the droplets is subject to change due to 

the drag force in the atmosphere especially the effects of prevailing air flow; furthermore once a liquid spray is 

injected into a gaseous environment it tends to destabilize (Sirignano, 1999). Fig. 1 shows simulation results and 

experiment values of airflow velocity variation at various vertical height of an artificial plant.  

 
Fig.1 CFD simulation results and measured values of air flow velocity in front (A) and behind (B) an artificial 

canopy (Silva et al., 2006) 

1.2.3 Spray liquid density 

Spray liquid density diminishes when air bubbles form within the droplet (Dorr et al., 2013) thus the amount of 

air in a droplet may vary depending on the characteristics of the sprayer’s nozzle. Unfortunately, some CFD 

simulation have been conducted on the assumption that the density of the spray liquid is the same as the density 

of water. This could be misleading or probably cause a descripancy between real life application and simulation. 

1.2.4 Nozzle characteristics 

The nozzle(s) type, number, size and inclination angle play a fundamental role in air assisted spraying especially 

in optimizing it’s performance. Some CFD simulations have been conducted on the basis of nozzle characteristics 

to give an insight on their influence to the droplets behaviours.  

 
Fig. 2 CFD simulation results showing velocity contour plots from; single (Condor v), double (Duoprop), four 

fan (Airjet quat) sprayers (Endalew et al.,2010) 

 

1.3 CFD Modeling approach applied in previous air assisted pesticide sprayers’ simulation research.  

Previous air assisted sprayer perfomance simulations have been carried out through two fundamental CFD 

modeling approaches; the Eulerian continous phase and Lagrangian approach. 

1.3.1 Eulerian continous phase approach. 

Eulerian continous phase modeling approach treats the droplets as a continous flow that involves a gas and a 

droplets phase, on the assumption that each computational cell comprises of gas and droplets. Their homogenous 

models assumes that the droplets and carrier phase share same velocity, turbulence properties and temperature 

while the inhomogeneous models assume that fluids share same pressure field and that different fluids interact 

through interphase transfer terms; momemtum, heat and mass.They have a less computaotinal demand hence 

turbulence can be modeled simpler. However, if separate equations are to be solved for each droplet, the approach 
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can be very computational expensive hence certainities in their diffusion coeffciency. 

1.3.2 Lagrangian particle tracking approach. 

The Lagrangian particle tracking approach approach is used to estimate droplets’ movement in both laminar and 

turbulent flow fields. Individual droplets are trapped through a flow domain from their injection point to their point 

of escape from the domain or until an intergation creterio is reached. Their gas phase is modeled using Eulerian 

approach although an additional void fraction source terms has to be applied to the Eulerian equation to account 

for the presence of the droplets. Despite of its short falls on grid dependance of results for dense sprays (Sazhin, 

2009), the approach has the advantage of focusing on droplet break up and has widely been favoured in air assisted 

pesticide sprayers CFD simulation.  

Table 1. Simple models developed and applied in previous simulations 

Author   Sprayer indicator          Equation /Model      Simulation 

approach 

Silva et al. 2006            air flow characteristis     RANS equation and k-ε model    - 

Delele et al. 2007           air flow velocity         Reynold averaged fluid flow        Lagrangian 

 k-ε turbulent model    Lagrangian 

Melese andalew et al. 2009   air flow               Full closure model (FCM)             - 

effects of canopy        intergrated model,                                           

 RANS & k-ε turbulent model                           

Zhao et al. 2008            droplets size                           Renomalized k-ε turbulent model    Lagrangian 

charge -to mass ratio                    

nozzle-taget distance 

Endalew et al. 2010   flow velocity     RANS equation and k-ε model          - 

Isukapalli et al. 2013                 deposistion       renomalized k-ε turbulent model    Lagrangian 

Dekeyser et al. 2013       nozzle characteristics    

 

RANS equation & k-ε turbulent 

model   

- 

Larbi, 2011               air velocity, mass flow -                      Euler 

Farooq & Salyani, 2004                             -                      -                                       Lagrangian 

Brown & Sihadman, 2001        - - Lagrangian 

Table1. Shows a high application preference of both k-ε turbulent model and the legrangian particle tracking 

appraoch 

 

1.4. Significant CFD modeling contribution to air assisted pesticide sprayers’ development 

1.4.1 Simple CFD models developed and applied in previous simulation work. 

Developing an ideal model suitable for all air assisted pesticide sprayers’ performance pre-trials may not be 

attainable, probably due to the complex nature of the architecture of plant canopy alongside fluctuating field’s 

conditions. Furthermore, an ideal model would be too computational expensive consequently, prompting the need 

for use of very powerful computers. With respect to this, numerous researchers have devoted themselves in 

developing simple models at stipulated assumptions to basically meet the research needs at hand.  

The AGDISP and Agdrift models which were developed by US department of Agriculture forestry service 

in collaboration with the US army for predicting deposition and drift of aerial spray are the most advanced spray 

models. The two models were developed using the lagrangian approach and the original ensemble average 

turbulence equation to avoid the need of any random component (Larbi, 2011). On the model’s prediction behavior 

simulation, Ekblad et al. (1987) noted that AGDISP is adequate for simulations involving droplets diameter of 

between 100 and 600 µm released from an aircraft speed greater than transmission speed. Thompson & Ley (1983), 

on the assumption that discrete displacement can represent the trajectories of an individual droplet and Holterman 

et al. (1994) on 2D, developed random walk models for simulating spray drift. Walklate (1992), assumed that 

initial velocity prevail the entire steps, to develop a model for simulating the impacts of droplets as well as 

deposition on crops. The key mandate of the model was to simulate the behavior of the airplane wake close to the 

ground as well as the movement on the spray. Later (Walklate et al., 1996) established a model for simulating jet 

penetration into the plant canopy. With a velocity opinion different from that previously made by Walklate, (1992); 

that is, velocity fluctuation is isotropic with Gaussian probability density, Xu et al. (1997) developed a model to 

simulate deposition on plant surface. Their model development applied the principles of transmission probability 

to account for droplets impact. Thereafter (Xu et al., 1998), they incorporated lagrangian approach coupled to 

stochastic particle tracking model to predict spray dispersion at various distances from the sprayer’s nozzle center 

line. Delele et al. (2007) developed a 3-D CFD model for predicting droplet dispersion from a vertical cross flow 

air assisted sprayer. Their model accounted for velocity variation at the fan outlet as well as the nozzle 

characteristics (type, size and direction) and liquid atomization. In this model, particles tracking were by use of 

lagrangian multi particle model. Miller et al. (1996) adapted a model that successfully simulated entrained air 
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velocity due to droplets movement from a flat-fan nozzle through air in both vertical and radial direction inside 

the spray. Their model; assumes a mono dispersed spray, account for kinetic energy exchange between droplets 

and neglects the effect of gravity. While on an assumption that plant canopy offer an aerodynamic resistant which 

is proportional to the square of airspeed and that fluid density experience an exponential decay with canopy width, 

Vieri & Spugnoli (1996) developed a model to monitor both spray and airstream suitability. This model 

successfully simulated droplet behavior relative to temperature, humidity, and wind variations.  

O Rourke & Amsden, (1987) developed Taylor Analogy Breakup (TAB) and droplet drag model which 

are based on the analogy that oscillating droplet is exposed to an airflow field and a forced fixed oscillating spring 

mass system. In search for a simple and an applicable alternative to model the effects of leaves in architectural 

canopy model on airflow, Melese et al. (2008) conducted a direct CFD simulation while applying averaging 

principles at individual branch level. Their simulation need was compelled to their previous 3D canopy simulation 

work which demonstrated a minimum accuracy of 92 %. Moreover, to model leaves, drag force equations were 

added in the momentum and turbulent energy equations on a porous sub domain created around the branches. 

Thereafter, the team (Melese et al., 2010) developed a model to simulate airflow within plant canopy 

using 3D canopy architecture with a keen insight on the effects of canopy on airflow. While using 10m/s as the 

mean velocity at inlet, airflow was simulated using Reynolds-Averaged Nervier Stoke (RANS) equation and k-ε 

turbulence model. The model’s average air velocity was validated using experiment trial values in a wind tunnel 

with two artificial model trees. There was a good agreement on the average longitudinal velocity (u) between the 

measured and simulated results with a relative error of less than 2 % and 8 % in the upstream and downstream of 

the tree respectively. The accuracy of the model’s results on turbulent kinetic energy (k) and turbulence intensity 

(1) was acceptable within the tree height on a roughness length (y0=0.02 mm) for the surface roughness of the 

branches and through applying a source term to porous sub-domain created around the tree. Nevertheless, a small 

difference due to spatial disparities within the canopy architecture was noted. Brown & Sihadmed, (2001), studied 

and evaluated a computational fluid dynamic code (FLUENT TM) in simulating the airflow from free round jets 

and compared the simulation results to Abramovich’s, 1963; (Larbi, 2011) theory of free turbulent jets. Despite 

experiments and simulation results being in good agreement, discrepancy within droplet of diameter between 24 

and 70µm was noted. Brown & Sihadman, (2001) simulation provided droplets’ horizontal travel distance released 

from a forestry air blast sprayer using lagrangian approach although only some of the trajectories were computed. 

Sihadmed et al. (2005) developed a model that would mimic the collective behavior of droplets in a spray cloud 

from a flat fan hydraulic nozzle. This transport model employed an effective drag coefficient to account for 

aerodynamic drag, air entrainment, interference of droplets, evaporation and vertical wind velocity fluctuation to 

successfully simulated deposition pattern. Furthermore, it was noted that measured droplets size and number 

distribution were similar to simulated results. Sammons et al.(2005), model was developed on the approach of 

probability density function (PDF). The model relates particle and gas particles through drag while setting 

parameter on dispersion, in addition it indicated that 2nd order moment closure are more flexible. Unfortunately, 

neither transport of gas particles nor fluctuating velocity correlations on the transport particle velocity correlation 

were modeled. They concluded that the use of drag expression in k-ε dispersion in far distance is better that 

dispersion in nozzle exit and that fluctuating velocity is affected by the injection type in the nozzle. 

Farooq & Salyani (2004), proposed a model for citrus canopies. Their simulation research revealed that 

deposition on leaves depend on their collection efficiency and on the air velocity within the canopy and that 

lagrangian approach provides more reliable results despite small number of trajectories. Arther Silva et al., (2006) 

proposed a lagrangian model for simulating droplets deposition on vine canopies. In their simulation, air speed 

within canopy and tractor speed were accounted for by means of unsteady boundary condition. In addition the 

model accounted for the effects of vegetation on deposition through adding a sink term in the momentum 

conservation equation and a source term for turbulence kinetic energy. After all k-ε model is usually based on time 

averaged equation. Moreover, air flow characteristics were obtained through solving Navier stroke equation and 

simulation of spray cloud using lagrangian-stochastic model with added terms to account for vine yard vegetation. 

This model did not take into account droplet movement between sprayer and canopy but only focused on the 

behavior inside the canopy. Moreover, its development was on the assumptions that droplets of a particular cloud 

poses diameter size uniformity and carry equivalent mass of liquid. Asman et al. (2003) developed an evaporation 

droplets model. Brown & Taher (1999), developed a virtul nozzle model to simulate droplets deposition on leaves 

for a steady wind and sprayer’s motion. While Moa’ath et al.(2011) proposed a simple model to simulate droplets 

movement on the surface of a leaf. 
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Fig. 3 CFD simulation results showing velocity magnitude (a) and droplets deposition on a patternator (b) 

(Dekeyser et al., 2013). 

1.4.2 Other significant CFD simulation contributions 

Although the results were not validated, Weiner & Parkin, (1993) applied CFD code to model droplets trajectory 

from a mist blower. Zhao et al., (2008) carried a CFD simulation on charged droplets trajectory towards a spherical 

target at different droplet sizes, charge to mass ratio and nozzle to target distance. They noted that in air assisted 

spraying application, a high charge to mass ratio is desired for a good electrostatic control of droplet trajectory. 

Increasing charge to mass ratio may increase deposition although at the expense of drift; spray drift may increase 

with increase in charge to mass ratio and increase in distance if not optimally set. Zhu et al. (1994) and Reichard 

et al. (1992 b) applied commercial CFD simulator to model spray dispersion and drift. 

Tsay et al. (2002) and Molari et al. (2005) used CFD model developed without accounting for the effects 

of canopy to evaluate the operation of air assisted sprayer’s design parameters. The simulation results obtained by 

Tsay, (2004) played a fundamental role in the design of a pneumatic shielded spraying system for increased spray 

deposition and drift reduction. Weiner & parking, (1993) used models developed without accounting for canopy 

to predict opperating conditions of an air assisted sprayer. Thereafter (Parkin & Wheeler, 1996) modeled the effects 

of spray induced vortices on droplets movement in a wind tunnel. Hobson et al. (1993), simulated spray drift at 

different nozzle characteristics (type, angle and operating pressure) of a boom sprayer using random-walk 

approach over a wide range of meterological and crop condition. Teske & Hill (1995), modelled spray droplets 

evaporation on the assumption that physical properties of pesticide spray wash behave like water. Isukapalli et al. 

(2013), applied CFD simulation to study flow and deposition of pesticides under sinorior with different spraying 

pattern and cabin air exchange rate. Dekeysey et al. ( 2013), applied CFD models to simulate the effects of orchard 

spraying application techniques and setting of airflow and spray liquid distribution.  

Finally, Andalew et al., (2010), simulated droplets trajectory inside a pear canopy with an aim of 

determining the optimum nozzle settings for an air assissted sprayer. The CFD model to simulate airflow through 

pear canopies was validated for three different sprayer; single-fan(condeor V), double (Duo-drops) and four fan 

(AirjetQuaatt) sprayers (Andalew et al., 2010) Fig.2.  
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Fig. 3 CFD simulation results showing of velocity contours for both Integrated Model (IM) and Full Closure 

Model (FCM) (Melese et al., 2009) 

 

 
Fig. 4 CFD simulation results indicating droplets trajectories (Zhao et al., 2008) 

 

2.0 Discussion 

The implication of computer technology application in preliminary stages of air assisted pesticide sprayers’ 

development has lately been a solution to the sprayer’s performance projections. The rapidly increasing use of 

CFD simulation has not only demonstrated to be time and cost effective than physical experiments trials, but has 

also proven to be an inevitable key design tool in projecting the flow behaviors of air atomized pesticide spray 

droplets. Its application in recent year has proved to be reliable and convenient in understanding the complex 

nature of air assisted pesticide spraying phenomena. Furthermore, the real time fields’ conditions are 

uncontrollable and at constant variation in nature and are likely to interfere with both the physical and chemical 

properties of the spray droplets as they travel from the generator to the target. For an effective sprayer’s 

performance, maximum deposition of droplets to the target at minimal drift has to be attained despite of 

unavoidable resistance likely to be encountered on their delivery. CFD simulations have given the correlation 

between droplets characteristics and environmental condition to drift. Several literatures on CFD simulations of 

droplets trajectories and air flows velocity have highlighted effectively the potential droplets movement and their 

resultant characteristics at early stages of the sprayer’s development. Fig.4 demonstrates droplets trajectories from 

CFD simulation results. Unfortunately, CFD models hardly precisely provide accurate droplets movement or air 

flow and droplets characteristics; their results may have a discrepancy to physical experiment trials values. Fig.1 

gives a comparison of both simulated results and physical experimental trials values. For reliable and acceptable 

predictions, simulation results should be within an acceptable limit otherwise the information might be misleading. 

Several simple models have been developed in previous simulation, furthermore, though unachievable, a standard 

ideal model would be highly computational expensive. On this regard, simulation has to be complemented by the 

use of experimental data especially as initial data input. It was noted that lagrangian simulation approach and k-ε 

turbulent model are highly favored in reviewed literature (Table 1). The preference of lagrangian approach over 

Eulerian continous phase approach can be attributed to its ability to determine droplets movement in both laminar 
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and turbulent flow fields despite a grid dependance of results for dense sprays (Sazhin, 2009) and its focus on 

droplet break up. 

Of all availabe turbulent model none is more superior to the other. Otherwise the choice of the model to 

be used is determined by the need of the simulation at hand. Furthermore, the most prefered in reviewed literature; 

k-ε turbulent model cannot treat flow accurately in an entire flow computational domain especially where the flow 

is to be separated from a region of high Reynold number to a region of low Reynolds number or in a transition 

zone (Bartzanas et al., 2013). Similarly, the numarous available simple models developed in previous research are 

only suitable to particular situations and research needs due to the basis of assumptions made during their 

development. 

Although a lot of work has been done, there still remain a lot to be done to make full use of the technology. 

The validity of all proposed simple model need to be conducted to fully verify their applicability in the simulation 

process. In addition to this, of the available information more attention has focused on air flow velocity and 

trajectory simulation. Some recent attempts have been made to incorporate the architecture of the canopy in the 

simulation (for example Melese et al., 2010), but still more research is needed since there exist an acute canopy 

orientation variation amongst plants species, besides leaves closest to the nozzle are likely to experience an over 

dose. Simulation of target-nozzle distance at various sprayer setting will be a source of information for a clear cut 

on optimum sprayer settings.  

Moreover, assuming uniform droplet sizes and velocities might be misleading especially in an 

uncontrollable varying environmental field conditions. Besides, the environmental conditions in a controlled 

environment such as greenhouse differ from conditions in an open field; despite an increasing application of air 

assisted pesticide spraying in these structures. This therefore calls for a need to develop simple models that can 

conveniently be applied in such environment.  

 

3.0 Conclusion 

It’s worth noting that CFD modeling still remains a predominant technique in equipments development. It’s 

potential as a design tool in air assisted pesticide sprayers’ development has been proven in the recent years. 

Furthermore, the efficiency of a new sprayer design primarily depends on its ability to deliver droplets to the target 

which can precisely be demonstrated through CFD modeling. The technique has demonstrated its ability to 

effectively project real time spray characteristics especially the droplets’ trajectories thus the fate of the droplets. 

Several simple models have been developed and successfully applied to contact performance projections in orchard 

pesticide application at various corresponding sprayers’ parameters settings and field conditions. Its application as 

a key design tool does not totally replace the use of physical experiment trials, but still require them as sources of 

initial conditions data inputs requirements. Much of its application in understanding air assisted pesticide spraying 

has been done but still the full potential of the technology has not been explored and the available information is 

far much underway. Highlights of reviewed literature show more preference on its application on open field 

environment despite incorporation of air assisted pesticide spraying in greenhouses. Moreover, plants’ canopy 

structures are of a wide range consequently variation in simulation functions’ requirements. We believe CFD 

simulation will be an essential source of information on the suitability of air assisted pesticides spraying in different 

environmental conditions and on various plants canopy structures. 
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