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Abstract 

Plates are being increasingly used in the aeronautical and aerospace industry as well as in other fields of 

modern technology. Plates with variable thickness are of great importance in a wide variety of engineering 

applications i.e. nuclear reactor, aeronautical field, naval structure, submarine, earth-quake resistors etc. A 

mathematical model is presented for the use of engineers and research workers in space technology; have to 

operate under elevated temperatures. It is considered that the temperatures vary linearly in one direction 

and thickness of square plate varies linearly in two directions. An approximate but quite convenient 

frequency equation is derived for a square plate by using Rayleigh-Ritz technique. Both the modes of the 

frequency are calculated by the latest computational technique, MATLAB, for the various values of taper 

parameters and temperature gradient. All the results are presented in the form of table. 

Keywords: Visco-elastic, Thermal Effect, Square plate, Vibration, Taper constant. 

1. Introduction 

With the advancement of technology, the requirement to know the effect of temperature on visco-elastic 

plates of variable thickness has become vital due to their applications in various engineering branches such 

as nuclear, power plants, engineering, industries etc. Plates are inherently associated with many mechanical 

structures which are designed to perform under extreme dynamic loading conditions. There has been a 

constant need for the light weight and high strength materials for various applications like aerospace and 

automobiles. Therefore visco-elastic materials are utilized in making structural parts of equipment used in 

modern technological industries. Further in mechanical system where certain parts of machine have to 

operate under elevated temperature, its effect is far from negligible and obviously cause non-homogeneity 

in the plate material of the materials becomes functions of space variables.   

Many researchers have analyzed the free vibration of visco-elastic plates with variable thickness for many 

years. During the past four decades, vibration of plates has become an important subject in engineering 
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applications. There are several papers about plate vibrations in open technical literature. Square plates have 

many engineering applications. These are commonly found in spacecrafts, missiles, land base vehicles, 

off-shore platforms, and underwater acoustic transducers. 

The aim of present investigation is to study the free vibration of visco-elastic square plate whose thickness 

varies linearly in both directions. It is assumed that the plate is clamped on all the four edges and its 

temperature varies linearly in one direction.  For various numerical values of thermal gradient and taper 

constants; frequency at different points for the first two modes of vibration are evaluated with the help of 

MATLAB. All the numerical calculations will be carried out using the material constants of alloy 

'Duralium'. All results are shown in the form table. 

2. Equation of Motion and Analysis 

Differential equation of motion for visco-elastic square plate of variable thickness in Cartesian coordinate is 

in equation (2.1): 

     1 xxxx xxyy yyyy 1 x xxx xyy 1,y yyy yxx

2

1,xx xx yy 1,yy yy xx 1,xy xy

[D W, 2W, W,  2D , W, W,  2D W, W,

D (W, W, ) D (W, W, ) 2(1 )D W, ] hp W  0      

      

      
                  (2.1) 

which is a differential equation of transverse motion for non-homogeneous plate of variable thickness.  

Here, D1 is the flexural rigidity of plate i.e.  

    
3 2

1 /12(1 )D Eh v                (2.2) 

and corresponding two-term deflection function is taken as  

2

1 2[( / )( / )(1 / )(1 / )] [ ( / )( / )(1 / )(1 / )]W x a y a x a y a A A x a y a x a y a                           (2.3) 

Assuming that the square plate has a steady one dimensional temperature distribution i.e. 

 0(1 / )x a          (2.3) 

where τ  denotes the temperature excess above the reference temperature at any point on the plate and 0τ  

denotes the temperature at any point on the boundary of plate and “a” is the length of a side of square plate. 

The temperature dependence of the modulus of elasticity for most of engineering materials can be 

expressed in this form, 

  γτ-10EE                (2.4) 

where, E0 is the value of the Young's modulus at reference temperature i.e. 0τ   and γ  is the slope of 

the variation of E with τ . The modulus variation (2.4) become 

0[1 (1 / )]E E x a                     (2.5) 

where, 0(0 1)    
 

, a parameter. 

It is assumed that thickness also varies linearly in two directions as shown below 
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   0 1 2(1 / ) (1 / )h h x a y a   
          

         (2.8) 

where a is length of a side of square plate and 1 & 2 are taper parameters in x- & y- directions 

respectively and h=h0 at x=y=0. 

Assuming that density varies linearly in x-direction as 

0 1(1 )
x

a
                                        (2.9)  

Put the value of E & h from equation (2.5) & (2.8) in the equation (2.2), one obtain 

 
3 3 3 2

1 0 0 1 2[ [1 (1 / )] (1 / ) (1 / ) ] /12(1 )D E x a h x a y a v       
      

(2.10) 

Rayleigh-Ritz technique is applied to solve the frequency equation. In this method, one requires maximum 

strain energy must be equal to the maximum kinetic energy. So it is necessary for the problem under 

consideration that
  

* *( ) 0V T                                        (2.11) 

for arbitrary variations of W satisfying relevant geometrical boundary conditions.  

Since the plate is assumed as clamped at all the four edges, so the boundary conditions are  

             , 0xW W 
 , 

0,x a
 

             
, 0yW W 

   ,
0,y a                                  (2.12) 

Now assuming the non-dimensional variables as 

/ , / , / , /X x a Y y a W W a h h a                                    (2.13)                                

The kinetic energy T* and strain energy V* are 

1 1
* 2

0 0
]T hW dYdX    

                              (2.14) 

 and 

  
1 1

* 3 2 2 2

1 2
0 0

(1 ) {( , ) ( , ) 2 , , 2(1 )( , ) }XX YY XX YY XYV D Y W W vW W v W dYdX            (2.15) 

Using equations (2.14) & (2.15) in equation (2.11), one get 

 
** 2 2 **( ) 0V p T                                     (2.16) 

where        

1 1
** 3 3 2 2

1 2
0 0

2

[1 (1 )](1 ) (1 ) {( , ) ( , )

2 , , 2(1 )( , ) }

XX YY

XX YY XY

V X X Y W W

vW W v W dYdX

       

  

                 (2.17)                                    

 

and  
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1 1
** 2

1 1 2
0 0

[1 ][(1 )(1 ) ]T X X Y W dYdX      
                      

(2.18) 

Here,
2 2 2 2

0 012 (1 ) /v a E h  
 

is a frequency parameter. 

Equation (2.16) consists two unknown constants i.e. A1 & A2 arising due to the substitution of W. These two 

constants are to be determined as follows 

   
* * 2 * *( ) / nV T A  

 
    , n = 1, 2                       (2.19) 

On simplifying (2.19), one gets 

  1 1 2 2 0bn A bn A        , n =1, 2                        (2.20) 

where, bn1, bn2 (n=1,2) involve parametric constant and the frequency parameter. 

For a non-trivial solution, the determinant of the coefficient of equation (2.20) must be zero. So one gets, 

the frequency equation as 

                      

11 12

21 22

0
b b

b b


                 

(2.21) 

With the help of equation (2.21), one can obtains a quadratic equation in λ
2 
from which the two values of λ

 2 

can found. These two values represent the two modes of vibration of frequency i.e. λ1(Mode1) & λ2(Mode2) 

for different values of taper constant and thermal gradient for a clamped plate. 

3. Result and Discussion 

Frequency equation (2.21) is quadratic in λ
2
, so it will give two roots. A two term deflection function is 

used to give the solution. The frequency is derived for the first two modes of vibration for non-homogenous 

square plate having linearly varying thickness in both the directions, for various values of non-homogeneity 

constant, taper constant and thermal gradient. The value of Poisson ratio ν  has been taken 0.345. 

These results are tabulated in tables (1-3) for first two modes of vibration for clamped square plate. 

In Table 1:- It is clearly seen that value of frequency decreases as value of thermal gradient increases from 

0.0 to 1.0. These results have been displayed for the following three cases: 

α1=0.0, β1=0.0, β2=0.0 

α1=0.4, β1=0.4, β2=0.4 

α1=0.8, β1=0.8, β2=0.8 

In Table 2:- Also, it is observed that for both modes of vibration, the frequency decreases with increases in 

non-homogeneity constant α1 from 0.0 to 1.0. These results have been displayed for the following three 

cases: 

α =0.0, β1=0.2, β2= 0.4 

α =0.2, β1=0.4, β2= 0.4 

α =0.4, β1=0.6, β2= 0.8 

In Table 3:- It is observed that for both modes of vibration, frequency parameter increases with increases in 

taper constant β1 from 0.0 to 1.0. These results have been displayed for the following three cases: 
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α =0.0, α1=0.2, β2= 0.4 

α =0.2, α1=0.4, β2= 0.4 

α =0.4, α1=0.6, β2= 0.8 

Conclusion 

The main aim for our research is to develop a theoretical mathematical model for scientists and design 

engineers so that they can make a use of it with a practical approach, for the welfare of the human beings as 

well as for the advancement of technology. Therefore engineers are advised to analyze and develop the 

plates in the manner so that they can fulfill the requirements. 
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Table 1:- Frequency Vs Thermal gradient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2:- Frequency Vs Non-homogeneity constant. 

 

α 

α1=β1= β2= 0.0 

Mode 1      Mode 2 

α1=β1= β2= 0.4 

Mode 1     Mode 2 

α1=β1= β2= 0.8 

Mode 1     Mode 2 

0 

0.2 

0.4 

0.6 

0.8 

1 

140.88 

133.65 

126.11 

117.87 

109.12 

99.62 

35.99 

34.15 

32.19 

30.11 

27.88 

25.45 

188.87 

180.53 

171.82 

162.61 

152.84 

142.43 

48.30 

46.25 

44.12 

41.64 

39.13 

36.43 

246.74 

236.94 

226.71 

216.11 

204.75 

192.83 

63.45 

60.92 

58.27 

55.48 

52.53 

49.38 

α1 

α =0.0,β1=0.2, β2= 0.4 

Mode 1      Mode 2 

α =0.2,β1=0.4, β2= 0.4 

Mode 1    Mode 2 

α =0.4,β1=0.6, β2= 0.8 

Mode 1    Mode 2 

0 

0.2 

0.4 

188.67 

179.75 

171.99 

48.25 

45.99 

44.12 

216.83 

206.44 

197.42 

55.51 

52.92 

50.62 

247.11 

235.15 

224.68 

63.28 

60.28 

57.67 
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Table 3:- Frequency Vs Taper constant. 

 

 

 

0.6 

0.8 

1 

165.15 

159.17 

153.62 

42.28 

40.73 

39.34 

189.48 

182.48 

176.13 

48.62 

46.82 

45.22 

215.56 

207.47 

200.23 

55.37 

53.33 

51.49 

β1 

α =0.0, α1=0.2, β2= 0.4 

Mode 1       Mode 2 

α =0.2, α1=0.4, β2= 0.4 

Mode 1     Mode 2 

α =0.4, α1=0.6, β2= 0.8 

Mode 1      Mode 2 

0 

0.2 

0.4 

0.6 

0.8 

1 

162.88 

179.72 

197.52 

216.11 

235.11 

254.64 

41.65 

45.97 

50.56 

55.34 

60.27 

65.31 

163.36 

180.21 

197.96 

216.42 

235.43 

254.91 

41.80 

46.14 

50.73 

55.51 

60.44 

65.42 

163.71 

180.53 

198.29 

216.68 

235.62 

255.11 

41.91 

46.24 

50.83 

55.61 

60.51 

65.53 
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