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Abstract 

Visco-elastic Square plates are widely used in various mechanical structures, aircrafts and industries. For a 

proper design of plate structures and efficient use of material, the behavior and strength characteristics of 

plates should be accurately determined. A mathematical model is presented for the use of engineers, 

technocrats and research workers in space technology, mechanical Sciences have to operate under elevated 

temperatures. Two dimensional thermal effects on frequency of free vibrations of a visco-elastic square 

plate of variable thickness are considered. In this paper, the thickness varies parabolically in both direction 

and thermal effect is varying linearly in one direction and parabolic in another direction. Rayleigh Ritz 

method is used to evaluate the fundamental frequencies. Both the modes of the frequency are calculated by 

the latest computational technique, MATLAB, for the various values of taper parameters and temperature 

gradient.  

Keywords: Visco-elastic, Plate, Square Plate,Vibration, Thermal gradient, Frequency.  
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In the engineering we cannot move without considering the effect of vibration because almost all machines 

and engineering structures experiences vibrations. As technology develops new discoveries have intensified 

the need for solution of various problems of vibrations of plates with elastic or visco-elastic medium. Since 

new materials and alloys are in great use in the construction of technically designed structures therefore the 

application of visco-elasticity is the need of the hour. Plates with thickness variability are of great 

importance in a wide variety of engineering applications. 

Many researchers have analysed the free vibration of visco-elastic plates with variable thickness for many 

years. The aim of present investigation is to study the two dimensional thermal effect on the vibration of 

visco-elastic square plate. It is also considered that the temperature varies linearly in one direction and 

parabolic in another direction and thickness of square plate varies parabolically in both directions. It is 

assumed that the plate is clamped on all the four edges. Due to temperature variation, we assume that non 

homogeneity occurs in Modulus of Elasticity (E).For various numerical values of thermal gradient and 

taper constants; frequency for the first two modes of vibration are calculated. All results are shown in 

Graphs. 

2. Equation of Motion and Analysis 

Differential equation of motion for visco-elastic square plate of variable thickness in Cartesian coordinate 

is in equation (2.1) : 

     1 xxxx xxyy yyyy 1 x xxx xyy 1,y yyy yxx

2

1,xx xx yy 1,yy yy xx 1,xy xy

[D W, 2W, W,  2D , W, W,  2D W, W,

D (W, W, ) D (W, W, ) 2(1 )D W, ] hp W  0      

      

      
                  (2.1) 

which is a differential equation of transverse motion for non-homogeneous plate of variable thickness. 

Here, D1 is the flexural rigidity of plate i.e. 

                    
3 2

1 /12(1 )D Eh v                         (2.2) 

and corresponding two-term deflection function is taken as  

2

1 2[( / )( / )(1 / )(1 / )] [ ( / )( / )(1 / )(1 / )]W x a y a x a y a A A x a y a x a y a                      (2.3) 

Assuming that the square plate of engineering material has a steady two dimensional temperature 

distribution i.e. 

                2 2

0    1 x / a 1 y / a                       (2.4) 

where, τ  denotes the temperature excess above the reference temperature at any point on the plate and 0τ  

denotes the temperature at any point on the boundary of plate and “a” is the length of a side of square plate. 

The temperature dependence of the modulus of elasticity for most of engineering materials can be 
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expressed in this form, 

                 γτ-10EE                                                             (2.5) 

where, E0 is the value of the Young's modulus at reference temperature i.e. 0τ   and γ  is the slope of 

the variation of E with τ . The modulus variation (2.5) become 

            2 2

0    E E {(1 )(1 / )(1 / )} x a y a                           (2.6) 

where, 
0(0 1)    

 
 thermal gradient. 

It is assumed that thickness varies parabolically in both directions as shown below: 

                  2 2 2 2

0 1 2(1 / )(1 / )h h x a y a   
                               

(2.7) 

where, 1 & 2 are taper parameters in x- & y- directions respectively and h=h0 at x=y=0. 

Put the value of E & h from equation (2.6) & (2.7) in the equation (2.2), one obtain, 

        
3 3

2 2 3 2 2 2 2 2

1 0 0 1 2D E 1 1 x / a 1 y / a h 1 x / a 1 y / a ] /12 1          
 

           (2.8) 

Rayleigh-Ritz technique is applied to solve the frequency equation. In this method, one requires maximum 

strain energy must be equal to the maximum kinetic energy. So it is necessary for the problem under 

consideration that 

                       
* *( ) 0V T                                                              (2.9) 

for arbitrary variations of W satisfying relevant geometrical boundary conditions. 

Since the plate is assumed as clamped at all the four edges, so the boundary conditions are 

                  
, 0xW W 

 , 
0,x a

 

                 
, 0yW W 

   , 
0,y a                                                 (2.10) 

Now assuming the non-dimensional variables as 

/ , / , / , /X x a Y y a W W a h h a                                                                      (2.11) 

The kinetic energy T* and strain energy V* are 

1 1
* 2 5 2 2 2

0 1 2
0 0

(1/ 2) [(1 )(1 ) ]T p h a X Y W dYdX       
                                (2.12)  

and 
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1 1
* 2 2 3 2 3 2 2
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0 0

2
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XX YY XY
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  

                 (2.13) 

where,   3 3 2

0 0 / 24(1 )Q E h a v   

Using equations (2.12) & (2.13) in equation (2.9), one get 

  
** 2 **( ) 0V T                                            (2.14) 

where, 

1 1
** 2 2 3 2 3 2 2

1 2
0 0

2
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V X Y X Y W W
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  

            (2.15) 

and 

1 1
** 2 2 2

1 2
0 0

[(1 )(1 ) ]T X Y W dYdX    
                                                              

(2.16) 

Here,
2 2 2 2

0 012 (1 ) /v a E h  
 
is a frequency parameter. Equation (2.10) consists two unknown constants 

i.e. A1 & A2 arising due to the substitution of W. These two constants are to be determined as follows 

** 2 **( ) / nV T A  
 
    , n = 1, 2                       (2.17) 

On simplifying (2.19), one gets 

1 1 2 2 0bn A bn A        , n =1, 2                        (2.18) 

where, bn1, bn2 (n=1,2) involve parametric constant and the frequency parameter. 

For a non-trivial solution, the determinant of the coefficient of equation (2.18) must be zero. So one gets, 

the frequency equation as 

                                  

11 12

21 22

0
b b

b b


      

     (2.19) 

With the help of equation (2.19), one can obtains a quadratic equation in λ
2 

from which the two values of λ
2 

can found. These two values represent the two modes of vibration of frequency i.e. λ1 (Mode1) & λ2 

(Mode2) for different values of taper constant and thermal gradient for a clamped plate. 

3. Result and Discussion 

Computation has been done for frequency of visco-elastic square plate for different values of taper 
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constants 1 and 2, thermal gradient , at different points for first two modes of vibrations have been 

calculated numerically. 

In Fig 1: - It is clearly seen that value of frequency decreases as value of thermal gradient increases from 

0.0 to 1.0 for  β1 = β2 =0.0, β1 = β2 =0.6 and β1 = β2 =0.8   for both modes of vibrations. 

In Fig 2: - It is evident that frequency increases continuously as increasing value of taper constant β1 from 

0.0 to 1.0 and  

 

 

i. β2=0.2, α=0.0 

ii. β2=0.6, α=0.4 and 

iii.  β2=0.8, α=0.6 respectively. 

 

Conclusion 

Main aim for our research is to develop a theoretical mathematical model for scientists and design 

engineers so that they can make a use of it with a practical approach, for the welfare of the human beings as 

well as for the advancement of technology. 
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Fig 1:- Frequency Vs Thermal gradient 
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Fig 2:- Frequency Vs Taper parameter 
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