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Abstract 
In this paper we have improved the result of Saurabh Manro [7] by using the concept of occasionally weakly 

compatible Maps and proved some results on fixed points in menger space. 
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1. Introduction: 

In 1942 Menger [4] introduced the notion of a probabilistic metric space (PM-space) which is in fact, a 

generalization of metric space. The idea in probabilistic metric space is to associate a distribution function with a 

point pair, say (x, y), denoted by F(x, y; t) where t > 0 and interpret this function as the probability that distance 

between x and y is less than t, whereas in the metric space the distance function is a single positive number. 

Sehgal [8] initiated the study of fixed points in probabilistic metric spaces. The study of these spaces was 

expanded rapidly with the pioneering works of Schweizer-Sklar [1]. A weakly compatible map in fuzzy metric 

space is generalized by A. Al. Thagafi and Nasser Shahzad [1] by introducing the concept of occasionally 

weakly compatible mappings. Our paper improves the result of Saurabh Manro [7] by using of occasionally 

weakly compatible Maps and proved some results on fixed points in menger space. 

 

2. Preliminaries: 

First, recall that a real valued function f defined on the set of real numbers is known as a distribution function if 

it is nondecreasing, continuous and inf f(x) = 0, sup f(x) = 1. We will denote by L, the set of all distribution 

functions. 

Definition 2.1: A probabilistic metric space (PM-space) is a pair (X, F) where X is a set and F is a function 

defined on X X to L such that if x, y and z are points of X, then 

(F-1) ��,���� = 	1 for every t > 0 iff x = y, 

(F-2) ��,��0� = 	0, 

(F-3) ��,���� = ��,����, 
(F-4) if ��,���� = 	1 and ��,��� = 	1, then ��,�� + 	�� = 	1 for all x, y, z∈X and s, t ≥ 0. 

For each x, y∈X and for each real number t > 0, ��,���� is to be thought of as the probability that the distance 

between and y is less than t. 

It is interesting to note that, if (X, d) is a metric space, then the distribution function F(x, y; t) defined by the 

relation F(x, y; t) defined by the relation F(x, y; t) = H(t – d(x, y)) induces a PM-space where H(x) denotes the 

distribution function defined as follows: 

H(x) =�0			��	� ≤ 0
1			��	� > 0� 

Definition 2.2: A t-norm is a 2-place function, t:[0,1]×[0,1]→[0,1] satisfying the following: 

(i) t(0,0) = 0, (ii) t(0,1) = 1, (iii) t(a, b) = t(b, a), (iv) if a ≤ c, b ≤ d, then t(a, b) ≤ t(c, d), 

(v)  t(t(a, b),c) = t(a, t(b, c)) for all a, b, c∈[0,1]. 

Definition 2.3: A Menger PM-space is a triplet (X, F, t) where (X, F) is a PM-space and t is a t-norm with the 

following condition: 

(F-5) Fx, z(s + p) ≥ t(Fx, y(s), Fy, z(p)),for all x, y, z ∈ X and s, p ≥ 0. 

This inequality is known as Menger’s triangle inequality. 

In our theory, we consider (X, F, t) to be a Menger PM-space with the additional following postulate: (F-6)  

����→∞ ��,� �t� = 1  ∀ x, y ∈X. 

Definition 2.4: A menger space (X, F, t) is said to be complete if and only if every Cauchy sequence in X is 

convergent.  

In 1996, Jungck [2] introduced the notion of weakly compatible maps as follows: 

Definitoin 2.5: A pair of self mappings (A, S) on set X is said to be weakly compatible if they commute at the 

coincidence points i.e. Au = Su for some u∈X, then SAu = ASu. 

We need the following Lemmas due to Schweizer and Skalr [1] and Singh and Pant [6], in the proof of the 

theorems: 
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Lemma 2.1: Let (X, F, t) be a menger space and if for a number k ∈(0,1) such that 

��,����� 	≥ ��,����. Then x = y.  

Definition: Let X be a set, f and g  selfmaps of  X. A point x∈X is called a coincidence point of f and g iff fx = 

gx. We shall call w = fx = gx a point of coincidence of  f and g. 

Definition 2.6[3]: Two self mappings A and S of a non-empty set X are OWC iff there is a point x∈X which is a 

coincidence point of A and S at which A and S commute. 

The notion of OWC is more general than weak compatibility (see [5]). 

Lemma 2.2[3]: Let X be a non-empty set, A and B are occasionally weakly compatible self maps of X. If A and 

B have a unique point of coincidence, w = Ax = Bx, then w is the unique common fixed point of A and B. 

 

3. Main Results: 

In our result, we used the following implicit relation: 

Definition (Implicit Relation): Let I= [0, 1] and Ω be the set of all real continuous functions  φ : I
6
→R 

satisfying the condition:  

(i) φ  is non increasing or non decreasing in third and fourth argument and   

(ii) If we have φ(u, v, 1, 1, v, v) ≥1,  for all u, v ∈(0, 1) ⇒ u ≥ v. 

Example: We define  φ : I
6
→R by φ(u1, v1, v2, v3, v4, v5) = u1 - v1+ v2 - v3+ v4 - v5 

Then clearly continuous function such that if we have φ(u, v, 1, 1, v, v) ≥1,  for all u, v∈(0, 1), 

Then φ(u, v, 1, 1, v, v) = u - v+ 1- 1+ v- v = u – v ≥ 1 ⇒ u ≥ v. 

Theorem 3.1: Let (X,F,t) be a Menger space. Let A, B, S and T be self maps of X satisfying the following 

conditions: 

1. (A, S) and (B, T) are owc. 

2.  there exist k ∈(0,1) and ∈   such that   

∅  !�"�,#�����$, !�%�,&����$, !�"�,%����$, !�#�,&����$, !�"�,&����$, !�#�,%����$'  ≥ 1    (I) 

for all x, y ∈ X and t > 0.  

Then there exists a unique point w ∊ X such that Aw = Sw = w and a unique point z ∈ X such that Bz = Tz = z. 

Moreover, z = w, so that there is a unique common fixed point A, B, S and T in X. 

Proof: Since the pairs (A, S) and (B, T) are owc, there exist points x, y ∈ X such that Ax = Sx, ASx = SAx and 

By = Ty, BTy = TBy. Now we show that Ax = By.  

Then we have by inequality (I), 

∅  !�"�,#�����$, !�%�,&����$, !�"�,%����$, !�#�,&����$, !�"�,&����$, !�#�,%����$'  ≥ 1     

∅  !�"�,#�����$, !�%�,&����$, !�"�,%����$, !�#�,&����$, !�"�,&����$, !�#�,%����$'  ≥ 1     

∅  !�"�,#�����$, !�"�,#����$, !�"�,"����$, !�#�,#����$, !�"�,#����$, !�#�,"����$'  ≥ 1     

∅  !�"�,#�����$, !�"�,#����$, 1,1, !�"�,#����$, !�#�,"����$'  ≥ 1     

∅  !�"�,#�����$'  ≥ !�"�,#����$   

Thus by lemma 2.1 Ax = By. Therefore Ax = Sx= By = Ty.   

Moreover, if there is another point z such that Az = Sz. Then using inequality (I) it follows that Az = Sz = By = 

Ty, or Ax = Az. 

Hence w = Ax = Sx is the unique point of coincidence of A and S. By lemma 2.2, w is the unique common fixed 

point of A and S. Similarly, there is a unique point z∈ X such that z = Bz = Tz. Suppose that w  z and using 

inequality (I), we get 

∅  !�(,�	����$, !�(,����$, !�(,(���$, !��,����$, !�(,����$, !��,(	���$'  ≥ 1     

∅  !�(,�	����$, !�(,����$, 1,1, !�(,����$, !��,(	���$'  ≥ 1     

∅  !�(,�	����$'  ≥ !�(,����$   

Thus by lemma 2.1 w = z. 

Therefore z = Sz = Tz = Az = Bz. 

To prove uniqueness, let u and v are two common fixed points of A, B, S and T in X. Therefore, by definition, 

Au = Bu = Tu = Su = u and Av = Bv = Tv = Sv = v.  

Then by (I), take x = u and y = v, we get  

∅  !�),*	����$, !�),*���$, !�),)���$, !�*,*���$, !�),*���$, !�*,)	���$'  ≥ 1     

∅  !�),*	����$, !�),*���$, 1,1, !�),*���$, !�*,)	���$'  ≥ 1     
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∅  !�),*	����$'  ≥ !�),*���$     

Therefore, by lemma 2.1, u = v.  

Hence the self maps A, B, S and T have a unique common fixed point in X. 

Theorem 3.2: Let (X, M, t) be a menger space and let A, B, S, T, P and Q be self maps of X satisfying the 

following conditions: 

(3.2.1) the pairs (A, SP) and (B, TQ) are owc; 

(3.2.2) there exists k∈(0,1) and φ∈Ω such that 

φ+F-�,.��kt�, F01�,23��t�, F-�,01��t�, F.�,23��t�, F-�,23��t�, F.�,01��t�4	≥	1, ∀ x, y∈X and t > 0, 

 (3.1.3) the pairs (A, P), (S, P), (B, Q) and (T, Q) are commuting;  

then A, B, S, T, P and Q have a unique common fixed point in X. 

Proof: Since the pairs (A, SP) and (B, TQ) are owc, so there are points x, y∈X such that Ax = SPx implies 

A(SP)x = (SP)Ax and By = TQy implies B(TQ)y = (TQ)By.  

We claim that Ax = By. Now by inequality (3.2.2) 

φ+F-�,.��kt�, F01�,23��t�, F-�,01��t�, F.�,23��t�, F-�,23��t�, F.�,01��t�4	≥	1,  

We have, φ+F-�,.��kt�, F-�,.��t�, F-�,-��t�, F.�,.��t�, F-�,.��t�, F.�,-��t�4	≥	 1, 

φ+F-�,.��kt�, F-�,.��t�, 1,1, F-�,.��t�, F.�,-��t�4	≥	1,  

⇒ F-�,.��kt�	≥	F-�,.��t�, thus by lemma 2.1 Ax=By. 

Therefore Ax = SPx = By = TQy = z (say), then Az = SPz and Bz = TQz. 

We claim that Az = Bz. Now by inequality (3.2.2) 

φ+F-�,.��kt�, F01�,23��t�, F-�,01��t�, F.�,23��t�, F-�,23��t�, F.�,01��t�4	≥	1, 

We have,  φ+F-5,.5�kt�, F015,235�t�, F-5,015�t�, F.5,235�t�, F-5,235�t�, F.5,015�t�4	≥	 1, 

φ+F-5,.5�kt�, F-5,.5�t�, 1,1, F-5,.5�t�, F.5,-5�t�4	≥	1,  

⇒ F-5,.5�kt�	≥	F-5,.5�t�, thus by lemma 2.1 Az = Bz. Therefore Az = SPz = Bz = TQz. 

Now we prove Az = z, Now by inequality (3.2.2), we have (by taking x = z and By = z) 

φ+F-5,5�kt�, F-5,5�t�, F-5,-5�t�, F5,5�t�, F-5,5�t�, F5,-5�t�4	≥	1, φ+F-5,5�kt�, F-5,5�t�, 1,1, F-5,5�t�, F5,-5�t�4	≥	1, 

⇒ F-5,5�kt�	≥	F-5,5�t�, thus by lemma 2.1 Az = z. Therefore z = Az = Bz = SPz = TQz. 

Now we put x = Pz and y = z in inequality (3.2.2) we get 

φ+F-15,.5�kt�, F0115,235�t�, F-15,0115�t�, F.5,235�t�, F-15,235�t�, F.5,0115�t�4	≥	1,  

Since (A, P) and (S, P) are commuting; φ+F15,5�kt�, F15,5�t�, F15,15�t�, F5,5�t�, F15,5�t�, F5,15�t�4	≥	 1, 

φ+F15,5�kt�, F15,5�t�, 1,1, F15,5�t�, F5,15�t�4	≥	1,  

⇒ F15,5�kt�	≥	F15,5�t�, thus by lemma 2.1 Pz = z. Since z = SPz ⇒ Sz = z. 

To show Qz = z, we put x = z and y = Qz in inequality (3.2.2) we get 

φ+F-5,.35�kt�, F015,2335�t�, F-5,015�t�, F.35,2335�t�, F-5,2335�t�, F.35,015�t�4	≥	1,  

Since (B, Q) and (T, Q) are commuting; φ+F5,35�kt�, F5,35�t�, F5,5�t�, F35,35�t�, F5,35�t�, F35,5�t�4	≥	 1, 

φ+F5,35�kt�, F5,35�t�, 1,1, F5,35�t�, F35,5�t�4	≥	1,  

⇒ F35,5�kt�	≥	F35,5�t�, thus by lemma 2.1 Qz = z. Since z = TQz ⇒ Tz = z.  

Therefore Az = Bz = Sz = Tz = Pz = Qz = z. i.e. z is the common fixed point of A, B, S, T, P and Q. 

To prove uniqueness: let r and s be two distinct common fixed points of A, B, S, T, P and Q.  

Then Ar = Br = Sr = Tr = Pr = Qr = r and As = Bs = Ss = Ts = Ps = Qs = s, 

Now by inequality (3.1.2), we have (at x = r and y = s) φ+F6,7�kt�, F6,7�t�, F6,6�t�, F7,7�t�, F6,7�t�, F7,6�t�4	≥	1,  

φ+F6,7�kt�, F6,7�t�, 1,1, F6,7�t�, F7,6�t�4	≥	1,  

⇒ F6,7�kt�	≥	F6,7�t�, thus by lemma 2.1 r = s.  

This completes the proof of the theorem. 

Conclusion: Our theorem is an improvement of theorem 3.1 of saurabh manro [7]. In our theorem we do not 

require the completeness & continuity of the space and also condition (1) of [7, theorem 3.1]. Our theorem is 

true for any continuous t-norm. In our result we do not require to define many implicit relations. 
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