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Abstract 

Micro Air Vehicles (MAVs) are classified as the small scale aircrafts which can be remote controlled, 

semi-autonomous and autonomous. They are highly sensitive to the wind gust and therefore the control of 

Micro Air Vehicle is a very challenging area. To control an aircraft, the first step is the precise navigation of 

the MAV and state estimation is the pre requisite. In this paper the states (roll, pitch, yaw, position and wind 

direction) are estimated with the help of Discrete Time Extended Kalman Filter operating on Inertial 

Measurement Unit (IMU) which consists of MEMS Gyro, MEMS Accelerometer, MEMS Magnetometer 

and GPS. These sensors are based on MEMS (Micro Electro Mechanical System) technique which is very 

helpful for size and weight reduction. Three techniques of Discrete Time Extended Kalman Filter are used 

named as Single state Discrete Time Extended Kalman, Cascaded Two Stage Discrete Time Extended 

Kalman Filter and Cascaded Three Stage Discrete Time Extended Kalman Filter. The simulations obtained 

from these filters are compared and analyzed. Trajectory and sensors data is recorded from Flight Simulator 

software, and then compared with the simulations obtained from Extended Kalman Filter with the help of 

MATLAB Software. 

Keywords: Micro Electro Mechanical System (MEMS), Micro Air Vehicle (MAV), Measurement 

Covariance Matrix, Process Covariance Matrix  
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                   As superscript shows the rate of change 

                   Northern Magnetic Field Component 

                   Eastern Magnetic Field Component 

                   Vertical Magnetic Field Component 

                 Process Covariance Noise Matrix 

                   Process Covariance Noise Matrix 

 

1. Introduction 

 

Real world application is the inherent driver for the majority of research in robotics [1]. It is often the 

current limitations in technology or design constraints that lead the way to new advances and often work 

around to the development of these robots. In developing these airborne entities, primary concerns are the 

size, weight, sensors, communication and the computational power [2]. The term Micro Air Vehicles 

(MAVs) [3, 4, 5] is used for a new type of remote controlled, semi-autonomous or autonomous aircraft that 

is significantly smaller than conventional air crafts [6,7]. By defense Advanced Research Project Agency 

(DARPA), Micro Air Vehicles are small (usually defined to be less than 15 cm in length and 100gms of 

weight) autonomous aircrafts which have a great potential in fact-finding missions in confined spaces or 

inside buildings, including both civilian search and rescue missions and military surveillance and 

reconnaissance missions. The vehicle must fly 30 to 60 m/sec, fast enough to overcome head winds and 

have an endurance of 20 to 60 minutes to provide adequate range and mission time. Technological 

feasibility follows from advances in several micro technologies, including the rapid evolution of Micro 

Electro Mechanical System (MEMS) technology [8, 9]. These systems combine microelectronics 

components with comparable sized mechanical elements of varying complexity to achieve useful and often 

unique functionality (e.g. integrated systems of sensors, actuators and processors). To apply Micro Electro 

Mechanical Systems (MEMS) on inertial sensors [10, 11] for the GNC of MAVs is an extremely 

challenging area. Inertial Navigation System (INS) includes MEMS gyro, Accelerometer, Magnetometer 

and barometer. MEMS inertial sensors are of utmost importance in GNC system. This system, like all other 

real systems, will be considered non-linear and it will be first linearized for the application of the Extended 

Kalman Filter (EKF) [12, 13, 14, 15].  

 

2. Mathematical Modeling of INS/GPS based State Estimation 

 

Mathematical Modeling of INS/GPS based state estimation is very important for the navigation purpose. 

Mathematical Modeling of these three filters has been extensively discussed [16] and the implementation of 

the Extended Kalman filter on the three schemes is explained in detail. The major mathematical 

relationships used are following. 

The update of the states is related to the inputs as shown following [17]: 
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Sensor Measurements [17] are related to inputs as shown following: 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

3. Cascaded Extended Kalman Filter State Estimation Schemes 

 

In the Single Seven Stage Discrete Time Extended Kalman Filter [18], the state equations which relate body 

frame rotations to changes in roll, pitch and heading are nonlinear. Letting the states be roll angle and pitch 

angle, ϕ and θ, and letting angular rates p, q and r and Airspeed Vair be inputs.  
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Figure 01: Single Seven State Extended Kalman Filter Scheme [19], 

 

 

Now consider Two Stage Cascaded Extended Kalman Filter Scheme [16].  As the heading update equation 

uses the same inputs as the Pitch and Roll equations, it is not unnatural to lump them together in the same 

estimation block. The exclusiveness of the heading state lies in the output equations. There is not a sensor 

output equation which will relate heading to accelerometer readings, which is why it was convenient to split 

heading estimation into it’s own stage as mentioned earlier. One of the merits of heading and attitude at the 

same time is that magnetometer information may be beneficial in the estimation of pitch and roll, since no 

maneuver will upset the earth’s magnetic field, as they may the accelerometer readings. And, depending on 

the attitude and heading of the MAV, projecting pitch and roll onto the magnetic field vector may refine the 

pitch and roll estimates. 

 

Figure 02: Two stage Cascaded Discrete time Extended Kalman Filter [16]. 

 

In three stage Cascaded Extended Kalman Filters [16] work independently, each imparting the information 

that it estimates to the stage below. This three stage filter assumes the least coupling.  
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Figure 03: Three stage Cascaded Discrete time Extended Kalman filter [16]. 

 

4. Result and analysis  

 

The output of the on-board sensors is mathematically modeled and filtered with the help of Single Seven 

State Discrete Time Extended Kalman Filtering. The inputs to the filter were angular rates in three 

directions and velocity of air. The state variables were roll, pitch, yaw, position and wind direction. The 

measurement variables were acceleration in all 3 directions and components of GPS. Coding was 

performed to analyze the filter's response to variable inputs and also to compare the three types of filters. 

Angular rates in three directions (p, q and r) were varied individually in the trajectory and graphs plotted of 

state variables and measured variables for different types of filters. 
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                Figure 04: Variation of angular rate in x-direction with respect to time 

 

 

The Above Graph shows the variation of angular rate in x-direction (p) with time. The angular rate in 

x-direction (p) first decreases with time and then it keeps on increasing with time. In the end of flight 

maneuver the angular rate in x direction (p) with time decreases. 
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Figure 05: Variation of angular rate in y-direction with respect to time 

 

The Above Graph shows the variation of angular rate in y-direction (q) with time. The angular rate in 

y-direction (q) first decreases with time and then it keeps on increasing with time. In the end of flight 

maneuver the angular rate in y direction (q) with time decreases. 
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Figure 06: Variation of angular rate in z-direction with respect to time 

The Above Graph shows the variation of angular rate in z-direction (r) with time. The angular rate in 

z-direction (r) first decreases with time and then it keeps on increasing with time. In the end of flight 

maneuver the angular rate in z-direction (r) with time decreases. 
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Figure 07: Variation of velocity with respect to time 

 

The Above Graph shows the variation of velocity (Vair) with time. The velocity (Vair) first decreases with 

time and then it keep on increasing with time. In the end of flight maneuver the velocity (Vair) with time 

decreases. 
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Figure 08: x-Accelerometer Output Versus Time 

The above graph shows the variation of accelerometer output with respect to the time. The blue trajectory 

shows the actual recorded trajectory. The variation in this trajectory shows the combination of process noise 

and measurement noise. This is because the accelerometer output does not only depend upon the inputs (p, 

q, r and Vair) but it also depends on the different state variables. 
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Figure 09: y-Accelerometer Output Versus time 
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The above graph shows the variation of accelerometer output in y-direction with respect to time. It 

decreases first with time and then it increases for some time. Then again it goes down with time and after 

that it increases again. The accelerometer output depends on the body dynamics and the gravitational 

acceleration as well. 
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Figure 10: z-Accelerometer Output Versus time 

The above graph shows the variation of accelerometer output in z- direction with respect to the time and the 

comparison of the single seven state discrete time extended Kalman filter, two stage cascaded extended 

Kalman filter and three stage extended Kalman filter is carried out. 

 

0 100 200 300 400 500
1000

1100

1200

1300

1400

1500

1600

1700

1800

GPS n with Time

 Time

G
P

S
 n

 

 
True

Estimated single stage

Estimated 2 stage

Estimated 3 stage

 

Figure 11: GPS northing Versus Time 
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The above graph shows the variation of GPS reading in north direction with respect to time. GPSn shows 

that the MAV is going towards north direction but at some points it moves in south direction but overall it 

follows a northward movement. 
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Figure 12: GPS Easting Versus Time 

 

The above graph shows the variation of GPS reading in east direction with respect to time. GPSe shows 

that the MAV is going towards west direction but at some points it moves in east direction but overall it 

follows a westward movement. 
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Figure 13: GPS Velocity Versus Time 

 

The above graph shows the variation of GPS velocity with respect to the time. GPS velocity actually 

represents the velocity of MAV. There is an unsymmetrical sinusoidal curve followed by the MAV’s 

velocity with respect to time which shows that the velocity of MAV increases and decreases repeatedly. 
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Figure 14: GPS heading Versus Time 

 

The above graph shows the variation of GPS heading with respect to time. GPS heading actually represents 

the heading of the MAV. GPS heading is dependent on the yaw angle, Vair, wind in north and east direction 
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(Wn and We). So basically it is dependent on four parameters and the variation cannot be justified with the 

variation of a single parameter. But the actual variation of aircraft heading is shown with time and it 

increases and decreases again and again. 

 

5. Conclusion 

 

In all the simulations, the Single Seven State is most accurate, stable and showing least drift as compare to 

the remaining two filters. Even though the single seven state discrete time extended Kalman filter is 

computationally heavier than the other two cascaded filter schemes but the result produced by this filter are 

much more accurate and stable. 
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