Design of Windmill Power Generation Using Multi-Generator and Single Rotor (Horizontal Blade)

Department of Mechanical Engineering,
Mailam Engineering College, Mailam post, Tindivanam Taluk, Villupuram District, Tamilnadu state, India - 604304.
E-mail of the corresponding author: sivasakthivelan.s@gmail.com

S. Siva Sakthi Velan

Abstract

Wind energy is the environmental free and one of the best renewable energy for generation of electric power. The main aim of the paper is "to produce current using multi generator and single rotor". This paper proposes multi-generator to address potential challenges: dimension, cost and reliability. The two permanent magnet D.C. generators are desired to share the single shaft through straight bevel gears. These poles of the two generators will be changed as alternate to parallel. This paper discussed about the design procedure of gears, gear life and wind turbine rotors. The output current is stored in series of battery to appliances through converter and step up transformer. The performances and practicalities of the proposed architecture are verified in simulation using prototype wind turbine.

Keywords: permanent magnet D.C. generator, wind turbine, straight bevel gear, poles of generator.

1. Introduction

The wind energy is an environment-friendly and efficient source of renewable energy. The kinetic energy of the wind can be used to do work. This energy is harnessed by windmill in the past to do mechanical work. This is used for water lifting pump and generating electricity. To generate the electricity, the rotary motion of the windmill is used to turn the turbine of the electric generator. The output of single windmill is quite small and cannot be used for commercial purposes. Therefore, a number of windmills are erected over a large area, which is known as wind energy farm. The each and every windmill is coupled together to get a electricity for commercial purposes. The wind speed should be higher than $15 \mathrm{Km} / \mathrm{hr}$.

2. Literature review

The three-bladed rotor proliferates and typically has a separate front bearing, with low speed shaft connected to a gearbox that provides an output speed suitable for the most popular four-pole (or two -pole) generators. This general architecture commonly, with the largest wind turbines, the blade pitch will be varied continuously under active control to regulate power in higher operational wind speeds. Support structures are most commonly tubular steel towers tapering in some way, both in metal wall thickness and in diameter from tower base to tower top. Concrete towers, concrete bases with steel upper sections and lattice towers, are also used but are much less prevalent. Tower height is rather site specific and turbines are commonly available with three or more tower height options.

3. Design of windmill

Figure 1. Experimental setup

The design is based on five steps as follows:

1. Design of wind turbine rotor; 2. Design of tower; 3. Yawn control; 4. Selection or Design of generator; 5. Design of gear.

3.1 Design of wind turbine rotor

3.1.1 Selection of location

Place: Mailam Engineering College
Latitude: 12.117^{0}; Longitude: 79.615^{0}
Hub height: 20m; Wind speed: 4.8 ± 0.9 m/s
Min. \& Max. Wind speed: $3.9 \mathrm{~m} / \mathrm{s} ; 5.7 \mathrm{~m} / \mathrm{s}$

Figure 2. Software calculations
Nomenclature for Windmill: $\mathrm{P}_{\mathrm{O}}=$ power contained in wind; $\eta_{\mathrm{E}}=$ efficiency of electrical generation; $\eta_{\mathrm{M}}=$ efficiency of mechanical transmission; $\mathrm{C}_{\mathrm{P}}=$ power co-efficient; $\mathrm{P}=$ Required power output $=3600 \mathrm{~W} ; \mathrm{V}_{\infty}=$ wind speed velocity $=3.9 \mathrm{~m} / \mathrm{S} ; \mathrm{D}=$ diameter of rotor; $\mathrm{R}=$ radius of rotor; $\mathrm{a}=\mathrm{axial}$ interference factor; $\mathrm{v}=$ Wind turbine velocity; $\mathrm{V}_{2}=$ exit velocity of wind; $\omega=$ angular velocity of blade; $\mathrm{v}=\mathrm{n}$ - bladed velocity; $\mathrm{n}=$ number of blades $=3$ (assume); $\mathrm{N}=$ speed of bladed rotor; $\theta=$ Angle separated between two blades; $\mathrm{t}_{\mathrm{a}}=$ Time taken by one blade move into the position of preceding blade; $\mathrm{TSR}=$ tip speed rate; $\mathrm{A}=$ Area of blade; $\mathrm{L}=$ Length of blade; $\mathrm{f}=$ Width of blade; $\mathrm{t}=$ Thickness of blade; H.R = Hub radius; $\mathrm{V}=$ Volume of blade; $\rho=$ density of air $=1.225 \mathrm{Kg} / \mathrm{m}^{3} ; \mathrm{A}=$ area of rotor; $\mathrm{P}_{\mathrm{MAX}}=$ Maximum exactable power; $\mathrm{C}_{\mathrm{F}}=$ Force coefficient; $\beta=1 / 3$ (feasible) or 1 (constant); $\mathrm{u}=$ Aerofoil velocity; I $=$ Angle of inclination; (L/D) = Ratio of lift to drag; $C_{L}=$ Lift coefficient; $C_{D}=$ Drag co-efficient; $C_{m o / a}=$ Moment coefficient; $\mathrm{C}_{\mathrm{DO}}=$ Profile drags co- efficient; $\mathrm{i}=$ Angle attack for infinite aspect ratio; $\mathrm{w}=$ relative velocity; $\mathrm{A}_{\mathrm{b}}=$ Blade area; $\mathrm{F}_{\mathrm{L}}=$ Lift force; $\mathrm{F}_{\mathrm{D}}=$ Drag force; $\epsilon=$ Eiffel polar; $\mathrm{i}=$ Angle attack for infinite aspect ratio; $\alpha=$ Pitch angle; $\mathrm{P}_{\mathrm{M}}=$ power speed characteristic; $C_{P}=$ power co-efficient; $C_{T}=$ Torque co-efficient $=C_{P} / \lambda=0.1666 ; T_{M}=$ Torque speed characteristic; $\mathrm{b}_{\mathrm{P}}=$ width of profile $=0.106 \mathrm{~m} ; v^{\prime}=$ kinematic viscosity; $\mu=$ absolute dynamic viscosity $=10^{-5} \mathrm{~Pa}=$ $10^{-5} \mathrm{~N} / \mathrm{m}^{2}$ (for air); $\mu=8.16 \times 10^{-6} ; \eta_{\mathrm{a}}=$ aero dynamic efficiency
3.1.2 Calculation of rotor diameter

Power, $P=P_{O} \eta_{E} \eta_{M} C_{P}$
In the absence of above data we use fast or slow rotor formula as shown below
For slow rotor, $\mathrm{P}=0.15 \mathrm{D}^{2} \mathrm{~V}_{\infty}{ }^{3}$
For fast rotor, $\mathrm{P}=0.2 \mathrm{D}^{2} \mathrm{~V}_{\infty}{ }^{3}$
We use the fast rotor formula to calculate diameter
$\mathrm{D}=17.42 \mathrm{~m} ; \mathrm{R}=8.71 \mathrm{~m}$

3.1.3 Circumference, swept area of rotor

Circumference of rotor $=\pi \times D=54.72 \mathrm{~m}$
$\mathrm{A}_{\mathrm{S}}=\pi \times \mathrm{R}^{2}=238.33 \mathrm{~m}^{2}$

3.1.4 wind variation calculation

Axial interference factor, $v=V_{\infty}(1-a)$
$=\frac{2}{3} V_{\infty}=2.6 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=0.3333$
$\mathrm{V}_{2}=2 \mathrm{v}-\mathrm{V}_{\infty}=1.3 \mathrm{~m} / \mathrm{s}$

3.1.5

Calculation
of
number
of
blades
Figure 2. windmill specification

$$
\begin{equation*}
\frac{\omega}{v} \approx \frac{2 \pi}{n D} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\omega=\frac{2 \pi N}{60} \tag{10}
\end{equation*}
$$

3.1.6 velocity of wind turbine rotor

$$
\begin{equation*}
V=\frac{\pi D N}{60}=2.723 \mathrm{~m} / \mathrm{s} \tag{11}
\end{equation*}
$$

Figure 3. wind transfer specification
3.1.7 Angle separated between two blades

$$
\begin{equation*}
\theta=\frac{360}{\mathrm{n}}=120^{\circ} \tag{12}
\end{equation*}
$$

3.1.8 Time taken by one blade move into the position of preceding blade
$\mathrm{t}_{\mathrm{a}}=\frac{2 \pi}{\mathrm{n} \omega}=6.7 \mathrm{sec}$
3.1.9 Time taken for turbine disturbed by wind
$t_{b}=\frac{D}{v}=6.7 \mathrm{sec}$
3.1.10 Calculation of hub radius, Length of blade, thickness of blade, width of blade
H.R $=0.14 \times \mathrm{R}=1.22 \mathrm{~m} ; \mathrm{L}=0.86 \times \mathrm{R}=7.49 \mathrm{~m} ; \mathrm{t}=0.2 \times \mathrm{L}=$ $1.50 \mathrm{~m} ; \mathrm{f}=0.1 \times \mathrm{t}=0.15 \mathrm{~m}$

3.1.11 Area and Volume of blade

$\mathrm{A}=\mathrm{Lf}=1.1235 \mathrm{~m}^{2}$
$\mathrm{V}=\mathrm{Lft}=1.69 \mathrm{~m}^{3}$

Figure 4. blade specification
3.1.12 Power contaminated in wind
$P_{O}=\frac{\rho A V_{\infty}^{3}}{2}$
$\mathrm{A}=\pi \times \mathrm{R}^{2}=238.33 \mathrm{~m}^{2}$
$\mathrm{P}_{0}=8659.37 \mathrm{~W}$
3.1.13 Maximum exactable power
$\mathrm{P}_{\mathrm{MAX}}=\frac{16}{27} \mathrm{P}_{\mathrm{O}}=5131.47 \mathrm{~W}$
3.1.14 Calculation of tip speed rate

$$
\begin{equation*}
\text { revolutions }(\text { rpm })=\frac{V_{\infty} \times T S R \times 60}{6.28 \times R} \tag{19}
\end{equation*}
$$

$\mathrm{TSR}=7$
Tip speed rate $=\frac{\text { blade tip speed }}{\text { wind velocity }}$
Blade tip speed $=27.23 \mathrm{~m} / \mathrm{s}$
3.1.15 Force coefficient

$$
\begin{equation*}
C_{F}=\frac{27}{8} \frac{P_{M A X}}{P_{o}}=2 \tag{21}
\end{equation*}
$$

3.1.16 Aerofoil velocity

$$
\begin{equation*}
\frac{u}{V_{\infty}}=\beta \tag{22}
\end{equation*}
$$

$\mathrm{u}=1.3$

3.1.17 Angle of inclination
 $$
\begin{equation*} I=\cot ^{-1} \frac{u}{v}=63.4^{0} \tag{23} \end{equation*}
$$

3.1.18 Power co-efficient
$\mathrm{C}_{\mathrm{P}}=\frac{\text { Power output from wind turbine }}{\text { power contaminated in wind }} \times 100$
$C_{P}=0.4142 \times 100=41.42 \approx 40 \%$
From aerofoil data sheet National Advisory Committee of Aeronautics NACA 4412,

$$
(\mathrm{L} / \mathrm{D})=20 ; \mathrm{C}_{\mathrm{L}}=1 ; \mathrm{C}_{\mathrm{D}}=0.20 ; \mathrm{C}_{\mathrm{mc} / \mathrm{a}}=-0.08 ; \mathrm{C}_{\mathrm{DO}}=0.01 ; \mathrm{i}=-2
$$

3.1.19 Lift force
$F_{L}=\frac{1}{2} \rho A_{b} w^{2} C_{L}$
$\mathrm{w}=\sqrt{u^{2}+v^{2}}=2.91 \mathrm{~m} / \mathrm{s}$
$\mathrm{F}_{\mathrm{L}}=5.824 \mathrm{~N}$

3.1.20 Drag force

$F_{D}=\frac{1}{2} \rho A_{b} w^{2} C_{D}=1.16 \mathrm{~N}$
3.1.21 Aerodynamic forces in aerofoil moving in direction of the wind
where, $F_{D}=$ Drag force; $F_{L}=$ Lift force; $u=$ Aerofoil velocity; V wind velocity

3.1.22 Tangent to the Eiffel polar

Figure 5. Aerodynamic force in aerofoil
$\operatorname{Tan} \in=\frac{\mathrm{C}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{L}}}$
$\epsilon=21.8^{0}$
3.1.23 Calculation of pitch angle
$\alpha=\mathrm{I}-\mathrm{i}=65.4$

3.1.24 Calculation of specific rated capacity

$\mathrm{SRC}=\frac{\text { power rating of the generator }}{\text { rotor swept area }}=7.553$
3.1.25 Calculation of power speed characteristic
$\mathrm{P}_{\mathrm{M}}=\frac{\rho \mathrm{C}_{\mathrm{P}} \pi \mathrm{R}^{2} \mathrm{~V}_{\infty}{ }^{3}{ }^{3}}{2}=3593.57 \mathrm{~W}$

3.1.26 Torque speed characteristic

$\mathrm{T}_{\mathrm{M}}=\frac{\mathrm{P}_{\mathrm{M}}}{\omega}$ or $T_{M}=\frac{1}{2} \rho C_{T} \pi R^{3} V_{\infty}{ }^{3}=12570.51 \mathrm{~N}-\mathrm{m}$
3.1.27 Calculation of Reynolds number
$R_{E}=\frac{V_{\infty} b_{p}}{v^{\prime}}$
$v^{\prime}=\frac{\mu}{\rho}$
$R_{E}=2.1 \times 10^{5}$
3.1.28 Calculation of aero dynamic efficiency
$\eta_{\mathrm{A}}=\frac{1-(\operatorname{Tan} \in \operatorname{Cot} I)}{1+(\operatorname{Tan} \in \operatorname{Tan} I)} \times 100=44.45 \%$

3.2. Design of Tower

From the table 1, required power is 3.6 KW . So, we taken as 20 m

3.3. Yaw control

The yaw control mechanism is used to control the speed of rotor. when fan tail is placed perpendicular to the main turbine. so that the thrust force

Table 1. Tower height selection

Power	Tower height
Upto 100 KW	Upto 30 m
$100-300 \mathrm{KW}$	$30-35 \mathrm{~m}$
$300-500 \mathrm{KW}$	$35-40 \mathrm{~m}$
Above 500 KW	Above 40 m

automatically pushes the turbine in the direction of wind.

3.4. Design or Selection of Generator

If the required power of different generators are present in market at low speed, we used that generator to make a gear design. Until, we design the gear to design the generator. The selected generator is Permanent Magnet D.C. Generator and required power is 3600 W present in market at low speed of 480 rpm and model name is GL $-\mathrm{PMG}-$ 1800. Specification is given below:

Electrical Specification	
Rated Output Power(W):	1800
Rated Rotatoin Speed (RPM):	480
Recified DC Current at Rated Output (A):	6
Requied Torque at Rated Power:	44.5
Phase Resistance (Ohms):	5.0
Output Wire Square Section (mm):	4
Output Wire Length (mm):	600
Insultation:	H Class
Generator configuration:	3 Phase star connected AC output
Design Lifetime:	>20 years

Material Specification	
Shaft Material:	High standard Stainless Steel
Shaft Bearing:	High standard SKF or NSK bearing
Outer Frame Material:	High standard Aluminium alloy with TF/T6 heat treatment
(TF/T6 full heat treatment for increasing the performance of aluminium alloy as follows. Heat 4-12 hours at 525-545 degrees Celsius, quench with hot water, and precipitation heat treatment for 8-12 hours at 155-175 degrees Celsius.)	
Fasteners (nuts and bolts):	High standard Stainless Steel
Windings Temperature Rating:	180 degrees Celsius
Magnet Material:	NdFeB (Neodymium Iron Boron)
Magnets Temperature Rating:	150 degrees Celsius
Lamination Stack:	High specification cold-rolled Steel

Figure 6. Specification of D.C. generator

3.5. Design of gear

3.5.1 Gear name: Straight Bevel Gear.
(NOTE: From PSG data book pg. no: 8.38, 8.39, 1.40, 8.53, 8.18, 8.51, 8.15, 8.17, 8.14, 8.16, 8.13, 8.13A)

Figure 7. Specification of straight bevel gear

Figure 8. Yawn control

Nomenclature for Gears: $\mathrm{N}_{2}=$ driver gear speed (Turbine speed $=2.985 \mathrm{rpm}$); $\mathrm{N}_{1}=$ driven gear speed $=480 \mathrm{rpm}$; $\mathrm{i}=$ Transmission ratio; $\mathrm{Z}_{1}=$ No. of teeth in driven gear $\geq 7=7 ; \mathrm{Z}_{2}=$ No. of teeth in driver gear; $\delta_{2}=$ Pitch angle of driver gear; $\delta_{1}=$ Pitch angle of driven gear; $\mathrm{Z}_{\mathrm{V} 1}=$ Virtual number of teeth of driven gear; $\mathrm{Z}_{\mathrm{V} 2}=$ Virtual number of teeth of driver gear; $\mathrm{P}=$ Rated power $=3600 \mathrm{~W} ; \mathrm{K}_{\mathrm{O}}=$ Correction factor, 2 (assume high shock); $\mathrm{V}=$ Velocity of driven gear; $\mathrm{F}_{\mathrm{T}}=$ tangential load on tooth; $\mathrm{d}_{1}=$ diameter of driven gear, $\left(\mathrm{M}_{\mathrm{T}} \times \mathrm{Z}_{1}\right)$ millimeter; $\mathrm{M}_{\mathrm{T}}=$ transverse module; $\mathrm{F}_{\mathrm{D}}=$ dynamic load; $\mathrm{C}_{\mathrm{V}}=$ velocity factor; $\mathrm{b}=$ face width $=10 \mathrm{M}_{\mathrm{T}} ; \sigma_{\mathrm{B}}=$ bending stress for alloy steel $126 \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{R}=$ cone distance; $\mathrm{y}^{\prime}=$ lewis form factor; $\mathrm{C}=$ errors in action; $\mathrm{e}=$ Errors of tooth profile; $\mathrm{V}=$ mean velocity; $\mathrm{Q}^{\prime}=$ Ratio factor; $\mathrm{K}_{\mathrm{w}}=$ Wear factor; $\mathrm{n}=$ speed of driven gear; $\mathrm{T}=$ life time in hrs; $\mathrm{N}=$ Life time in cycles; , $\mathrm{M}_{\mathrm{\tau}}=$ nominal twisting moment transmitted by driven gear; $\mathrm{K}_{\mathrm{d}}=$ dynamic load factor; $\mathrm{K}=$ load concentration factor; $\mathrm{K}_{\mathrm{BL}}=$ life factor for bending; $\sigma_{-1}=$ endurance limit stress in bending $\left(\sigma_{U}+\sigma_{Y}\right)+120 ; \sigma_{U}=$ ultimate tensile stress $=700 \mathrm{~N} / \mathrm{mm}^{2} ; \sigma_{\mathrm{Y}}=$ yield stress $=360 \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{n}=$ factor of safety $=2 ; \mathrm{k}_{\sigma}=$ fillet stress concentration of factor $=1.2 ; \mathrm{C}_{\mathrm{R}}=$ coefficient depending on the surface hardness, 22 ; $\mathrm{HRC}=$ brinell or rockwel hardness number, $55-63 \approx 59 ; \mathrm{K}_{\mathrm{CL}}=$ life factor, 1 ; $\psi_{\mathrm{Y}}=1 ; \mathrm{E}_{\mathrm{eq}}=$ Equivalent young's modulus; $\left[\sigma_{\mathrm{C}}\right]=$ Compressive stress; $\mathrm{M}_{\mathrm{T}}=$ nominal twisting moment transmitted by driven gear; $\mathrm{K}_{\mathrm{d}}=$ dynamic load factor $=1.2 ; \mathrm{K}=$ load concentration factor $=1.02$.

3.5.2 Calculation of transmission ratio

$i=\frac{N_{1}}{N_{2}}=160.80 \approx 161$

3.5.3 Calculation of number of teeth

$\mathrm{Z}_{2}=\mathrm{i} \mathrm{Z}_{1}=1127$

3.5.4 Material

For pinion: C 45 (Forged steel, Case hardened)
Allowable static stress $\sigma_{\mathrm{B}}=126 \mathrm{~N} / \mathrm{mm}^{2}$; Compersible static stress $\sigma_{\mathrm{C}}=1150 \mathrm{~N} / \mathrm{mm}^{2}$; Tensile strength $\sigma_{\mathrm{U}}=700$ $\mathrm{N} / \mathrm{mm}^{2}$; Yield point stress $\sigma_{\mathrm{y}}=360 \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{BHN}=229$
For wheel: Case steel graded
3.5.5 Calculation of pitch angles and virtual number of teeth

Pitch angles, $\delta_{2}=\operatorname{Tan}^{-1} \mathrm{i}=89.64^{\circ}$
$\delta_{1}=90^{\circ}-\delta_{2}=0.356^{0}$

Virtual number of teeth，$\quad Z_{V 1}=\frac{Z_{1}}{\operatorname{Cos} \delta_{1}}=7$
$Z_{V 2}=\frac{Z_{2}}{\operatorname{Cos} \delta_{2}}=179368.8 \approx 179369$

3．5．6 Calculation of tangential load on tooth $\left(F_{T}\right)$

$\mathrm{F}_{\mathrm{T}}=\frac{\mathrm{P}}{\mathrm{V}}$ 譑 $_{\mathrm{o}}$
$\mathrm{V}=\frac{\pi \text { 譫 }{ }^{\text {譔 }}{ }_{1}}{60}$
$\mathrm{V}=0.1759 \mathrm{M}_{\mathrm{T}} \mathrm{m} / \mathrm{s}$ ．
$\mathrm{F}_{\mathrm{T}}=\frac{40925.557}{M_{T}} \mathrm{~N}$

3．5．7 Calculation of dynamic load（ F_{D} ）
$\mathrm{F}_{\mathrm{D}}=\frac{\mathrm{F}_{\mathrm{T}}}{\mathrm{C}_{\mathrm{V}}}$

$$
\begin{equation*}
C_{v}=\frac{5.6}{5.6+\sqrt{V}} \tag{45}
\end{equation*}
$$

Where， $\mathrm{V}=$ velocity， $5 \mathrm{~m} / \mathrm{s}$（assume）
$\mathrm{C}_{\mathrm{V}}=0.715 ; \quad F_{T}=\frac{57238.541}{M_{T}} \mathrm{~N} \rightarrow(1)$

3．5．8 Calculation of beam strength $\left(F_{S}\right)$
$\mathrm{F}_{\mathrm{S}}=\pi \mathrm{M}_{\mathrm{T}} \mathrm{b} \sigma_{\mathrm{B}} \mathrm{y}^{\prime} \frac{(\mathrm{R}-\mathrm{b})}{\mathrm{R}}$
$y^{\prime}=0.154-\frac{0.912}{Z_{v 1}}$
$y^{\prime}=0.1084$［for 20^{0} involute］
$\mathrm{R}=0.5$ 譓 T 譠 $\sqrt{2}+\mathrm{Z}_{2}^{2}=563.511 \mathrm{M}_{\mathrm{T}}$
$\mathrm{F}_{\mathrm{S}}=421.476 \mathrm{M}_{\mathrm{T}}{ }^{2} \rightarrow(2)$

3.5.9 Calculation of transverse module

From (1) and (2), $\mathrm{F}_{\mathrm{S}} \geq \mathrm{F}_{\mathrm{T}}$
$\mathrm{M}_{\mathrm{T}} \geq 4.59 \mathrm{~mm} \approx 5 \mathrm{~mm}$
3.5.10 Calculation of b, V, d

Face width, $\mathrm{b}=10 \mathrm{M}_{\mathrm{T}}=50 \mathrm{~mm}=0.05 \mathrm{~m}$
Reference diameter, $\mathrm{d}_{1}=\mathrm{M}_{\mathrm{T}} \times \mathrm{Z}_{1}=35 \mathrm{~mm}=0.035 \mathrm{~m}$
$\mathrm{d}_{2}=\mathrm{M}_{\mathrm{T}} \times \mathrm{Z}_{2}=5635 \mathrm{~mm}=5.635 \mathrm{~m}$
Velocity, $V=\frac{\pi \text { 譫 }_{\text {I }} \text { 譔 }_{1}}{60}=0.879 \mathrm{~m} / \mathrm{s}$
3.5.11 Revision of beam strength
$\mathrm{F}_{\mathrm{S}}=\pi \mathrm{M}_{\mathrm{T}} \mathrm{b} \sigma_{\mathrm{B}} \mathrm{y}^{\prime} \frac{(\mathrm{R}-\mathrm{b})}{\mathrm{R}}$
$\mathrm{R}=563.511 \mathrm{M}_{\mathrm{T}}=2817.555 \mathrm{~mm}=2.8176 \mathrm{~m}$
$\mathrm{F}_{\mathrm{S}}=10536.9 \mathrm{~N}$
3.5.12 Calculation of accurate dynamic load
$\mathrm{F}_{\mathrm{D}}=\mathrm{F}_{\mathrm{T}}+\frac{21 \mathrm{~V}\left(\mathrm{bC}+\mathrm{F}_{\mathrm{T}}\right)}{21 \mathrm{~V}+\sqrt{\left(\mathrm{bC}+\mathrm{F}_{\mathrm{T}}\right)}}$
$\mathrm{C}=8150 \mathrm{e} ; \mathrm{e}=0.022 ; \mathrm{C}=179.3 \mathrm{~mm}$
$\mathrm{F}_{\mathrm{T}}=\frac{\mathrm{P}}{\mathrm{V}}=4.09556 \mathrm{~N}($ in mm $)$
$\mathrm{F}_{\mathrm{D}}=8927.4 \mathrm{~N} \rightarrow(4)$

3.5.13 Check the beam strength

From (3) and (4), $\mathrm{F}_{\mathrm{D}} \leq \mathrm{F}_{\mathrm{S}}$; So, design is safe and satisfactory.
3.5.14 Calculation of maximum wear load
$\mathrm{F}_{\mathrm{w}}=\frac{0.75 \mathrm{~d}_{1} \mathrm{bQ}^{\prime}\left(\mathrm{K}_{\mathrm{w}}\right)}{\operatorname{Cos} \delta_{1}}$
$\mathrm{Q}^{\prime}=\frac{2 \mathrm{Z}_{\mathrm{V} 2}}{\mathrm{Z}_{\mathrm{V} 1}+\mathrm{Z}_{\mathrm{V} 2}}=1.980$
$\mathrm{K}_{\mathrm{w}}=0.919 \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{F}_{\mathrm{W}}=2388.297 \mathrm{~N} \rightarrow(5)$

3.5.15 Check for beam strength

From (5) and (4), $\mathrm{F}_{\mathrm{D}} \leq \mathrm{F}_{\mathrm{W}}$

Vol 3, No 7, 2012
So, design is safe and satisfactory.

3.5.16 Gear life

Life time: $10,00,000 \mathrm{hrs}$ (assume)
$\mathrm{N}=60 \mathrm{n} \mathrm{T}=2.88 \times 10^{10}$ cycles
3.5.17 Calculation of twisting moment
$\left[M_{\tau}\right]=M_{\tau} \times \mathrm{K} \mathrm{x} \mathrm{K}_{\mathrm{d}}$
WhereK. $\mathrm{K}_{\mathrm{d}}=1.3$
$\mathrm{M}_{\mathrm{T}}=\frac{\mathrm{P} ? \quad 0}{2 \pi \mathrm{~N}_{1}}=71.61972 \mathrm{~N}-\mathrm{m}$
$\left[M_{\tau}\right]=93.105 \mathrm{~N}-\mathrm{m}$
3.5.18 Calculation of $E_{\text {eq }},\left[\sigma_{B}\right],\left[\sigma_{C}\right]$

Equivalent young's modulus $\mathrm{E}_{\text {eq }}=2.15 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
Bending stress $\left[\sigma_{\mathrm{B}}\right]=\frac{\mathrm{K}_{\mathrm{BL}} \sigma_{-1}}{\mathrm{nK}}$
$\sigma_{-1}=0.22\left(\sigma_{\mathrm{U}}+\sigma_{\mathrm{Y}}\right)+120=353.2 \mathrm{~N} / \mathrm{mm}^{2}$
bending stress $\left[\sigma_{\mathrm{B}}\right]=103.01 \mathrm{~N} / \mathrm{mm}^{2}$
Compressive stress, $\left[\sigma_{C}\right]=C_{R} \times H R C \times K_{C L}=1122 \mathrm{~N} / \mathrm{mm}^{2}$
3.5.19 Calculation of cone distance
$\mathrm{R} \geq \psi_{\mathrm{Y}} \sqrt{\left(\mathrm{i}^{2}+1\right)} \sqrt[3]{\frac{\mathrm{E}_{\mathrm{eq}} \mathrm{M}_{\mathrm{T}}}{\mathrm{i}} \times\left(\frac{0.72}{\left(\psi_{\mathrm{Y}}-0.53\right)\left[\sigma_{\mathrm{C}}\right]}\right)^{2}}$
$\mathrm{R} \geq 0.5688$
3.5.20 Revision of center distance
$\mathrm{R}=$ cone distance $=0.5$ 譓 T 譠 ${ }_{1}^{2}+\mathrm{Z}_{2}^{2}=563.51 \mathrm{~mm}$
Design is satisfactory
3.5.21 Calculation of ψ_{Y}
$\psi_{\mathrm{Y}}=\mathrm{b} / \mathrm{d}_{1}=1.428$

3.5.22 Select the suitable quality

The preferred quality is 10 or 12 .
IS quality is coarse.
3.5.23 Revision of design torque
$\left[M_{\tau}\right]=M_{\tau} \times K_{x} K_{d}=87.6 \mathrm{~N}-\mathrm{mm}$
3.5.24.Calculation of revision of bending stress
$\sigma_{B}=\frac{R \sqrt{i^{2}+1}\left[M_{T}\right]}{(R-0.5 b)^{2} b M_{T} Y_{V 1}}$
Where, $\mathrm{Y}_{\mathrm{V} 1}=0.389$
$\sigma_{\mathrm{B}}=0.0455 \mathrm{~N} / \mathrm{mm}^{2}$
3.5.25 Check for bending
$\sigma_{B} \leq\left[\sigma_{B}\right]$; Therefore, design is safe and satisfactory
3.5.26 Calculation of revision of wear strength
$\sigma_{C}=\frac{0.72}{R-0.5 b}\left[\frac{\sqrt{\left(i^{2}+1\right)^{3}}}{i b} E_{e q}\left[M_{T}\right]\right]^{\frac{1}{2}}=132.1 \mathrm{~N} / \mathrm{mm}^{2}$
3.5.27 Check for wear strength
$\sigma_{C} \leq\left[\sigma_{C}\right]$; Therefore, design is safe and satisfactory
3.5.28 Basic calculations

Transverse module, $\mathrm{M}_{\mathrm{T}}=5 \mathrm{~mm}$
No. of teeth, $Z_{1}=7 ; Z_{2}=1127$
Cone distance, $\mathrm{R}=563.51 \mathrm{~mm}$
Face width, $\mathrm{b}=50 \mathrm{~mm}$
Pitch angle, $\delta_{1}=0.356^{\circ} ; \delta_{2}=89.64^{0}$
Reference diameter, $\mathrm{d}_{1}=\mathrm{M}_{\mathrm{T}} \times \mathrm{Z}_{1}=35 \mathrm{~mm}$

$$
\mathrm{d}_{2}=\mathrm{M}_{\mathrm{T}} \times \mathrm{Z}_{2}=5635 \mathrm{~mm}
$$

Tip diameter, $\mathrm{d}_{\mathrm{a} 1}=\mathrm{M}_{\mathrm{T}}\left(\mathrm{Z}_{1}+\operatorname{Cos} \delta_{1}\right)=20.995 \mathrm{~mm}$

$$
\mathrm{d}_{\mathrm{a} 2}=\mathrm{M}_{\mathrm{T}}\left(\mathrm{Z}_{2}+\operatorname{Cos} \delta_{2}\right)=
$$

200.099 mm

Height factor, $\mathrm{f}_{0}=1$
Addendum angle, $\begin{array}{r}\operatorname{Tan} \theta_{\mathrm{a} 1}=\operatorname{Tan} \theta_{\mathrm{a} 2}=\frac{\mathrm{M}_{\mathrm{T}} \mathrm{f}_{0}}{\mathrm{R}} \\ \theta_{\mathrm{a} 1}=\theta_{\mathrm{a} 2}=0.57^{\circ}\end{array}$
Dedendum angle,

$$
\begin{array}{r}
\operatorname{Tan} \theta_{\mathrm{f} 1}=\operatorname{Tan} \theta_{\mathrm{f} 2}=\frac{\mathrm{M}_{\mathrm{T}}\left(\mathrm{f}_{0}+C\right)}{\mathrm{R}} \\
\theta_{\mathrm{f} 1}=\theta_{\mathrm{f} 2}=0.0119^{\circ}
\end{array}
$$

Whole depth: $\mathrm{h}=1.2 \mathrm{M}_{\mathrm{T}}=1.2 \mathrm{~mm}$
Middle circle diameter:
$\mathrm{d}_{\mathrm{m} 1}=\mathrm{d}_{1}-\mathrm{b} \sin \delta_{1}=10.05 \mathrm{~mm}$
$\mathrm{d}_{\mathrm{m} 2}=\mathrm{d}_{2}-\mathrm{b} \operatorname{Cos} \delta_{2}=100.05 \mathrm{~mm}$
Addendum: $\mathrm{h}_{\mathrm{a} 1}=\mathrm{h}_{\mathrm{a} 2}=\mathrm{M}_{\mathrm{T}}=1 \mathrm{~mm}$
Dedendum: $\mathrm{h}_{\mathrm{fl}}=\mathrm{h}_{\mathrm{f} 2}=1.2 \mathrm{M}_{\mathrm{T}}=1.2 \mathrm{~mm}$
Face angle:
$\delta_{a 1}=\delta_{1}+\theta_{\mathrm{a} 1}=6.281^{0}$
$\delta_{\mathrm{a} 2}=\delta_{2}+\theta_{\mathrm{a} 2}=71.63^{0}$
Back cone distance:
$\mathrm{R}_{\mathrm{a} 1}=\mathrm{R} \tan \delta_{1}=10.05 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{a} 2}=\mathrm{R} \tan \delta_{2}=1005.1 \mathrm{~mm}$
Middle module: $\mathrm{M}_{\mathrm{m}}=\mathrm{d}_{\mathrm{m} 1} / \mathrm{Z}_{1}=0.5025 \mathrm{~mm}$
Crown height:
$\mathrm{C}_{\mathrm{h} 1}=\left(\mathrm{d}_{2} / 2\right)-\left(\mathrm{M}_{\mathrm{T}} \sin \delta_{1}\right)=99.9 \mathrm{~mm}$
$\mathrm{C}_{\mathrm{h} 1}=\left(\mathrm{d}_{1} / 2\right)-\left(\mathrm{M}_{\mathrm{T}} \sin \delta_{2}\right)=9.0 \mathrm{~mm}$

Shift angle: $\Sigma=\delta_{1}+\delta_{2}=90^{\circ}$

4. Conclusions

This paper presents a new methodology for power generation using two same generators of single rotor, further advantage of the method is cost efficient and generating high power with a same torque. Theoretical analysis and experimental work is carried out confirm validity of the analytical work.

5. References

S. N. Bhadra, D. kastha, S. Banerjee (2005), wind electrical system, New Delhi: oxford university press, ISBN - 13: 978-0-19-567093-6; ISBN - 10: 0-19-567093-0.

Faculty of mechanical engineering (2011), design data book of engineering, Coimbatore: kalaikathir achagam page no.: 1.40, 8.1-8.53.
Fujin Deng, Zhe Chen (2010), wind turbine based on multiple generators drive-train configuration, E-ISBN: 978-1-4244-8509-3, Print ISBN: 978-1-4244-8508-6 page no.: 1-8.
Shigley J. E., Mischke. C.R., Mechanical Engineering Design, Sixth Edition, Tata Mcgraw - Hill, 2003.
Ugural A. C., Mechanical Design An Integrated Approach, Mcraw - Hill, 2003.
Bhandari. V. B., Design of Machine Elements, Tata Mcgraw - Hill Publishing Company Ltd., 1994.

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

JournalTOCs

PKP | public knowlidgef project

GEORGETOWNUNIVERSITY
LIBRARY

