

Opto-mechanical study of an optical fiber sensor based on polarimetric effects

Etude opto-m écanique d'un capteur à fibre optique interrog é en polarisation

Mohamed $BARBACHI^{1*}$ Fr éd éric $BOURQUIN^2$

- 1. National School of Applied Sciences (ENSA) of Ibn Zohr University, BP 1136 Agadir, Morocco
- Monitoring, Assessment, Computational Sciences Department (MACS) of the French institute of science and technology for transport, development and networks (IFSTTAR), 58 boulevard Lefebvre 75732 Paris Cedex 15, France

* E-mail of the corresponding author: <u>barbachi@ensa-agadir.ac.ma</u>

Abstract

In this paper, we studied the structure of a sensor consisting of single-mode optical fiber, inserted between two thin steel ribbons. The measuring principle is based on the analysis of the polarization modulation under external load. The sensor, thus conceived, was mechanically and optically tackled. Improvements of the initial device based on the introduction of a second optical fiber in parallel were made to increase the sensitivity of the sensor.

The transfer function of the sensor as equation shows the fringes number of polarization at the fiber end versus the applied load to the sensor can be used directly by an user, for opto-geometric characteristics fixed. In other words, the model developed in this work provides a sizing tool allowing to user to get the best compromise metrological to solve a given problem of instrumentation.

Keywords: Fiber optic sensors, Polarization, Elasto-optical coupling, Mechanical modeling

R ésum é

Dans cet article, nous étudions la structure d'un capteur composée d'une fibre optique monomode ins é é entre deux lames m falliques, les bords fant solidaires par sertissage. Le principe de mesure repose sur l'analyse en sortie de fibre de la modulation de polarisation, sous chargement externe. Le capteur ainsi con qu a fé é dudi é tant sur le plan mécanique qu'optique. Des am fliorations du dispositif initial bas és sur l'introduction en parallèle d'une seconde fibre optique ont été apportée afin d'augmenter la sensibilité du capteur.

La fonction de transfert du capteur écrite sous forme d'équation met en évidence le nombre de franges de polarisation en sortie de fibre par rapport à la charge appliqu ée au capteur, directement exploitable par un utilisateur, pour des caract éristiques opto-g éom étriques fix ées. Autrement dit, le mod è d évelopp é dans ce travail fournit un outil de dimensionnement à l'utilisateur lui permettant d'appréhender le meilleur compromis m étrologique face à un problème d'instrumentation donné.

Mots-cl és : Capteurs àfibres optiques, Polarisation, Couplage dasto-optique, Mod disations m écaniques

1. Introduction

Le développement des capteurs à fibres optiques peut être considéré, pour une large part, comme une retombée des recherches effectuées en télécommunication visant à évaluer et à minimiser l'influence des actions extérieures sur le signal à transmettre [1-3]. Actuellement un grand nombre d'activités de recherche se d'éveloppent autour de l'utilisation de ce type de capteurs pour mesurer certaines grandeurs mécaniques physiques [4-14], étant donné les spécificités que présentent ces capteurs par rapport aux moyens de mesures classiques. Les avantages proviennent essentiellement de la fibre optique elle-même, c'est-à-dire faible encombrement, pertinence et richesse du signal optique, coût mod ér égrâce aux quantit és importantes fabriquées pour le domaine des télécommunications, possibilité d'effectuer plusieurs mesures sur une mêne fibre, insensibilité aux perturbations dectromagn dique, possibilité de fonctionner dans un milieu agressif, diversit é de mesures, temps de réponse extrêmement rapide...etc. Les principaux d douch és de ces technologies se trouvent dans l'aéronautique et l'espace (instrumentation des matériaux composites) et plus r écemment, des applications commencent à appara îre en g énie civil. On distingue g én éralement trois catégories de fonctionnement des capteurs à fibres optiques selon les phénomènes physiques mis en jeu [15]. Leurs principes de mesures reposent sur la modulation d'intensité, de phase et de polarisation. Selon l'usage envisagé, il est nécessaire d'adapter un conditionnement spécifique. A titre d'exemple, on montre que l'application d'une force verticale sur une fibre monomode à maintien de polarisation induit, par modification de l'état des contraintes mécaniques, une biréfringence dont la mesure permet de fournir des données quantitatives sur la sollicitation au cœur de la fibre. Dans le cadre de cet article, la fibre est rendue sensible à une direction de charge mono-axiale grâce à un système de deux lames métalliques soud és en forme de ruban. Le comportement de ce système a été étudié en détail à la fois sur le plan mécanique et optique.

2. Structure du capteur

Le capteur est constitué d'une fibre optique monomode, ins érée entre deux lames métalliques rendues solidaire par le bord, dont l'épaisseur et la largeur sont variables [16-18], figure 1.

Figure 1. Structure du capteur

Le fonctionnement de ce capteur s'appuie essentiellement sur la forme géométrique du ruban. Ainsi, d'un point de vue mécanique, le rôle du ruban consiste à intégrer les efforts extérieurs qui lui sont appliqués afin de les transmettre ensuite à la fibre optique de façon unidirectionnelle. Cette transmission induit, par modification des paramètres opto-géométriques, une bir étringence dans la fibre optique directement liée à la différence des contraintes principales dans le cœur et dont la mesure permet de déterminer quantitativement les actions inductrices (c'est-à-dire les efforts extérieurs).

Sur le plan mécanique, le problème posé consiste à déterminer l'état de contraintes au cœur de la fibre pour différentes géométries du ruban lorsque ce dernier est soumis àune charge uniforme.

3. Mod disation M écanique

Le mod de mécanique adopt é pour la résolution de ce problème consiste à assimiler, dans un premier temps, la fibre optique à un appui d'astique de rigidit é variable K reposant sur deux appuis rigides caract érisant chacun la liaison entre deux rubans. Lorsque le ruban est soumis à un chargement uniforme, la réaction recueillie au niveau de l'appui élastique (ressort) représente la solution du problème en termes

d'effort. Cet effort sera ensuite appliqué à la fibre optique prise individuellement afin d'obtenir la solution du problème au cœur de la fibre en terme de contraintes. Les figures 2.a et 2.b illustrent le principe du mod de. Cette étude sera men ét pour différents paramètres g éom étriques du ruban, à savoir, l'inertie I et la largeur l.

Figure 2.a. Principe du mod de

Figure 2.b. Fibre optique sollicit é

3.1 Calcul de la rigidit é K

Au cours du processus de chargement illustr é par la figure 2.b, la diminution du diamètre de la fibre comprim é entre deux corps plans et rigides met en cause, parallètement aux paramètres de déformations classiques, la surface de contact développée au voisinage de la liaison (ruban-fibre). Cette déformation est donnée par l'expression [19] :

$$\delta = \frac{4R(1-\gamma_1^2)}{\pi E_1} \left[Ln(4a/b) - 1/2 \right]$$
(1)

pour une longueur unitaire où b désigne la surface de contact développée au voisinage de l'interface des deux corps. Elle forme ici un rectangle de demi largeur b égale, dans le cas g én éral, à:

$$b = 2\sqrt{\frac{aR}{\pi}(\frac{1-\gamma_1^2}{E_1} + \frac{1-\gamma_2^2}{E_2})}$$
(2)

avec γ_1 , γ_2 , E_1 et E_2 les coefficients de Poisson et les modules d'Young des deux corps considérés et a le rayon de la fibre.

L'expression (2) injectée dans l'équation (1) et sachant que la rigidité K se calcule par $K = \frac{dR}{d\delta}$, on obtient :

$$K = \frac{\pi E_1}{2(1 - \gamma_1^2)Ln(\frac{0,2\pi a}{R(\frac{1 - \gamma_1^2}{E_1} + \frac{1 - \gamma_2^2}{E_2})})}$$
(3)

A titre d'application numérique, pour les caractéristiques mécaniques suivantes d'une fibre monomode de diam $\exists re d = 0,125$ mm en silice :

 $E_1=70000MPa$, $\gamma_1=0,\!16$ et celles d'un ruban métallique $E_2=200000MPa$, $\gamma_2=0,\!2$, on trouve :

www.iiste.org

$$K = \frac{112718}{7,65 - Ln(R)} N / mm \tag{4}$$

3.2 Réaction de l'appui

Le calcul de la réaction au niveau de l'appui élastique du modèle proposé sur la figure 2.a, peut s'obtenir par superposition de deux problèmes simples de la R.D.M :

- Calcul de la déflexion, en l'absence du ressort, en milieu de poutre de longueur l encastrée aux extrémités et soumise à un chargement r éparti dont la charge totale est égale à P. Cette d élexion a pour expression :

$$\delta_1 = \frac{Pl^3}{384E_2I_2} \tag{5}$$

 E_2 et I_2 représentent respectivement le module d'Young et l'Inertie du ruban.

- Calcul de la déflexion, en l'absence du ressort, en milieu d'une poutre de longueur l encastrée à ces deux extrémités et soumise àun chargement local R en son centre. Dans ce cas, la déflexion a pour expression :

$$\delta_2 = \frac{Rl^3}{192E_2I_2} \tag{6}$$

Par ailleurs, le déplacement δ est lié à la rigidité du ressort par $K = \frac{dR}{d\delta}$. Cette dépendance du

déplacement avec la charge R, conduit à l'écriture δ sous une forme différentielle, soit :

$$\mathrm{d}\,\delta = \mathrm{d}\,\delta_1 - \mathrm{d}\,\delta_2 \tag{7}$$

D'après les expressions de l'équation (5), (6) et (7), on obtient :

$$(\frac{384E_2I_2}{K(R)l^3} + 2)dR = dP$$
(8)

Après intégration de cette expression et en remplaçant toutes les constantes mécaniques et géométriques des deux matériaux par leurs valeurs, on obtient finalement :

$$2R\left[1 + \left(\frac{e}{l}\right)^{3}(255, 3 - 29.55Ln(R))\right] = P$$
(9)

où e désigne l'épaisseur du ruban et l sa largeur.

La réaction en fonction de P peut être obtenue graphiquement en traçant les courbes correspondant à l'équation (9) pour différentes géométries du ruban $(\frac{e}{t})$.

3.3 R éponse de la fibre à une r éaction issue du ruban

La résolution finale du problème posé, exige la connaissance de la distribution des contraintes au cœur de la fibre. Ceci passe, bien entendu, par toutes les étapes expos éts dans les différents points précédents. Il reste, cependant, à rechercher la réponse de la fibre à la réaction R appliqué sur une surface de contact de largeur 2b. Il s'agit, en fait, de résoudre un problème type « essai brésilien ».

En élasticit é lin éaire, pour un cylindre de rayon a soumis à une charge de compression R, le champ des contraintes selon le diamètre de chargement vertical est donn é au cœur du cylindre (fibre) par [20-21]:

$$\begin{cases} \sigma_x = \frac{2R}{\pi L d} \\ \sigma_y = \frac{-6R}{\pi L d} \end{cases}$$
(10)

La résolution globale du problème traité se réduit principalement à la détermination d'un seul et unique paramètre, à savoir la réaction de l'appui élastique modélisant la fibre optique. Ainsi, un ajustement éventuel de ce paramètre par l'expérience ne devrait donc pas poser, en principe, de difficultés particulières.

Cette étude purement mécanique a été destinée à évaluer le champ de contraintes dans la fibre. Il faut examiner maintenant l'incidence de ce champ sur les propriétés optiques du milieu afin d'appréhender la r éponse opto-mécanique de l'ensemble. C'est l'objet du paragraphe suivant.

4. Couplage dasto-optique

L'expression de la phase d'une onde dectromagn tique en sortie d'une fibre optique de longueur L et de constante de propagation β peut s'écrire sous la forme : $\phi = \beta L$

A titre d'application, si nous calculons le déphasage $\Delta \phi$ d'une fibre optique monomode soumise à un chargement local provenant directement de l'intégration de la charge appliquée au ruban, il sera donn é par : $\Delta \phi = \beta \Delta L + L \Delta \beta$

Le premier terme de l'équation représente l'effet d'allongement et peut simplement s'écrire sous la forme : $\beta\Delta L = \beta L \varepsilon_z$ avec ε_z la déformation axiale de la fibre suppos ét identiquement nulle : $\beta\Delta L = 0$

Le deuxième terme de l'équation est dû à la variation de la constante de propagation β

Dans la région monomode, une onde polaris é peut se décomposer dans un référentiel bidimensionnel suivant deux composantes de polarisation, l'une verticale, l'autre horizontale. Ces deux vibrations présentent une différence de phase $\Delta \phi$, l'une par rapport à l'autre, due à l'écart de célérités selon les directions de polarisation. Pour mettre en évidence la variation de polarisation, il suffit alors d'observer la lumière transmise en sortie de fibre à l'aide d'un analyseur optique. A chaque variation de la phase de 2π un maximum d'énergie apparaît en sortie d'analyseur. Généralement, on appelle frange de polarisation l'intervalle entre deux maxima (ou minima) d'énergie.

Dans le cadre de notre étude, ce déphasage se réduit à l'expression :

$$\Delta \phi = \frac{(1+\gamma)(P_{12} - P_{11})L\beta n^2}{2E} (\sigma_x - \sigma_y)$$
(11)

où les P_{11} et P_{12} sont les composantes caractéristiques de l'état d'anisotropie de la silice. n, E, et γ sont respectivement indice de réfraction, module d'Young et coefficient de poisson de la fibre optique. Ce déphasage est li édonc au nombre de passages de maximum de lumière, m, en sortie de fibre par :

$$2\pi m = \frac{(1+\gamma)(P_{12} - P_{11})L\beta n^2}{2E}(\sigma_x - \sigma_y)$$
(12)

L'exploitation des résultats de l'étude mécanique développée et plus particulièrement la réponse du cœur de la fibre en termes de contraintes (équation (10)), nous conduit à l'expression de la réaction du ruban au niveau de la fibre en fonction du nombre de franges m :

$$R = \frac{\pi dE\lambda}{4(1+\gamma)(P_{12} - P_{11})n^3} m$$
(13)

Pour une fibre monomode de diamètre du cœur $d = 10 \times 10^{-6} m$, éclair ée par une source lumineuse de longueur d'onde $\lambda = 1,3 \times 10^{-6} m$ et de caractéristiques opto-mécaniques suivantes : n = 1,456, $P_{11} = 0.121$, $P_{12} = 0.27$, $E = 7 \times 10^{10} N/m^2$, $d = 10 \times 10^{-6} m$ et $\gamma = 0,16$, la réaction de la fibre calcul ée à partir de l'équation (13) est égale à:

$$R = 16,74m$$
 (14)

L'apparition donc d'une frange de polarisation correspond à une réaction du ruban égale à 16,74N.

Par ailleurs, en injectant l'expression de l'équation (14) dans l'équation (9), on peut calculer la charge appliquée au capteur en fonction du nombre de franges en sortie de fibre (équation 15). Les résultats peuvent être illustrés par des courbes de variations.

$$33.5m\left[1 + \left(\frac{e}{l}\right)^3 (255, 3 - 29.55Ln(16.7m))\right] = P$$
⁽¹⁵⁾

5. Am dioration du dispositif

De l'étude précédente, il s'avère que la sensibilité du capteur peut être améliorée en introduisant une seconde fibre parall dement à la premi à e. La figure 3 présente la structure du dispositif propos é

Figure 3. Structure du nouveau capteur

Le mod de mécanique pour la résolution de ce problème consiste à assimiler, comme précédemment, les fibres optiques à deux appuis d'astiques de rigidités variables k reposant sur deux appuis rigides. La figure 4 illustre le principe du mod de.

Figure 4. Principe du mod de

La rigidit é K globale équivalente au mod de de la figure 4 correspond au calcul d'une rigidité de deux ressorts dispos és en parall de. Dans ce cas, les rigidités s'additionnent et on se retrouve alors avec une rigidit é équivalente K=2k. En final, notre problème est ramen é à la r ésolution m écanique du mod de de la figure 2.a expos é pr éc édemment avec :

$$K = 2\left(\frac{112718}{7,65 - Ln(R/2)}\right)N / mm \tag{16}$$

Après introduction de K de l'équation (16) dans l'équation (8) et en remplaçant toutes les constantes mécaniques et g éom étriques des deux mat ériaux par leurs valeurs, on obtient finalement :

$$2R\left[1 + \left(\frac{e}{l}\right)^{3}(152, 4 - 14.77Ln(R))\right] = P$$
(17)

La réaction en fonction de P peut être obtenue graphiquement en traçant les courbes correspondant à l'équation (17) pour différentes géométries du ruban $(\frac{e}{t})$.

La fonction de transfert du capteur en fonction des caract éristiques opto-g éom ériques est obtenue en injectant l'expression de l'équation (14) dans l'équation (17). Soit :

$$33.5m\left[1 + \left(\frac{e}{l}\right)^3 (152, 4 - 14.77Ln(16.7m))\right] = P$$
⁽¹⁸⁾

L'écriture numérique en chaque point de cette équation et celle de l'équation (15) est représent és sur les tableaux 1 et 2 avec Cpt1 et Cpt2 respectivement la réponse du capteur composé d'une seule fibre optique et celle du capteur compos é de deux fibres parall des et ce pour différentes épaisseurs et largeurs du ruban. Il ressort de cette étude comparative que la sensibilité du capteur peut être amélior és selon le rapport Rap%=Cpt1/Cpt2, pour des caract éristiques g éom étriques fix éss. Cette amélioration est plus significative pour un ruban d'épaisseur e= 1mm et de largeur l=6mm.

l=6mm	e=0,08mm			e=1mm		
	Pression (MPa)			Pression (MPa)		
Nombre	Cpt1	Cpt2	Rap %	Cpt1	Cpt2	Rap %
Iranges	0.24	0.22	100	0.0	0.6	122
0,01	0,34	0,33	100	0,0	0,0	152
0,2	6,70	6,70	100	13,5	11	124
0,5	16,7	16,7	100	31,6	26	121
1	33,5	33,5	100	60,1	50,6	119
2	67	67	100	114	98	116
5	167	167	100	264	235	112
7	234	234	100	358	323	111
10	334	334	100	496	454	109
12	401	401	100	585	539	108
15	502	502	100	716	667	107
20	669	669	100	928	876	106

Tableau 1. R éponses capteurs pour l=6mm

l ableau 2. R eponses capteurs pour I=	l=10mm
--	--------

l=10mm	e=0,08mm			e=1mm		
	Pre	ession (M	IPa)	Pression (MPa)		
Nombre franges	Cpt1	Cpt2	Rap %	Cpt1	Cpt2	Rap %
0,01	0,33	0,33	100	0,44	0,39	111
0,2	6,7	6,70	100	8,17	7,60	107
0,5	16,7	16,7	100	19,9	18,7	106
1	33,5	33,5	100	39,2	37,2	106
2	66,9	66,9	100	77,1	73,7	105
5	167	167	100	188	182	103
7	234	234	100	261	253	103
10	335	335	100	369	360	103
12	402	402	100	441	431	102
15	502	502	100	548	538	102
20	669	669	100	725	714	102

6. Conclusion et perspectives

Le capteur présent é a ét é dudi é à la fois sur le plan mécanique et optique. Des améliorations du dispositif initial basées sur l'introduction en parallèle d'une seconde fibre optique ont été apportée afin d'augmenter la sensibilité du capteur. Un gain plus significatif est enregistré pour un ruban d'épaisseur e=1mm et de largeur l=6mm.

La fonction de transfert est donn é sous forme d'équation directement exploitable par un utilisateur, mettant en évidence pour des caract éristiques fix és, la sensibilit édu capteur.

La validation des mod des en laboratoire au moyen d'expériences est nécessaire pour confirmer la faisabilit épratique d'un tel dispositif.

L'utilisation de ce type de capteur sur site réel peut âre envisagée. On pense en particulier à l'employer pour le pesage d'une charge roulante. Pour ce faire, le capteur doit se présenter dans une nouvelle disposition lui permettant une bonne protection physique et chimique contre les agressions extérieures de son environnement d'emploi.

7. Remerciements

Les auteurs souhaitent exprimer à IFSTTAR et le Groupe Alcatel leurs sinc ères remerciements pour leurs soutiens et encouragements.

8. R éf érences

[1] Barlow A. J. (1989). IEEE J. Lightwave Technol, 7, 1264-1269

[2] Bock W. J., Wolinski T.R. (1990). Optics Letters, 15, 1434-1436

[3] Wisniewski R., Bock W.J. (1991). Review of Scientific Instruments, 12, 2955-2958

[4] Asawa C. K., Yao S. K. (1982). High-sensitivity fiber optic strain sensors for measuring structural distorsion. *Electronics letters*, 18, 362-364

[5] Bruinsma A.J.A., Van Zuylen P. (1984). Fibre-optic strain measurement for structural integrity monitoring. *OFS* 399-402

[6] Abe T., Mistsunga Y., Koga H. (1984). A strain sensor using twisted optical fibers. *Optics letters*, 9, 373-374

[7] HVParis'2008, (ICWIM 5 et HVTT 10), Conférence Internationale sur les poids lourds, LCPC, Paris

[8] Udd E. (1995). Fiber optic smart structures. Wiley Series in Pure Applied Optics, 23, 155-171

[9] Farhad Ansari (2005). Sensing issues in civil Structural Health Monitoring. Springer

[10] Glisic B. and Inaudi D. (2007). Fibre optic methods for structural health monitoring. John Wiley & Sons, Ltd

[11] Kesavan K. Ravisankar K., Parivallal S., Sreeshylam P., Sridhar S. (2010). Experimental studies on fiber optic sensors embedded in concrete. *Measurement*, 43, 157-163

[12] Khiat A, Lamarque F., Prelle C., Pouille Ph., Leester-Schadel M., Buttgenbach S. (2010). Twodimension fiber optic sensor for high-resolution and long-range linear measurements. *Sensors and Actuators A: Physical*, 15, 43-50

[13] Liang Tsair-Chun, Lin Yung-Li (2012). Ground vibrations detection with fiber optic sensor. *Optics Communications*, 285, 2363-2367

[14] Villalba S., Casas Joan R. (2012). Application of optical fiber distributed sensing to health monitoring of concrete structures. *Mechanical Systems and Signal Processing*, in press

[15] Pitt G.D., Extance P., Neart R.C., Batchelder D.N., Jones R.E., Barnett J.A., Pratt R.H. (1985). *IEE Proc. Part J*, 132, 214-248

[16] Tardy A., Jurczyyszyn M., Caussignac J.M., Morel G., Briant G. (1989). High sensitivity transducer for fibre-optic pressure sensing applied to dynamic technical testing and vehicle detection on roads. *Optical Fiber Sensors, Spinger-Verlag, Berlin Herdebberg.* 44, 215-221

[17] Teral S., Boby J., Siffert M. (1994). Weighing of vehicle in motion using fiber optic sensors. *Electrical Communication*, 1, 74-77

[18] French Patent n °88 02 765 (1988)

[19] Dorr j (1955). Oberflachenveformungo und randkrafte bei runden rollen und borhrungen. Stahlbau, 24, 202-206

[20] Gunnar W.I.J.K. (1978). J. Rock. Mech. Min. Sci. & Geomech, 15, 149-160

[21] Timoshenko S. and Goodier (1961). Théorie de l'élasticité. Béranger, 2 édition, Paris.

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: <u>http://www.iiste.org</u>

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. **Prospective authors of IISTE journals can find the submission instruction on the following page:** <u>http://www.iiste.org/Journals/</u>

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

