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Abstract 

An inside look at the contents of social networks databases shows a significant diversion from traditional 

database contents and functionality. There is also enormous evidences that Social networks are changing the way 

multimedia content is shared on the web, by allowing users to upload their photos, videos, and audio content, 

produced by any means of digital recorders such as mobile/smart-phones, and web/digital cameras. In this article, 

an overview of multimedia indexing and searching algorithms, following the data growth curve is presented in 

detail. This paper concludes with  the social aspects  and new, interesting views on multimedia retrieval in the 

large social media databases. 
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INTRODUCTION 

Traditionally database systems have been designed to support commercial data, consisting mainly of structured 

alphanumeric data. In recent years, database systems have added support for a number of nontraditional data 

types such as text documents, images, and maps and other spatial data. The goal is to make databases universal 

servers, which can store all types of data. Rather than add support for all such data types into the core database, 

vendors offer add-on packages that integrate with the database to provide such functionality. 

 

PROBLEM DEFINITION: 

The huge volumes of information in the social media inspired users to formulate new types of queries that pose 

complex questions to these heterogeneous databases. An attempt to index and retrieve multimedia content shared 

through the social media, using techniques of the Content Based Multimedia Retrieval community, shows clearly 

the inability to do so. The parameters and constraints posed from the social media aspect reformed the 

multimedia indexing and retrieval processes in a new problem seeking for new solutions.  

The major problems of social multimedia indexing and retrieval exist due to 1.  The enormous volumes 

of information that push existing techniques to their edges  2. The well known semantic gap between the low-

level multimedia descriptors and the higher level concepts that exist in each multimedia content. These facts do 

not imply that previous knowledge and tools are totally useless, rather that they should be used in a different way. 

In general current systems have not yet had significant impact on society due to an inability to bridge the 

semantic gap between computers and humans. 

 

MAJOR CHALLENGES 

The following major research challenges are noteworthy of particular importance to the MIR research 

community. (1) Semantic search with emphasis on the detection of concepts in media with complex backgrounds; 

(2) Multi-modal analysis and retrieval algorithms especially towards exploiting the synergy between the various 

media including text and context information; (3) Experiential multimedia exploration systems toward allowing 

users to gain insight and explore media collections; (4) Interactive search, emergent semantics, or relevance 

feedback systems; and (5) Evaluation with emphasis on representative test sets and usage patterns. 

 

HISTORICAL DEVELOPMENTS IN MIR 

The earliest years of MIR were frequently based on computer vision (three excellent books: [Ballard and Brown 

1982]; [Levine 1985]; [Haralick and Shapiro 1993]) algorithms focused on feature based similarity search over 

images, video, and audio. Influential and popular examples of these systems would be QBIC [Flickner, et al. 

1995] and Virage [Bach, et al. 1996] circa mid 90s. Within a few years the basic concept of the similarity search 

was transferred to several Internet image search engines including Webseek [Smith and Chang 1997] and 

Webseer [Frankel, et al. 1996]. Significant effort was also placed into direct integration of the feature based 

similarity search into enterprise level databases such as Informix datablades, IBM DB2 Extenders, or Oracle 

Cartridges [Bliujute, et al. 1999; Egas, et al. 1999] towards making MIR more accessible to private industry. In 

the area of video retrieval l, the main focus in the mid 90s was toward robust shot boundary detection of which 

the most common approaches involved thresholding the distance between color histograms corresponding to two 
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consecutive frames in a video [Flickner, et al. 1995]. Hanjalic, et al. [1997] proposed a method which overcame 

the problem of subjective user thresholds. Their approach was not dependent on any manual parameters. It gave 

a set of keyframes based on an objective model for the video information flow. Haas, et al. [1997] described a 

method to use the motion within the video to determine the shot boundary locations. Their method outperformed 

the histogram approaches of the period and also performed semantic classification of the video shots into 

categories such as zoom-in, zoom-out, pan, etc. A more recent practitioner's guide to video transition detection is 

given by Lienhart [2001]. 

Starting near the turn of the 21st century, researchers noticed that the feature based similarity search 

algorithms were not as intuitive nor user-friendly as they had expected.  In ACM Transactions on Multimedia 

Computing, Communications, and Applications, Feb. 2006 One could say that systems built by research 

scientists were essentially systems which could only be used effectively by scientists.  

The new direction was toward designing systems which would be user friendly and could bring the 

vast multimedia knowledge from libraries, databases, and collections to the world. To do this it was noted that 

the next evolution of systems would need to understand the semantics of a query, not simply the low level 

underlying computational features. This general problem was called “bridging the semantic gap”. From a pattern 

recognition perspective, this roughly meant translating the easily computable low level content-based media 

features to high level concepts or terms which would be intuitive to the user.  

Examples of bridging the semantic gap for the single concept of human faces were demonstrated by 

Rowley, et al. [1996] and Lew and Huijsmans [1996]. Perhaps the earliest pictorial content-based retrieval 

system which addressed the semantic gap problem in the query interface, indexing, and results was the 

ImageScape search engine [Lew 2000]. In this system, the user could make direct queries for multiple visual 

objects such as sky, trees, water, etc.using spatially positioned icons in a WWW index containing 10+ million 

images andvideos using keyframes. The system used information theory to determine the best features for 

minimizing uncertainty in the classification. At this point it is important to note that the feature based similarity 

search engines were useful in a variety of contexts [Smeulders, et al. 2000] such as searching trademark 

databases [Eakins, et al. 2003], finding video shots with similar visual content and motion or for DJs searching 

for music with similar rhythms [Foote 1999], and automatic detection of pornographic content [Forsyth and 

Fleck 1999; Bosson, et al. 2002]. 

Intuitively, the most pertinent applications are those where the basic features such as color and texture 

in images and video; or dominant rhythm, melody, or frequency spectrum in audio [Foote 1999] are highly 

correlated to the search goals of the particular application. 

 

RECENT DEVELOPMENT 

In this section we discuss representative work [Dimitrova 2003; Lew 2001; Sebe, et 2003 (CIVR)] done in 

content-based multimedia retrieval in the recent years. The two fundamental necessities for a  multimedia 

information retrieval system are (1) Searching for a particular media item; and (2) Browsing and summarizing a 

media collection. In searching for a particular media item, the current systems have significant limitations such 

as an inability to understand a wide user vocabulary, understand the user'  satisfaction level, nor do there exist 

credible representative real world test sets for evaluation nor even benchmarking measures which are clearly 

correlated with user satisfaction.  

The prevalent research topics which have potential for improving multimedia retrieval by bridging the 

semantic gap are human-centered computing, new features, new media, browsing and summarization, and 

evaluation or benchmarking. In human-centered computing, the main idea is to satisfy the user and allow the 

user to make queries in their own terminology. User studies give us insight directly into the interactions between 

human and computer.  

Experiential computing also focusses on methods for allowing the user to explore and gain insights in 

media collections. On a fundamental level, the notion of user satisfaction is inherently emotional. Affective 

computing is fascinating because it focusses on understanding the user's emotional state and intelligently 

reacting to it. It can also be beneficial toward measuring user satisfaction in the retrieval process.  

Learning algorithms are interesting because they potentially allow the computer to understand the 

media collection on a semantic level. Furthermore, learning algorithms may be able to adapt and compensate for 

the noise and clutter in real world contexts. 

New features are pertinent in that they can potentially improve the detection and recognition process or 

be correlated with human perception. New media types address the changing nature of the media in the 

collections or databases. Some of the recent new media include 3D models and biological imaging data. (i.e. 

towards understanding the machinery of life). As scientists, we need to objectively evaluate and benchmark the 

performance of the systems and take into account factors such as user satisfaction with results. Currently, there 

are no large international test sets for the wide problems such as searching personal media collections, so 

significant effort has been addressed toward developing paradigms which are effective for evaluation. 
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Furthermore, as collections grow from gigabyte to terabyte to petabyte sizes, high performance algorithms will 

be necessary toward responding to a query in an acceptable time period. Currently, the most commonly used test 

sets include collections involving personal photos, web images and videos, cultural heritage images, news video, 

and the Corel stock photography collection, which is also the most frequently mentioned collection. We are not 

asserting that the Corel collection is a good test set. We suspect it is popular simply because it is widely available 

and related loosely to real world usage. Furthermore, weIn ACM Transactions on Multimedia Computing, 

Communications, and Applications, Feb. 2006 think that it is only representative and suitable if the main goal of 

the particular retrieval system is to find professional stock photography. For the most recent research, there 

currently are several conferences dedicated to the field of MIR such as the ACM SIGMM Workshop on 

Multimedia Information Retrieval and the International Conference on Image and Video For a searchable MIR 

library, we suggest the community driven digital library at the Association for Multimedia Search and Retrieval 

Additionally, the general multimedia conferences such as ACM 

Multimedia (http://www.sigmm.org) and the IEEE International Conference on Multimedia and Expo 

(ICME) typically have MIR related tracks. 

 

Human-centered Computing 

By human-centered we mean systems which consider the behavior and needs of the human user [Jaimes and 

Sebe, 2006]. As noted earlier, the foundational areas of MIR were often in computing-centric fields. However, 

since the primary goal is to provide effective browsing and search tools for the user, it is clear that the design of 

the systems should be human-centric. There have been several major recent initiatives in this direction such as 

user understanding, experiential computing, and affective computing. One of the most fascinating studies was 

done on whether organization by similarity assists image browsing [Rodden 2001]. The users were asked to 

illustrate a set of destination guide articles for a travel website. The similarity by visual content view was 

compared with a text caption similarity view. In 40 of the 54 searches, users chose to use the text caption view 

with comments such as “it gave me a breakdown of the subject.” In many cases the users began with the text 

caption view to ensure sufficient diversity. Also, it was noted by the users that they would want both possibilities 

simultaneously. In another experiment, the visual similarity view was compared with a random set. Most users 

were slightly more satisfied with the visual similarity view, but there was one user who preferred the random 

images view. Specifically, the visual similarity view was preferred in 66% of the searches. A nice description of 

user requirements for photoware is discussed in [Frohlich 2002] and Lim, et al. [2003]. The importance of time 

in user interfaces is discussed in Graham, et al. [2002]. By understanding user types [Enser and Sandom 2003; 

Rubin 2004, Enser, et al. 2005], it is clear that the current work has not addressed the full plurality of image and 

user types and that a broad evaluation is important. In specific cases there has been niche work such as the use of 

general purpose documentary images by generalist andIn ACM Transactions on Multimedia Computing, 

Communications, and Applications, Feb. 2006 specialist users [Markkula and Sormunen 2000] and the use of 

creative images by specialist users [Hastings 1999]. Other interesting studies have been done on the process of 

managing personal photograph collections [Rodden and Wood 2003]. Worring and Gevers [2001] describe a 

concise analysis of methodologies for interactive retrieval of color images which includes guidelines for 

selecting methods based on the domain and the type of search goal. Also, Worring, et al. [2004] gave useful 

insights into how users apply the steps of indexing, filtering, browsing, and ranking in video retrieval.  

Usage mining in large multimedia databases is another emerging problem. The objective is to extract 

the hidden information in user behaviors on large multimedia databases. A framework for video usage mining 

has been presented in Mongy, et al. [2005]. The idea behind experiential computing [Jain 2003; Jain, et al. 2003] 

is that decision makers routinely need insights that come purely from their own experience and experimentation 

with media and applications. These insights come from multiple perspectives and exploration [Gong, et al. 2004]. 

Instead of analyzing an experience, experiential environments provide support for naturally understanding events. 

In the context of MIR, experiential environments provide interfaces for creatively exploring sets of data, giving 

multiple perspectives and allowing the user to follow his insights. Affective computing [Picard 2000; Berthouze 

and Kato 1998; Hanjalic and Xu 2005] seeks to provide better interaction with the user by understanding the 

user's emotional state and responding in a way which influences or takes into account the user's emotions. 

For example, Sebe, et al. [2002] recognize emotions automatically using a Cauchy classifier on an 

interactive 3D wireframe model of the face. Wang, et al. [2004] examine the problem of grouping images into 

emotional categories. They introduce a novel feature based on line direction-length which works effectively on a 

set of art paintings. Salway and Graham [2003] develop a method for extracting character emotions from film 

which is based on a model that links character emotions to the events in their environment. 

 

Learning and Semantics 

The potential for learning in multimedia retrieval is quite compelling toward bridging the semantic gap and the 

recent research literature has seen significant interest in applyingclassification and learning [Therrien 1989; 
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Winston 1992; Haralick and Shapiro 1993]algorithms to MIR. The Karhunen-Loeve (KL) transform or principal 

components method [Therrien 1989] has the property of representational optimality for a linear description of the 

media. Another approach toward learning semantics is to determine the associations behind features and the 

semantic descriptions. Djeraba [2002 and 2003] examines the problem of data mining and discovering hidden 

associations during image indexing and consider a visual dictionary which groups together similar colors and 

textures. A learning approach is explored by Krishnapuram, et al. [2004] in which they introduce a fuzzy graph 

matching algorithm. Greenspan, et al. [2004] performs clustering on space-time regions in feature space toward 

creating a piece-wise GMM framework which allows for the detection of video events. 

 

Concept Detection  

One of the most important challenges and perhaps the most difficult problem in semantic understanding of media 

is visual concept detection in the presence of complex backgrounds. Many researchers have looked at classifying 

whole images, but the granularity is often too coarse to be useful in real world applications. Its typically 

necessary to find the human in the picture, not simply global features. Another limiting case is where researchers 

have examined the problem of detecting visual concepts in laboratory conditions where the background is simple 

and therefore can be easily segmented. Thus, the challenge is to detect all of the semantic content within an 

image such as faces, trees, animals, etc. with emphasis on the presence of complex backgrounds.  

In the mid 90s, there was a great deal of success in the special case of detecting the locations of human 

faces in grayscale images with complex backgrounds. Lew and Huijsmans [1996] used Shannon's information 

theory to minimize the uncertainty in the face detection process. Rowley, et al. [1996] applied several neural 

networks toward detecting faces. Both methods had the limitation of searching for whole faces which prompted 

later component based model approaches which combined separate detectors for the eyes and nose regions. For 

the case of near frontal face views in high quality photographs, the early systems generally performed near 95% 

accuracy with minimal false positives. Non-frontal views and low quality or older images from cultural heritage 

collections are still considered to be very difficult. An early example of designing a simple detector for city 

pictures was demonstrated by Vailaya, et al. [1998]. They used a nearest neighbor classifier in conjunction with 

edge histograms. In more recent work, Schneiderman and Kanade [2004] proposed a system for component 

based face detection using the statistics of parts. Chua, et al. [2002] used the gradient energy directly from the 

video representation to detect faces based on the high contrast areas such as the eyes, nose, and mouth. They also 

compared a rules based classifier with a neural network and found that the neural network gave superior 

accuracy. For a good overview, Yang, et al. 

[2002] did a comprehensive survey on the area of face detection. Detecting a wider set of concepts 

other than human faces turned out to be fairly difficult. In the context of image search over the Internet, Lew 

[2000] showed a system for detecting sky, trees, mountains, grass, and faces in images with complex 

backgrounds. Fan, et al. [2004] used multi-level annotation of natural scenes using dominant image components 

and semantic concepts. Li and Wang [2003] used a statistical modeling approach toward converting images to 

keywords 

 

Relevance Feedback 

Beyond the one-shot queries in the early similarity based search systems, the next generation of systems 

attempted to integrate continuous feedback from the user toward learning more about the user query. The 

interactive process of asking the user a sequential set of questions after each round of results was called 

relevance feedback due to the  similarity with older pure text approaches. Relevance feedback can be considered 

a special case of emergent semantics. Other names have included query refinement, interactive search, and active 

learning from the computer vision literature. The fundamental idea behind relevance feedback is to show the user 

a list of candidate images, ask the user to decide whether each image is relevant or irrelevant, and modify the 

parameter space, semantic space, feature space, or classification space to reflect the relevant and irrelevant 

examples. In the simplest relevance   feedback method from Rocchio [Rocchio 1971], the idea is to move the 

query point toward the relevant examples and away from the irrelevant examples. In principle, one general view 

is to view relevance feedback as a particular type of pattern classification in which the positive and negative 

examples are found from the relevant and irrelevant labels, respectively. Therefore, it is possible to apply any 

learning algorithm into the relevance feedback loop. One of the major problems in relevance feedback is how to 

address the small training set. A typical user may only want to label 50 images when the algorithm really needs 

5000 examples instead. If we compare the simple Rocchio algorithm to more sophisticated learning algorithms 

such as neural networks, its clear that one reason the 

Rocchio algorithm is popular is that it requires very few examples. However, one challenging 

limitation of the Rocchio algorithm is that there is a single query point which would refer to a single cluster of 

results. In the discussion below we briefly describe some of the recent innovations in relevance feedback. 

describe the first WWW image search engine which focused on relevance feedback based improvement of the 
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results. In their initial system, where they used relevance feedback to guide the feature selection process, it was 

found that the positive examples 

 

New Features & Similarity Measures 

Research did not only proceed along the lines of improved search algorithms, but also toward creating new 

features and similarity measures based on color, texture, and shape. One of the recent interesting additions to the 

set of features are from the MPEG-7 standard [Pereira and Koenen 2001]. The new color features [Lew 2001, 

Gevers2001] such as the NF, rgb, and m color spaces have specific benefits in areas such as lighting invariance, 

intuitiveness, and perceptual uniformity. A quantitative comparison of influential color models is performed in 

Sebe and Lew [2001]. In texture understanding, Ojala, et al. [1996] found that combining relatively simple 

texture histograms outperformed traditional texture models such as Gaussian or Markov features. Jafari-

Khouzani and Soltanian-Zadeh [2005] proposed a new texture feature based on the Radon transform orientation 

which has the significant advantage of being rotationally invariant. Insight into the MPEG-7 texture descriptors 

has been given by Wu, et al. [2001]. 

 

New Media 

In the early years of MIR, most research focused on content-based image retrieval. Recently, there has been a 

surge of interest in a wide variety of media. An excellent example, “life records”, which encompasses all types 

of media simultaneously is being actively promoted by Bell [2004]. He is investigating the issues and challenges 

in processing life records - all the text, audio, video, and media related to a person's life. Beyond text, audio, 

images, and video, there has been significant recent interest in new media such as 3D models. Another 

fascinating area is peering into biological databases consisting of imagery from the atomic through the visible 

light range. Applications can range from understanding the machinery of life to fast identification of dangerous 

bacteria or viruses. 

The aspect of particular interest is how to combine the data from different imaging methods such as 

electron microscopes, MRI, X-ray, etc. Each imaging method uses a fundamentally different technique however 

the underlying content is the same. For example, Haas, et al. [2004] used a genetic algorithm learning approach 

combined with additional knowledge sources to search through virus databases and video collections. 

Toward supporting imprecise queries in bio-databases, Chen, et al. [2002] used fuzzy equivalence 

classes to support query relaxation in biological imagery collections. 

 

Browsing and Summarization 

There have been a wide variety of innovative ways of browsing and summarizing multimedia information. 

Spierenburg and Huijsmans [1997] proposed a method for converting an image database into a movie. The 

intuition was that one could cluster a sufficiently large image database so that visually similar images would be 

in the same cluster. After the cluster process, one can order the clusters by the inter-cluster similarity, arrange the 

images in sequential order and then convert to a video. This allows a user to have a gestalt understanding of a 

large image database in minutes. Sundaram, et al. [2002] took a similar approach toward summarizing video. 

They introduced the idea of a video skim which is a shortened video composed of informative scenes from the 

original video. The fundamental idea is for the user to be able to receive an abstract of the story but in video 

format. Snoek, et al. [2005] propose several methods for summarizing video such as grouping by categories and 

browsing by category and in time. Chiu, et al. [2005] created a system for texturing a 3D city with relevant 

frames from video shots. The user would then be able to fly through the 3D city and browse all of the videos in a 

directory.  

 

High Performance Indexing 

In the early multimedia database systems, the multimedia items such as images or video were frequently simply 

files in a directory or entries in an SQL database table. From a computational efficiency perspective, both 

options exhibited poor performance because most filesystems use linear search within directories and most 

databases could only perform efficient operations on fixed size elements. Thus, as the size of the multimedia 

databases or collections grew from hundreds to thousands to millions of variable sized items, the computers 

could not respond in an acceptable time period. Even as the typical SQL database systems began to implement 

higher performance table searches, the search keys had to be exact such as in text search. Audio, images, and 

video were stored as blobs which could not be indexed effectively. Therefore, researchers [Egas, et al. 1999; 

Lew 2000] turned to similarity based databases which used tree-based indexes to achieve logarithmic 

performance. Even in the case of multimedia oriented databases such as the Informix database, it was still 

necessary to create custom datablades to handle efficient similarity searching such as k-d trees [Egas, et al. 1999]. 

In general the k-d tree methods had linear worst case performance and logarithmic average case performance in 

the context of feature based similarity searches. A recent improvement to the k-d tree method is to integrate 
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entropy based balancing [Scott and Shyu 2003]. 

 

FUTURE DIRECTIONS 

Despite the considerable progress of academic research in multimedia information retrieval, there has been 

relatively little impact of MIR research into commercial applications with some niche exceptions such as video 

segmentation. One example of an attempt to merge academic and commercial interests would be Riya 

(www.riya.com). 

Their goal is to have a commercial product that uses the academic research in face detection and 

recognition and allows the users to search through their own photo collection or through the Internet for 

particular persons.  

The potential landscape of multimedia information retrieval is quite wide and diverse. Below are some 

potential areas for additional MIR research challenges.  

 

Human Centered Methods.  

We should focus as much as possible on the user, who may want to explore instead of search for media. It has 

been noted that decision makers need to explore an area to acquire valuable insight, thus experiential systems 

which stress the exploration aspect are strongly encouraged. Studies on the needs of the user are also highly 

encouraged toward giving us understanding of their patterns and desires. New interactive devices (e.g., force, 

olfactory, and facial expression detectors) have largely been overlooked and should be tested to provide new 

possibilities, such as human emotional state detection and tracking. 

 

Conclusion 

Discovering more effective means of human-human computer-mediated interaction is increasingly important as 

our world becomes more wired or wirelessly connected. In a multimodal collaboration environment many 

questions remain: How do people find one another? How does an individual discover meetings/collaborations? 

What are the most effective multimedia interfaces in these environments for different purposes, individuals, and 

groups? Multimodal processing has many potential roles ranging from transcribing and summarizing meetings to 

correlating voices, names, and faces, to tracking individual (or group) attention and intention across  media.  
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